
Silk Test 20.5

Silk Test Classic Open Agent Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-23

ii

Contents

Licensing Information ..18
Getting Started ... 19

Automation Under Special Conditions (Missing Peripherals) ..19
Silk Test Product Suite .. 20
Contacting Micro Focus .. 22

Information Needed by Micro Focus SupportLine .. 22
What's New in Silk Test Classic .. 23

Enhance Security with Java-based Encryption ... 23
Usability Enhancements ..23
Technology Updates ..23

Open Agent ... 25
How Silk Test Classic Assigns an Agent to a Window Declaration 25
Agent Options ... 25
Setting the Default Agent .. 45

Setting the Default Agent Using the Runtime Options Dialog Box 46
Setting the Default Agent Using the Toolbar Icons ...46

Connecting to the Default Agent ... 46
Creating a Script that Uses Both Agents ...46
Overview of Record Functionality Available for the Silk Test Agents47
Setting the Window Timeout Value to Prevent Window Not Found Exceptions 48

Manually Setting the Window Timeout Value ... 48
Setting the Window Timeout Value in the Agent Options Dialog Box48

Configuring the Connections Between the Silk Test Classic Components 49
Configuring the Port to Connect to the Information Service50
Configuring the Port to Connect to the Open Agent ...51
Editing the Properties of the Silk Test Information Service 52
Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

... 53
Stopping the Open Agent After Test Execution ...54
Enabling the Classic Agent ... 54

Basic Workflow for the Open Agent ... 55
Creating a New Project ... 55
Configuring Applications ... 56
Recording Test Cases for Standard and Web Applications ...56
Recording Test Cases for Mobile Applications ..57
Running a Test Case ...58
Viewing Test Results ... 59

Migrating from the Classic Agent to the Open Agent60
Differences for Agent Options Between the Silk Test Agents ..60
Differences in Object Recognition Between the Silk Test Agents 61
Differences in the Classes Supported by the Silk Test Agents ... 63
Differences in the Parameters Supported by the Silk Test Agents67
Overview of the Methods Supported by the Silk Test Agents ... 68
SYS Functions Supported by the Open Agent and the Classic Agent68

Silk Test Classic Projects .. 70
Storing Project Information ..70
Accessing Files Within Your Project ..71
Sharing a Project Among a Group .. 72
Project Explorer ...72
Creating a New Project ... 73

Contents | 3

Opening an Existing Project ..74
Converting Existing Tests to a Project ...75
Using Option Sets in Your Project ... 75

Editing an Options Set ..75
Silk Test Classic File Types ... 76
Organizing Projects ...77

Adding Existing Files to a Project ...77
Renaming Your Project ...77
Working with Folders in a Project ... 78
Moving Files Between Projects .. 79
Removing Files from a Project ... 80
Turning the Project Explorer View On and Off ..80
Viewing Resources Within a Project .. 80

Packaging a Silk Test Classic Project ... 80
Emailing a Project .. 82

Exporting a Project ..84
Troubleshooting Projects ...85

Files Not Found When Opening Project ...85
Silk Test Classic Cannot Load My Project File ... 85
Silk Test Classic Cannot Save Files to My Project ... 85
Silk Test Classic Does Not Run ..86
My Files No Longer Display In the Recent Files List ..86
Cannot Find Items In Classic 4Test ..86
Editing the Project Files ..86

Project Description Dialog Box ..87
Enabling Extensions for Applications Under Test .. 88

Extensions that Silk Test Classic can Automatically Configure ...88
Extensions that Must be Set Manually .. 89
Extensions on Host and Target Machines ...89
Enabling Extensions Automatically Using the Basic Workflow ..90
Enabling Extensions on a Host Machine Manually ... 90
Manually Enabling Extensions on a Target Machine ...91
Enabling Extensions for Embedded Browser Applications that Use the Classic Agent 92
Enabling Extensions for HTML Applications (HTAs) ... 93
Adding a Test Application to the Extension Dialog Boxes ... 93
Verifying Extension Settings ..94
Why Applications do not have Standard Names ... 94
Duplicating the Settings of a Test Application in Another Test Application94
Deleting an Application from the Extension Enabler or Extensions Dialog Box 95
Disabling Browser Extensions ...95
Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box 95
Configuring the Browser ..96

Setting Agent Options for Web Testing ...97
Specifying a Browser for Silk Test Classic to Use in Testing a Web Application 98
Specifying your Default Browser .. 98

Enable Extensions Dialog Box (Classic Agent) ...98
Extension Information Dialog Box ... 99
Extension Settings Dialog Box (.NET) ...99
Extension Settings Dialog Box (Web) ... 100
Extension Settings Dialog Box (Client/Server) ..100
Extension Settings Dialog Box (Java) ... 101

Understanding the Recovery System for the Open Agent 102
Setting the Recovery System for the Open Agent ...103
Base State ...103
Modifying the Base State (Open Agent) ..104
DefaultBaseState Function ... 105

4 | Contents

Adding Tests that Use the Open Agent to the DefaultBaseState 106
DefaultBaseState and the wDynamicMainWindow Object ..108
Flow of Control .. 108

The Non-Web Recovery Systems Flow of Control ... 108
How the Non-Web Recovery System Closes Windows 109
How the Non-Web Recovery System Starts the Application109

Modifying the Default Recovery System ... 109
Overriding the Default Recovery System ... 110
Handling Login Windows ..111
Specifying Windows to be Left Open for Tests that Use the Open Agent 112
Specifying New Window Closing Procedures ...113
Specifying Buttons, Keys, and Menus that Close Windows 113
Recording a Close Method for Tests that Use the Open Agent113

Set Recovery System Dialog Box ... 114
Test Plans ..116

Structure of a Test Plan ...116
Overview of Test Plan Templates .. 117
Example Outline for Word Search Feature ..117
Converting a Results File to a Test Plan ... 119
Working with Test Plans .. 119

Creating a New Test Plan ...119
Indent and Change Levels in an Outline .. 120
Adding Comments to Test Plan Results ... 120
Documenting Manual Tests in the Test Plan ...121
Describing the State of a Manual Test ..121
Inserting a Template ...121
Changing Colors in a Test Plan .. 122
Linking the Test Plan to Scripts and Test Cases .. 122
Insert Testplan Template Dialog Box .. 123

Working with Large Test Plans ..123
Determining Where Values are Defined in a Large Test Plan 123
Dividing a Test Plan into a Master Plan and Sub-Plans 123
Creating a Sub-Plan ... 124
Copying a Sub-Plan ... 124
Opening a Sub-Plan ... 124
Connecting a Sub-Plan with a Master Plan ..124
Refreshing a Local Copy of a Sub-Plan ... 124
Sharing a Test Plan Initialization File ..125
Saving Changes ... 125
Overview of Locks .. 125
Acquiring and Releasing a Lock ...125
Generating a Test Plan Completion Report ..125
Testplan Completion Report Dialog Box ...126

Adding Data to a Test Plan ..126
Specifying Unique and Shared Data .. 126
Adding Comments in the Test Plan Editor ..127
Testplan Editor Statements .. 127
The # Operator in the Testplan Editor .. 127
Using the Testplan Detail Dialog Box to Enter the testdata Statement127
Entering the testdata Statement Manually ... 128

Linking Test Plans ... 128
Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box

... 128
Linking a Test Plan to a Data-Driven Test Case ... 128
Linking to a Test Plan Manually ..129

Contents | 5

Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box
... 129

Linking the Test Plan to Scripts and Test Cases .. 129
Example of Linking a Test Plan to a Test Case .. 130

Categorizing and Marking Test Plans ..130
Marking a Test Plan ..130
How the Marking Commands Interact .. 131
Marking One or More Tests .. 131
Printing Marked Tests ...131
Mark By Query Dialog Box ...131
Mark By Named Query Dialog Box .. 132

Using Symbols .. 133
Overview of Symbols ..133
Symbol Definition Statements in the Test Plan Editor .. 135
Defining Symbols in the Testplan Detail Dialog box ... 135
Assigning a Value to a Symbol ...136
Specifying Symbols as Arguments when Entering a testcase Statement 136

Attributes and Values .. 136
Predefined Attributes ..137
User Defined Attributes .. 137
Adding or Removing Members of a Set Attribute ... 137
Rules for Using + and - ...138
Defining an Attribute and the Values of the Attribute ..138
Assigning Attributes and Values to a Test Plan .. 138
Assigning an Attribute from the Testplan Detail Dialog Box 139
Modifying the Definition of an Attribute ...139

Queries ..140
Overview of Test Plan Queries ... 140
Overview of Combining Queries to Create a New Query140
Guidelines for Including Symbols in a Query ... 141
The Differences between Query and Named Query Commands141
Creating a New Query ..141
Edit a Query ... 142
Delete a Query ... 142
Combining Queries ...142
Combine Testplan Queries Dialog Box ...143
New/Edit Testplan Query Dialog Box ..143
Create Session Dialog Box ...144

Testplan Detail Dialog Box .. 144
Testplan Detail - Testcase Dialog Box ... 146
Define Attributes Dialog Box ... 146
New Attribute Dialog Box .. 147
Update Manual Tests Dialog Box .. 147
Duplicate Test Descriptions dialog box ... 148

Designing and Recording Test Cases with the Open Agent 149
Creating Test Cases with the Open Agent .. 149

Recording Test Cases for Standard and Web Applications149
Recording Test Cases for Mobile Applications ... 150
Recording a Test on Microsoft Edge .. 151
Recording Window Declarations that Include Locator Keywords 152
Recording Locators Using the Locator Spy ..153
Recording an Application State .. 154
Recording Additional Actions Into an Existing Test .. 155
Actions Available During Recording ... 156
Setting Recording Options for the Open Agent .. 156
Best Practices for Creating Test Scripts ... 159

6 | Contents

Specifying Whether to Use Locators or Tags to Resolve Window Declarations ...160
Saving a Script File .. 160
Testing an Application State ... 160
Editing Remote Locations .. 160
Overview of Recording the Stages of a Test Case ...161
Recording the Cleanup Stage and Pasting the Recording 162
Testing the Ability of the Recovery System to Close the Dialog Boxes of Your Application

... 163
Linking to a Script and Test Case by Recording a Test Case163
Recording Actions .. 164
Locator Spy Dialog Box .. 164
Record Testcase Dialog Box .. 165
Update Files Dialog Box ...165

Dynamic Object Recognition ...166
XPath Basic Concepts ..167
Locator Syntax ... 168
XPath Samples ...170
Supported Locator Attributes ... 171
Using Locators ... 171
Using Locators to Check if an Object Exists .. 171
Identifying Multiple Objects with One Locator .. 172
Locator Customization ..172
Troubleshooting Performance Issues for XPath ..177

Highlighting Objects During Recording ... 178
Overview of the Locator Keyword ... 178
Test Cases .. 181

Overview of Test Cases ..181
Anatomy of a Basic Test Case ... 182
Types of Test Cases ... 182
Test Case Design ... 183
Constructing a Test Case ... 183
Data in Test Cases ... 184
Saving Test Cases ..185
Recording Without Window Declarations ... 185
Overview of Application States ...186
Behavior of an Application State Based on NONE ...186
Example: A Feature of a Word Processor .. 187

Verification ...188
Verifying Object Properties ...188
Overview of Verifying Bitmaps ..189
Overview of Verifying an Objects State .. 190
Fuzzy Verification ... 191
Verifying that a Window or Control is No Longer Displayed 192

Data-Driven Test Cases .. 193
Data-Driven Workflow ...193
Working with Data-Driven Test Cases ..194
Code Automatically Generated by Silk Test Classic ...194
Tips And Tricks for Data-Driven Test Cases ... 196
Testing an Application with Invalid Data ... 197
Enabling and Disabling Workflow Bars ...197
Data Source for Data-Driven Test Cases ... 198
Creating the Data-Driven Test Case ...200
Select Data Source Dialog Box .. 206
Setup Data Driven Script DSN Dialog Box ...207
Specify Data Driven Script Dialog Box ... 208
Specify Data Driven Testcase Dialog Box .. 208

Contents | 7

Specify Rows Dialog Box ... 208
Go to Testcase Dialog Box ... 210
Select Testcase Dialog Box ..211

Characters Excluded from Recording and Replaying ... 211
Testing in Your Environment with the Open Agent 212

Distributed Testing with the Open Agent ... 212
Remote Testing with the Open Agent ...212
Running Test Cases in Parallel ...222
Testing Multiple Machines .. 230
Testing Multiple Applications .. 236
Troubleshooting Distributed Testing ..245

Testing Apache Flex Applications ..245
Overview of Apache Flex Support ..246
Configuring Security Settings for Your Local Flash Player 246
Configuring Flex Applications to Run in Adobe Flash Player 247
Configuring Flex Applications for Adobe Flash Player Security Restrictions247
Customizing Apache Flex Scripts ...248
Styles in Apache Flex Applications ...248
Locator Attributes for Apache Flex Controls ...249
Dynamically Invoking Apache Flex Methods .. 249
Testing Multiple Flex Applications on the Same Web Page250
Adobe AIR Support .. 251
Apache Flex Exception Values ...251
Overview of the Flex Select Method Using Name or Index 251
Selecting an Item in the FlexDataGrid Control ... 252
Enabling Your Flex Application for Testing ..253
Testing the Component Explorer .. 263
Testing Flex Custom Controls ...267

Client/Server Application Support ... 276
Client/Server Testing Challenges ... 276
Verifying Tables in ClientServer Applications ... 277
Evolving a Testing Strategy .. 277
Incremental Functional Test Design ... 278
Network Testing Types ... 278
How 4Test Handles Script Deadlock .. 279
Troubleshooting Configuration Test Failures ...280

Testing .NET Applications with the Open Agent ..280
Windows Forms Applications ... 280
WPF Applications ... 284
Microsoft Silverlight Applications ..290

Java AWT/Swing Support .. 294
Configuring a Test Application that Uses the Java Network Launching Protocol (JNLP)

... 294
Custom Attributes ...295
Attributes for Java AWT/Swing Applications ...295
Dynamically Invoking Java Methods ...296
invokeMethods Example: Draw a Line in a Text Field .. 297
Determining the priorLabel in the Java AWT/Swing Technology Domain297
Oracle Forms Support ..297

Testing Java SWT and Eclipse Applications with the Open Agent298
Suppressing Controls (Open Agent) .. 299
Attributes for Java SWT Applications ... 299
Dynamically Invoking Java Methods ...299
Java SWT Classes for the Open Agent ..300
Troubleshooting Java SWT and Eclipse Applications ...300

Testing Mobile Applications ...301

8 | Contents

Android ... 301
iOS ... 307
Recording Mobile Applications ... 319
Selecting the Mobile Device for Test Replay .. 319
Using Devices from Mobile Center Directly from Silk Test Classic320
Using Devices from Mobile Center through Silk Central 321
Installing the Certificate for an HTTPS Connection to Mobile Center 322
Changing the Mobile Center Password .. 323
Using SauceLabs Devices ..323
Connection String for a Mobile Device ... 323
Interacting with a Mobile Device ...327
Releasing a Mobile Device ...327
Using the setLocation Method when Testing a Mobile Application328
Troubleshooting when Testing Mobile Applications .. 329
Limitations for Testing Mobile Web Applications .. 334
Limitations for Testing Native Mobile Applications ..335
Dynamically Invoking Methods for Native Mobile Apps .. 337
Clicking on Objects in a Mobile Website .. 338
Using Existing Mobile Web Tests ... 338

Testing Rumba Applications ..339
Enabling and Disabling Rumba .. 339
Locator Attributes for Identifying Rumba Controls ..339
Testing a Unix Display .. 340
Rumba Class Reference .. 340

Testing SAP Applications .. 340
Locator Attributes for SAP Controls ..340
Dynamically Invoking SAP Methods ...341
Configuring Automation Security Settings for SAP ...342
SAP Class Reference ...342

Cross-Browser Testing with the Open Agent .. 342
Test Objects for xBrowser ...343
Overview of Test Frames ..344
Testing Web Applications on Different Browsers ..345
Changing the Browser Type When Replaying Tests from the UI345
Setting the Browser when Running Automated Tests .. 346
Testing Objects in a Web Page with the Open Agent ...347
Object Recognition for xBrowser Objects ...350
xBrowser Default BaseState ...351
Locator Attributes for xBrowser controls ...351
Page Synchronization for xBrowser ..352
Configuring the Locator Generator for xBrowser ..354
Comparing API Playback and Native Playback for xBrowser 355
Setting Recording Options for xBrowser .. 355
Browser Configuration Settings for xBrowser ...356
Connection String for a Remote Desktop Browser ...357
Setting Capabilities for WebDriver-Based Browsers .. 358
Capturing the Contents of a Web Page ..359
Testing with Apple Safari on a Mac .. 359
Testing with Google Chrome .. 363
Testing with Mozilla Firefox ...367
Testing with Microsoft Edge ..370
Responsive Web Design Testing ..372
Detecting Visual Breakpoints ... 372
Manually Creating Tests for Dynamic Popup Menus .. 373
Finding Hidden Input Fields ..373
Improving iframe Performance ... 373

Contents | 9

Cross-Browser Testing: Frequently Asked Questions .. 376
Testing the Insurance Company Sample Web Application380
xBrowser Classes ...382

Universal Windows Platform Support ..383
Testing Windows API-Based Applications ...383

Overview of Windows API-Based Application Support .. 383
Locator Attributes for Windows API-Based Applications 384
Suppressing Controls (Classic Agent) ..384
Suppressing Controls (Open Agent) .. 385
Configuring Standard Applications ...385
Determining the priorLabel in the Win32 Technology Domain 386
Testing Embedded Chrome Applications ... 387
Microsoft Foundation Class Support .. 387

Limitations for Testing on Microsoft Windows 8 and Microsoft Windows 8.1 388
Keyword-Driven Tests ..389

Advantages of Keyword-Driven Testing ...389
Keywords ...390
Creating a Keyword-Driven Test in Silk Test Classic ... 391
Recording a Keyword-Driven Test in Silk Test Classic .. 391
Setting the Base State for a Keyword-Driven Test in Silk Test Classic393
Implementing a Keyword in Silk Test Classic .. 393
Recording a Keyword in Silk Test Classic ... 393
Marking a Test Method in a Script as a Keyword .. 394
Editing a Keyword-Driven Test .. 394
Managing Keywords in a Test in Silk Central .. 395
Which Keywords Does Silk Test Classic Recommend? ..397
Using Parameters with Keywords ..398
Example: Keywords with Parameters ..398
Combining Keywords into Keyword Sequences ..399
Replaying a Keyword-Driven Test with Specific Variables ..400
Integrating Silk Test Classic with Silk Central ..401
Implementing Silk Central Keywords in Silk Test Classic ..401
Uploading a Keyword Library to Silk Central ...402
Uploading a Keyword Library to Silk Central from the Command Line 403
Searching for a Keyword ... 404
Filtering Keywords ...404
Troubleshooting for Keyword-Driven Testing ... 404

Using Advanced Techniques with the Open Agent406
Starting from the Command Line .. 406

Starting Silk Test Classic from the Command Line .. 406
Recording a Test Frame .. 408

Overview of Object Files .. 408
Declarations ... 410
Window Declarations ..413
Overview of Identifiers ..415
Save the Test Frame ...416
Specifying How a Dialog Box is Invoked .. 416

Improving Object Recognition with Microsoft Accessibility ... 417
Using Accessibility with the Open Agent .. 417
Enabling Accessibility for the Open Agent ..417

Microsoft UI Automation ..418
Recording a Test Against an Application with an Implemented UI Automation Provider Interface

... 418
Dynamically Invoking UI Automation Methods ... 419
Locator Attributes for Identifying Controls with UI Automation 421
Scrolling in UI Automation Controls ..422

10 | Contents

Limitations when Using UI Automation ...423
Troubleshooting when Testing with UI Automation Support Enabled 423

Calling Windows DLLs from 4Test .. 423
Aliasing a DLL Name ..424
Calling a DLL from within a 4Test Script ...424
Passing Arguments to DLL Functions .. 425
Using DLL Support Files Installed with Silk Test Classic427

Extending the Class Hierarchy ..427
Classes ...427
Verifying Attributes and Properties ...432
Defining Methods and Custom Properties ... 434
Examples ..437

Porting Tests to Other GUIs .. 438
Handling Differences Among GUIs ...439
About GUI Specifiers ..443
Supporting GUI-Specific Objects ... 446

Supporting Custom Controls ...447
Why Silk Test Classic Sees Controls as Custom Controls 447
Reasons Why Silk Test Classic Sees the Control as a Custom Control448
Supporting Graphical Controls ... 448
Custom Controls (Open Agent) .. 448
Using Clipboard Methods ... 454
Filtering Custom Classes ... 454

Supporting Internationalized Objects .. 455
Overview of Silk Test Classic Support of Unicode Content 455
Using DB Tester with Unicode Content .. 456
Issues Displaying Double-Byte Characters .. 456
Learning More About Internationalization .. 457
Silk Test Classic File Formats .. 457
Working with Bi-Directional Languages ..459
Configuring Your Environment ..460
Troubleshooting Unicode Content .. 461

Using Autocomplete .. 464
Overview of AutoComplete ...464
Customizing your MemberList ..464
Frequently Asked Questions about AutoComplete ...465
Turning AutoComplete Options Off ...466
Using AppStateList ...467
Using DataTypeList .. 467
Using FunctionTip .. 467
Using MemberList .. 468

Overview of the Library Browser ... 468
Library Browser Source File ... 469
Adding Information to the Library Browser ... 469
Add User-Defined Files to the Library Browser with Silk Test Classic470
Viewing Functions in the Library Browser .. 470
Viewing Methods for a Class in the Library Browser .. 470
Examples of Documenting User-Defined Methods .. 471
Web Classes Not Displayed in Library Browser ... 471
Library Browser .. 472

Text Recognition Support .. 472
Slowing Down Tests .. 474
Testing Applications in Multiple UI Sessions on a Single Machine 474
Encrypting Passwords ...475

Running Tests and Interpreting Results .. 477
Running Tests ... 477

Contents | 11

Creating a Suite ..477
Passing Arguments to a Script ... 477
Running a Test Case .. 478
Running a Test Plan ... 479
Running the Currently Active Script or Suite .. 480
Running Tests in Parallel .. 480
Setting Replay Options for the Open Agent ... 482
Stopping a Running Test Case Before it Completes .. 482
Setting a Test Case to Use Animation Mode ..482
Run Application State Dialog Box ...483
Run Testcase Dialog Box ... 483
Runtime Status Dialog Box ...484

Analyzing Test Results .. 485
HTML Reports ..485
Analyzing Results with the Silk TrueLog Explorer .. 485

Interpreting Results in Result Files ... 488
Overview of the Results File ...488
Viewing Test Results .. 489
Errors And the Results File .. 489
Viewing Differences ..491
Merging Test Plan Results ..491
How Does Silk Test Classic Synchronize Tests? ..491
Selecting which Results to Display ...493
Export Results Dialog Box ..493
View Options Dialog Box .. 494
Compare Two Results Dialog Box .. 494

Analyzing Bitmaps ...494
Overview of the Bitmap Tool ...494
When to use the Bitmap Tool ... 495
Capturing Bitmaps with the Bitmap Tool ...495
Comparing Bitmaps ..497
Rules for Using Comparison Commands ... 498
Bitmap Functions ..498
Baseline and Result Bitmaps ... 498
Zooming the Baseline Bitmap, Result Bitmap, and Differences Window 499
Looking at Statistics ... 499
Exiting from Scan Mode ... 499
Starting the Bitmap Tool ... 500
Using Masks ...500
Analyzing Bitmaps for Differences ..503

Working with Result Files ..504
Attaching a Comment to a Result Set .. 504
Comparing Result Files ..504
Customizing results .. 505
Deleting Results ... 505
Change the default number of result sets ...505
Changing the Colors of Elements In the Results File ...506
Fix incorrect values in a script .. 506
Marking Failed Test Cases ... 506
Merging Test Plan Results ..506
Navigating to errors .. 507
Viewing an individual summary .. 507
Storing and Exporting Results ..507
Storing results .. 507
Extracting Results .. 508
Exporting Results ... 508

12 | Contents

Displaying a different set of results ...509
Removing the Unused Space from a Result File ... 509
Logging Elapsed Time, Thread, and Machine Information509

Debugging Test Scripts ... 510
Designing and Testing with Debugging in Mind .. 510
Executing a Script in the Debugger ...511
Debugging a Test Script .. 511
Debugger Menus ...512
Stepping Into and Over Functions ...512
Working with Scripts During Debugging ..512
Exiting the Debugger ...512
Breakpoints ... 513

Setting Breakpoints .. 513
Viewing Breakpoints ...513
Deleting Breakpoints .. 514
Add Breakpoint Dialog Box .. 514
Delete Breakpoint Dialog Box ...514
Breakpoint Dialog Box ..514

Viewing Variables ..514
Changing the Value of a Variable ..515
Globals Dialog Box ..515
Locals Dialog Box ... 515
Expressions ...515

Evaluating Expressions .. 516
Enabling View Trace Listing .. 516
Viewing a List of Modules ... 516
View Module Dialog Box ... 517
Viewing the Debugging Transcripts ...517
Transcript Dialog Box .. 517
Call Stack Dialog Box ..517
Debugging Tips ... 517

Checking the Precedence of Operators ... 517
Checking for Code that Never Executes ...518
Global and Local Variables with the Same Name .. 518
Handling Global Variables with Unexpected Values ...518
Incorrect Usage of Break Statements .. 518
Incorrect Values for Loop Variables ..518
Infinite loops ... 518
Typographical Errors .. 518
Uninitialized Variables .. 519

Setting Silk Test Classic Options ... 520
Setting General Options ..520
Setting the Editor Font .. 522
Setting the Editor Colors ... 522
Runtime Options Dialog Box ... 523

Compiler Constants Dialog Box ..526
Agent Options Dialog Box ... 526

Timing Tab ..527
Verification Tab ... 528
Close Tab ... 529
Bitmap Tab ... 530
Synchronization Tab ... 531
Setting Advanced Options ..532
Other Tab ..533
Compatibility Tab .. 534

Extensions Dialog Box .. 535

Contents | 13

Extension Details Dialog Box ... 537
Setting Recording Options for the Open Agent ...537
Setting Recording Options for the Classic Agent .. 540
Setting Replay Options for the Open Agent .. 541
Defining which Custom Locator Attributes to Use for Recognition541
Setting Classes to Ignore .. 542
Custom Controls Dialog Box ... 542
Property Sets Dialog Box ..543

New Property Set Dialog Box ...544
Combine Property Sets Dialog Box ..544

DOM Extensions Dialog Box ...544
Extension Application Dialog Box ... 546
Extension Options (ActiveX) Dialog Box ... 546
Extension Options Dialog Box (Java) ..547
TrueLog Options - Classic Agent Dialog Box .. 547
Setting TrueLog Options ..550

Troubleshooting the Open Agent ..552
Troubleshooting Apache Flex Applications ..552

Why Cannot Silk Test Classic Recognize Apache Flex Controls?552
Troubleshooting Basic Workflow Issues with the Open Agent .. 552
Error Messages ...552

Agent not responding ... 553
Control is not responding ... 553
Functionality Not Supported on the Open Agent ..553
Unable to Connect to Agent ... 554
Window is not active ...554
Window is not enabled ... 555
Window is not exposed ...555
Window not found ...555

Handling Exceptions ... 556
Default Error Handling ..556
Custom Error Handling ...556
Trapping the exception number .. 558
Defining Your Own Exceptions ... 558
Using do...except Statements to Trap and Handle Exceptions559
Programmatically Logging an Error ..559
Performing More than One Verification in a Test Case ...560
Writing an Error-Handling Function ..562
Exception Values ..563

Troubleshooting Java Applications .. 567
What Can I Do If the Silk Test Java File Is Not Included in a Plug-In? 567
What Can I Do If Java Controls In an Applet Are Not Recognized?567

Multiple Machines Testing ... 567
Setting Up the Recovery System for Multiple Local Applications 567
two_apps.t .. 568
two_apps.inc .. 569

Other Problems ... 574
Adding a Property to the Recorder ...574
Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic 575
Cannot Extend AnyWin, Control, or MoveableWin Classes 575
Cannot open results file ..576
Common DLL Problems ... 576
Common Scripting Problems ..577
Conflict with Virus Detectors .. 578
Displaying the Euro Symbol ... 578
Do I Need Administrator Privileges to Run Silk Test Classic?579

14 | Contents

Does Silk Test Classic Support Oracle Forms? ..579
General Protection Faults ...580
Running Global Variables from a Test Plan Versus Running Them from a Script

... 580
Include File or Script Compiles but Changes are Not Picked Up 581
Library Browser Not Displaying User-Defined Methods 581
Maximum Size of Silk Test Classic Files .. 582
Recorder Does Not Capture All Actions ... 582
Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File

... 583
The 4Test Editor Does Not Display Enough Characters583
Silk Test Classic Support of Delphi Applications .. 583
Stopping a Test Plan .. 585
Using a Property Instead of a Data Member ..585
Using File Functions to Add Information to the Beginning of a File585
Why do I get error 07002 when updating an Excel sheet?586
Why Does the Str Function Not Round Correctly? ...586

Troubleshooting Projects ...586
Files Not Found When Opening Project ...586
Silk Test Classic Cannot Load My Project File ... 587
Silk Test Classic Cannot Save Files to My Project ... 587
Silk Test Classic Does Not Run ..587
My Files No Longer Display In the Recent Files List ..588
Cannot Find Items In Classic 4Test ..588
Editing the Project Files ..588

Recognition Issues ..589
How Can the Application Developers Make Applications Ready for Automated Testing?

... 589
Tips ... 589

Example Test Cases for the Find Dialog Box ... 589
When to use the Bitmap Tool ... 590

Troubleshooting Web Applications .. 590
What Can I Do If the Page I Have Selected Is Empty? .. 590
Why Do I Get an Error Message When I Set the Accessibility Extension? 591

Using the Runtime Version of Silk Test Classic .. 592
Installing the Runtime Version ...592
Starting the Runtime Version .. 592
Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands 592

Working with Files ..603
Creating a New File ...603
Searching for a String in a File ..603
Replacing a String in a File ... 604
4Test Editor ... 604
Setting Up a Printer ...605
Printing the Contents of the Active Window .. 605
Confirm Test Description Identifier Dialog Box ..606

Glossary ..607
4Test Classes ..607
4Test-Compatible Information or Methods .. 607
Abstract Windowing Toolkit ... 607
accented character ..607
agent ... 607
applet .. 608
application state .. 608
attributes ... 608

Contents | 15

Band (.NET) .. 608
base state ..608
bidirectional text .. 608
Bytecode ... 608
call stack ... 609
child object .. 609
class .. 609
class library ... 609
class mapping ... 609
Classic 4Test ... 609
client area ..609
custom object .. 609
data-driven test case ...610
data member ... 610
declarations ...610
DefaultBaseState .. 610
diacritic ..610
Difference Viewer .. 610
double-byte character set (DBCS) .. 610
dynamic instantiation ...610
dynamic link library (DLL) ..611
enabling ...611
exception ...611
frame file ... 611
fully qualified object name ...611
group description ...611
handles ..612
hierarchy of GUI objects ..612
host machine ...612
hotkey ..612
Hungarian notation ..616
identifier ...616
include file ... 617
internationalization or globalization ...617
Java Database Connectivity (JDBC) ... 617
Java Development Kit (JDK) ... 617
Java Foundation Classes (JFC) .. 617
Java Runtime Environment (JRE) ... 617
Java Virtual Machine (JVM) .. 617
JavaBeans ...617
Latin script ...618
layout ...618
levels of localization .. 618
load testing ..618
localization .. 618
localize an application ... 618
locator ... 618
logical hierarchy .. 619
manual test ..619
mark .. 619
master plan ... 619
message box ...619
method .. 619
minus (-) sign .. 619
modal .. 619
modeless ...620

16 | Contents

Multibyte Character Set (MBCS) ...620
Multiple Application Domains (.NET) .. 620
negative testing ... 620
nested declarations ... 620
No-Touch (.NET) ... 620
object ...620
outline ..620
Overloaded method ...621
parent object ... 621
performance testing .. 621
physical hierarchy (.NET) .. 621
plus (+) sign .. 621
polymorphism ..621
project ... 621
properties .. 622
query ... 622
recovery system .. 622
regression testing ..622
results file .. 622
script ..622
script file ..622
side-by-side (.NET) ... 622
Simplified Chinese .. 623
Single-Byte Character Set (SBCS) ... 623
smoke test ...623
Standard Widget Toolkit (SWT) ...623
statement .. 623
status line .. 623
stress testing ... 623
subplan ..624
suite ...624
Swing .. 624
symbols ... 624
tag ... 624
target machine .. 624
template .. 625
test description ..625
test frame file ...625
test case ..625
test plan ...625
TotalMemory parameter .. 625
Traditional Chinese ..626
variable ..626
verification statement .. 626
Visual 4Test ...626
window declarations ..626
window part ...626
XPath ...626

Contents | 17

Licensing Information
Unless you are using a trial version, Silk Test requires a license.

Note: A Silk Test license is bound to a specific version of Silk Test. For example, Silk Test 20.5
requires a Silk Test 20.5 license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Mobile Native • Mobile web applications.

• Android
• iOS

• Native mobile applications.

• Android
• iOS

Full • Web applications, including the following:

• Apache Flex
• Java-Applets

• Mobile web applications.

• Android
• iOS

• Apache Flex
• Java AWT/Swing, including Oracle Forms
• Java SWT and Eclipse RCP
• .NET, including Windows Forms and Windows

Presentation Foundation (WPF)
• Rumba
• Windows API-Based

Note: To upgrade your license to a Full license,
visit http://www.microfocus.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit http://www.microfocus.com.

Mobile Native Add-On In addition to the technologies supported with a Full or
Premium license, the mobile native add-on license offers
support for testing native mobile applications on Android
and iOS.

18 | Licensing Information

http://www.microfocus.com
http://www.microfocus.com

Getting Started
Silk Test Classic is the traditional Silk Test client. With Silk Test Classic you can develop tests using the
4Test language, an object-oriented fourth-generation language (4GL), which is designed specifically for QA
professionals. Silk Test Classic guides you through the entire process of creating test cases, running the
tests, and interpreting the results of your test runs.

Silk Test Classic supports the testing of a broad set of application technologies.

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you are
using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

This section provides information to get you up and running with Silk Test Classic.

Note: If you have opted not to display the start screen when you start Silk Test Classic, you can check
for available updates by clicking Help > Check for Product Update.

Automation Under Special Conditions (Missing
Peripherals)

Basic product orientation

Silk Test Classic is a GUI testing product that tries to act like a human user in order to achieve meaningful
test results under automation conditions. A test performed by Silk Test Classic should be as valuable as a
test performed by a human user while executing much faster. This means that Silk Test Classic requires a
testing environment that is as similar as possible to the testing environment that a human user would
require in order to perform the same test.

Physical peripherals

Manually testing the UI of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk Test Classic does not necessarily require physical input devices during test
replay. What Silk Test Classic requires is the ability of the operating system to perform keystrokes and
mouse clicks. The Silk Test Classic replay usually works as expected without any input devices connected.
However, some device drivers might block the Silk Test Classic replay mechanisms if the physical input
device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk Test Classic does not directly support virtualization vendors, but can operate with any type of
virtualization solution as long as the virtual guest machine behaves like a physical machine. Standard
peripherals are usually provided as virtual devices, regardless of which physical devices are used with the
machine that runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen

Getting Started | 19

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Special cases

Application
launched
without any
window
(headless)

Such an application cannot be tested with Silk Test Classic. Silk Test Classic needs to
hook to a target application process in order to interact with it. Hooking is not possible
for processes that do not have a visible window. In such a case you can only run
system commands.

Remote
desktops,
terminal
services, and
remote
applications (all
vendors)

If Silk Test Classic resides and operates within a remote desktop session, it will fully
operate as expected.

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,
for example network issues, Silk Test Classic will continue to replay but might
produce unexpected results, depending on what remote viewing technology is
used. For example, a lost remote desktop session will negatively impact video
rendering, whereas other remote viewing solutions might show no impact at all
once the viewing window was lost.

If Silk Test Classic is used to interact with the remote desktop, remote view, or remote
app window, only low-level techniques can be used, because Silk Test Classic sees
only a screenshot of the remote machine. For some remote viewing solutions even
low-level operations may not be possible because of security restrictions. For example,
it might not be possible to send keystrokes to a remote application window.

Known
automation
obstacles

Silk Test Classic requires an interactively-logged-on full-user session. Disable anything
that could lock the session, for example screen savers, hibernation, or sleep mode. If
this is not possible because of organizational policies you could workaround such
issues by adding keep alive actions, for example moving the mouse, in regular
intervals or at the end of each test case.

Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Silk Test Product Suite
Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

• Silk Test Workbench – Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

• Silk4NET – The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

• Silk4J – The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

• Silk Test Classic – Silk Test Classic is the Silk Test client that enables you to create scripts based on
4Test.

20 | Getting Started

• Silk Test Agents – The Silk Test agent is the software process that translates the commands in your
tests into GUI-specific commands. In other words, the agent drives and monitors the application you are
testing. One agent can run locally on the host machine. In a networked environment, any number of
agents can run on remote machines.

The sizes of the individual boxes in the image above differ for visualization purposes and do not reflect the
included functionality.

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

Getting Started | 21

Contacting Micro Focus
Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine
When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

• The name and version number of all products that you think might be causing an issue.
• Your computer make and model.
• System information such as operating system name and version, processors, and memory details.
• Any detailed description of the issue, including steps to reproduce the issue.
• Exact wording of any error messages involved.
• Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

22 | Getting Started

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

What's New in Silk Test Classic
Silk Test Classic supports the following new features for the Open Agent:

Enhance Security with Java-based Encryption
According to the World Quality Report, enhancing security is one of the top priorities of CIOs and senior
technology professionals. With Silk Test 20.5, you can now use Java-based encryption to highly secure the
encryption of data within any Silk Test script. Easily configure which algorithm should be used for
encryption and decryption. Enhance your security with Java-based encryption.

Usability Enhancements

Gain Efficiencies with an Enhanced LocatorSpy

Simply validate the recorded or manually edited locator by pressing Enter to verify if objects can be found
correctly. The enhanced LocatorSpy can save you a lot of time.

Technology Updates
This section lists the significant technology updates for Silk Test 20.5.

New Mozilla Firefox Versions

• Mozilla Firefox 67
• Mozilla Firefox 68
• Mozilla Firefox 69
• Mozilla Firefox 70

Note: This list includes the new versions of Mozilla Firefox that have been tested with Silk Test 20.5
up to the Silk Test release date. Newer Mozilla Firefox versions might also be supported, even if these
have been released after Silk Test 20.5.

New Google Chrome Versions

• Google Chrome 75
• Google Chrome 76
• Google Chrome 77
• Google Chrome 78

Note: This list includes the new versions of Google Chrome that have been tested with Silk Test 20.5
up to the Silk Test release date. Newer Google Chrome versions might also be supported, even if
these have been released after Silk Test 20.5.

Microsoft Edge Support

Silk Test now supports Windows 10 May 2019 Update (44.18362).

What's New in Silk Test Classic | 23

Android and iOS Support

Silk Test now supports Android 10.x for web applications and native mobile applications.

Silk Test now supports iOS 13.x for web applications and native mobile applications.

Java Support

Silk Test now supports Java 13.

Eclipse Support

Silk Test now supports Eclipse 2019-09 (4.13).

Java SWT Support

Silk Test now supports testing standalone and Rich Client Platform (RCP) applications that are based on
Java SWT 4.13.

Microsoft .NET Framework Support

Silk Test now supports Microsoft .NET Framework 4.7 and 4.8 for WinForms and WPF.

24 | What's New in Silk Test Classic

Open Agent
The Silk Test agent is the software process that translates the commands in your test scripts into GUI-
specific commands. In other words, the agent drives and monitors the application you are testing. One
agent can run locally on the host machine. In a networked environment, any number of agents can run on
remote machines.

Silk Test Classic provides two types of agents, the Open Agent and the Classic Agent. The agent that you
assign to your project or script depends on the type of application that you are testing.

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you are
using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

When you create a new project, Silk Test Classic automatically uses the agent that supports the type of
application that you are testing. For instance, if you create an Apache Flex or Windows API-based client/
server project, Silk Test Classic uses the Open Agent. When you open a project or script that was
developed with the Classic Agent, Silk Test Classic automatically uses the Classic Agent. For information
about the supported technology domains for each agent, refer to Testing in Your Environment.

The Open Agent supports dynamic object recognition to record and replay test cases that use XPath
queries to find and identify objects. With the Open Agent, one Agent can run locally on the host machine.
In a networked environment, any number of Agents can replay tests on remote machines. However, you
can record only on a local machine.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

How Silk Test Classic Assigns an Agent to a Window
Declaration

When you record a test with the Open Agent set as the default agent, Silk Test Classic includes a locator to
identify the top-most window of the test application. For instance, this window declaration for a Notepad
application that uses the Open Agent includes the following locator:

window MainWin UntitledNotepad
locator "/MainWin[@caption='Untitled - Notepad']"

Silk Test Classic determines which agent to use by detecting whether a locator or Find or FindAll
command is used. When Silk Test Classic detects a locator on the top-most window or detects a Find or
FindAll command, the Open Agent is automatically used. If no locator or Find or FindAll command is
present, Silk Test Classic uses the Classic Agent.

Note: Any window declaration is only valid for either the Open Agent or the Classic Agent. There is no
way to use the same window declaration with both agents. The only exception to this rule are SYS
functions and DLL calls, which are implemented for both agents.

Agent Options
The following table lists the AgentClass options that can be manipulated with the GetOption method
and SetOption method. Only options that can be manipulated by the user are listed here; other options
are for internal use only.

Open Agent | 25

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Agent Option Agent Supported Description

OPT_AGENT_CLICKS_ONLY Classic Agent BOOLEAN

FALSE to use the API-based clicks;
TRUE to use agent-based clicks. The
default is FALSE. This option applies
to clicks on specific HTML options
only. For additional information, see
API Click Versus Agent Click.

This option can be set through the
Compatibility tab on the Agent
Options dialog box,
Agent.SetOption, or
BindAgentOption(), and may be
retrieved through
Agent.GetOption().

OPT_ALTERNATE_RECORD_BREAK Classic Agent

Open Agent

BOOLEAN

TRUE pauses recording when Ctrl
+Shift is pressed. Otherwise, Ctrl+Alt
is used. By default, this is FALSE.

OPT_APPREADY_RETRY Classic Agent

Open Agent

NUMBER

The number of seconds that the agent
waits between attempts to verify that
an application is ready. The agent
continues trying to test the application
for readiness if it is not ready until the
time specified with
OPT_APPREADY_TIMEOUT is
reached.

OPT_APPREADY_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds that the agent
waits for an application to become
ready. If the application is not ready
within the specified timeout, Silk Test
Classic raises an exception.

To require the agent to check the
ready state of an application, set
OPT_VERIFY_APPREADY.

This option applies only if the
application or extension knows how to
communicate to the agent that it is
ready. To find out whether the
extension has this capability, see the
documentation that comes with the
extension.

OPT_BITMAP_MATCH_COUNT Classic Agent

Open Agent

INTEGER

The number of consecutive snapshots
that must be the same for the bitmap
to be considered stable. Snapshots

26 | Open Agent

Agent Option Agent Supported Description

are taken up to the number of
seconds specified by
OPT_BITMAP_MATCH_TIMEOUT,
with a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_BITMAP_MATCH_INTERVAL Classic Agent

Open Agent

INTEGER

The time interval between snapshots
to use for ensuring the stability of the
bitmap image. The snapshots are
taken up to the time specified by
OPT_BITMAP_MATCH_TIMEOUT.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_BITMAP_MATCH_TIMEOUT Classic Agent

Open Agent

NUMBER

The total time allowed for a bitmap
image to become stable.

During the time period, Silk Test
Classic takes multiple snapshots of
the image, waiting the number of
seconds specified with
OPT_BITMAP_MATCH_TIMEOUT
between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of
bitmaps specified by
OPT_BITMAP_MATCH_COUNT
match, Silk Test Classic stops taking
snapshots and raises the exception
E_BITMAP_NOT_STABLE.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• VerifyBitmap

Open Agent | 27

Agent Option Agent Supported Description

• WaitBitmap

OPT_BITMAP_PIXEL_TOLERANCE Classic Agent

Open Agent

INTEGER

The number of pixels of difference
below which two bitmaps are
considered to match. If the number of
pixels that are different is smaller than
the number specified with this option,
the bitmaps are considered identical.
The maximum tolerance is 32767
pixels.

Related methods:

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_CLASS_MAP Classic Agent

Open Agent

LIST OF STRING

The class mapping table for custom
objects, with each entry in the list in
the form custom_class =
standard_class.

OPT_CLOSE_CONFIRM_BUTTONS Classic Agent

Open Agent

LIST OF STRING

The list of buttons used to close
confirmation dialog boxes, which are
dialog boxes that display when
closing windows with the methods
Close, CloseWindows, and
Exit.

OPT_CLOSE_DIALOG_KEYS Classic Agent

Open Agent

LIST OF STRING

The keystroke sequence used to
close dialog boxes with the methods
Close, CloseWindows, and
Exit.

OPT_CLOSE_MENU_NAME Classic Agent STRING

A list of strings representing the list of
menu items on the system menu used
to close windows with the methods
Close, CloseWindows, and
Exit.

Default is Close.

OPT_CLOSE_WINDOW_BUTTONS Classic Agent

Open Agent

LIST OF STRING

The list of buttons used to close
windows with the methods Close,
CloseWindows, and Exit.

28 | Open Agent

Agent Option Agent Supported Description

OPT_CLOSE_WINDOW_MENUS Classic Agent

Open Agent

LIST OF STRING

The list of menu items used to close
windows with the methods Close,
CloseWindows, and Exit.

OPT_CLOSE_WINDOW_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds that Silk Test
Classic waits before it tries a different
close strategy for the Close method
when the respective window does not
close. Close strategies include Alt+F4
or sending the keys specified by
OPT_CLOSE_DIALOG_KEYS. By
default, this is 2.

OPT_COMPATIBLE_TAGS Classic Agent BOOLEAN

TRUE to generate and operate on
tags compatible with releases earlier
than Release 2; FALSE to use the
current algorithm.

The current algorithm affects tags that
use index numbers and some tags
that use captions. In general, the
current tags are more portable, while
the earlier algorithm generates more
platform-dependent tags.

OPT_COMPATIBILITY Open Agent STRING

Enables you to use the behavior of
the specified Silk Test Classic version
for specific features, when the
behavior of these features has
changed in a later version.

Example strings:

• 12

• 11.1

• 13.0.1

By default, this option is not set.

OPT_COMPRESS_WHITESPACE Classic Agent BOOLEAN

TRUE to replace all multiple
consecutive white spaces with a
single space for comparison of tags.
FALSE (the default) to avoid replacing
blank characters in this manner.

This is intended to provide a way to
match tags where the only difference
is the number of white spaces
between words.

Open Agent | 29

Agent Option Agent Supported Description

If at all possible, use "wildcard "
instead of this option.

This option can increase test time
because of the increased time it takes
for compressing of white spaces in
both source and target tags. If Silk
Test Classic processes an object that
has many children, this option may
result in increased testing times.

The tag comparison is performed in
two parts. The first part is a simple
comparison; if there is a match, no
further action is required. The second
part is to compress consecutive white
spaces and retest for a match.

Due to the possible increase in test
time, the most efficient way to use this
option is to enable and disable the
option as required on sections of the
testing that is affected by white space.
Do not enable this option to cover
your entire test.

Tabs in menu items are processed
before the actual tags are compared.
Do not modify the window
declarations of frame files by adding
tabs to any of the tags.

OPT_DROPDOWN_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to drop down the combo box
before trying to access the content of
the combo box. This is usually not
needed, but some combo boxes only
get populated after they are dropped
down. If you are having problems
getting the contents of a combo box,
set this option to TRUE.

Default is FALSE.

OPT_ENABLE_ACCESSIBILITY Classic Agent

Open Agent

BOOLEAN

TRUE to enable Accessibility when
you are testing a Win32 application
and Silk Test Classic cannot
recognize objects. Accessibility is
designed to enhance object
recognition at the class level. FALSE
to disable Accessibility.

Note: For Mozilla Firefox and
Google Chrome, Accessibility
is always activated and cannot
be deactivated.

30 | Open Agent

Agent Option Agent Supported Description

Default is FALSE.

OPT_ENABLE_MOBILE_WEBVIEW_FALLBAC
K_SUPPORT

Open Agent BOOLEAN

Enables mobile native fallback
support for hybrid mobile applications
that are not testable with the default
browser support.

By default, this is FALSE.

OPT_ENABLE_UI_AUTOMATION_SUPPORT Open Agent TRUE to enable Microsoft UI
Automation support instead of the
normal Win32 control recognition.
This option might be useful when you
are testing a Win32 application and
Silk Test Classic cannot recognize
objects. AUTODETECT to
automatically enable Microsoft UI
Automation support for JavaFX.

By default, this is FALSE.

OPT_ENSURE_ACTIVE_WINDOW Open Agent BOOLEAN

TRUE ensures that the main window
of the call is active before a call is
executed. By default, this is FALSE.

OPT_EXTENSIONS Classic Agent LIST OF STRING

The list of loaded extensions. Each
extension is identified by the name of
the .dll or .vxx file associated with the
extension.

Unlike the other options,
OPT_EXTENSIONS is read-only and
works only with GetOption().

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Classic Agent BOOLEAN

TRUE returns an empty list if no text
is selected. FALSE removes any
blank lines within the selected text.

By default, this is TRUE.

OPT_HANG_APP_TIME_OUT Open Agent NUMBER

Specifies the Unresponsive
application timeout, which is the
timeout for pending playback actions.

The default value is 5 seconds.

OPT_ITEM_RECORD Open Agent BOOLEAN

For SWT applications, TRUE records
methods that invoke tab items directly
rather than recording the tab folder

Open Agent | 31

Agent Option Agent Supported Description

hierarchy. For example, you might
record
SWTControls.SWTTabControl
1.TabFolder.Select(). If this
option is set to FALSE, SWT tab
folder actions are recorded. For
example, you might record
SWTControls.SWTTabControl
1.Select("TabFolder").

By default, this is TRUE.

OPT_KEYBOARD_DELAY Classic Agent

Open Agent

NUMBER

Default is 0.02 seconds; you can
select a number in increments of .001
from .001 to up to 1000 seconds.

Be aware that the optimal number can
vary, depending on the application
that you are testing. For example, if
you are testing a Web application, a
setting of .001 radically slows down
the browser. However, setting this to 0
(zero) may cause basic application
testing to fail.

OPT_KEYBOARD_LAYOUT Classic Agent STRING

Provides support for international
keyboard layouts in the Windows
environment. Specify an operating-
system specific name for the
keyboard layout. Refer to the
Microsoft Windows documentation to
determine what string your operating
system expects. Alternatively, use the
GetOption method to help you
determine the current keyboard
layout, as in the following example:
Print (Agent.GetOption
(OPT_KEYBOARD_LAYOUT))

OPT_KILL_HANGING_APPS Classic Agent

Open Agent

BOOLEAN

Specifies whether to shutdown the
application if communication between
the Agent and the application fails or
times out. Set this option to TRUE
when testing applications that cannot
run multiple instances. By default, this
is FALSE.

OPT_LOCATOR_ATTRIBUTES_CASE_SENSIT
IVE

Open Agent BOOLEAN

Set to Yes to add case-sensitivity to
locator attribute names, or to No to

32 | Open Agent

Agent Option Agent Supported Description

match the locator names case
insensitive.

OPT_MATCH_ITEM_CASE Classic Agent

Open Agent

BOOLEAN

Set this option to TRUE to have Silk
Test Classic consider case when
matching items in combo boxes, list
boxes, radio lists, and popup lists, or
set this option to FALSE to ignore
case differences during execution of a
Select method. This option has no
effect on a Verify function or a
VerifyContents method.

OPT_MENU_INVOKE_POPUP Classic Agent STRING

The command, keystrokes or mouse
buttons, used to display pop-up
menus, which are menus that popup
over a particular object. To use mouse
buttons, specify <button1>,
<button2>, or <button3> in the
command sequence.

OPT_MENU_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to pick the menu before
checking whether an item on it exists,
is enabled, or is checked, or FALSE to
not pick the menu before checking.
When TRUE, you may see menus
pop up on the screen even though
your script does not explicitly call the
Pick method.

Default is FALSE.

OPT_MOUSE_DELAY Classic Agent

Open Agent

NUMBER

The delay used before each mouse
event in a script. The delay affects
moving the mouse, pressing buttons,
and releasing buttons. By default, this
is 0.02.

OPT_MULTIPLE_TAGS Classic Agent

Open Agent

BOOLEAN

TRUE to use multiple tags when
recording and playing back. FALSE to
use one tag only, as done in previous
releases.

This option cannot be set through the
Agent Options dialog box. Its default
is TRUE and is only set by the INI file,
option file, and through
Agent.SetOption.

Open Agent | 33

Agent Option Agent Supported Description

This option overrides the Record
multiple tags check box that displays
in both the Recorder Options dialog
box and the Record Window
Declaration Options dialog box.

If the Record multiple tags check
box is grayed out and you want to
change it, check this setting.

OPT_NO_ICONIC_MESSAGE_BOXES Classic Agent BOOLEAN

TRUE to not have minimized windows
automatically recognized as message
boxes.

Default is FALSE.

OPT_PAUSE_TRUELOG Classic Agent BOOLEAN

TRUE to disable TrueLog at runtime
for a specific portion of a script, or
FALSE to enable TrueLog.

This option has no effect if Truelog is
not enabled.

Default is FALSE.

OPT_PLAY_MODE Classic Agent STRING

Used to specify playback mechanism.
For additional information for
Windows applications, see Playing
Back Mouse Actions.

OPT_POST_REPLAY_DELAY Classic Agent

Open Agent

NUMBER

The time in seconds to wait after
invoking a function or writing
properties. Increase this delay if you
experience replay problems due to
the application taking too long to
process mouse and keyboard input.
By default, this is 0.00.

OPT_RADIO_LIST Classic Agent BOOLEAN

TRUE to view option buttons as a
group; FALSE to use the pre-Release
2 method of viewing option buttons as
individual objects.

OPT_RECORD_LISTVIEW_SELECT_BY_TYP
EKEYS

Open Agent BOOLEAN

TRUE records methods with typekeys
statements rather than with keyboard
input for certain selected values. By
default, this is FALSE.

OPT_RECORD_MOUSE_CLICK_RADIUS Open Agent INTEGER

34 | Open Agent

Agent Option Agent Supported Description

The number of pixels that defines the
radius in which a mouse down and
mouse up event must occur in order
for the Open Agent to recognize it as
a click. If the mouse down and mouse
up event radius is greater than the
defined value, a PressMouse and
ReleaseMouse event are scripted.
By default, this is set to 5 pixels.

OPT_RECORD_MOUSEMOVES Classic Agent

Open Agent

BOOLEAN

TRUE records mouse moves for Web
pages, Win32 applications, and
Windows Forms applications that use
mouse move events. You cannot
record mouse moves for child
domains of the xBrowser technology
domain, for example Apache Flex and
Swing. By default, this is FALSE.

OPT_RECORD_SCROLLBAR_ABSOLUT Open Agent BOOLEAN

TRUE records scroll events with
absolute values instead of relative to
the previous scroll position. By
default, this is FALSE.

OPT_REL1_CLASS_LIBRARY Classic Agent BOOLEAN

TRUE to use pre-Release 2 versions
of GetChildren, GetClass, and
GetParent, or FALSE to use
current versions.

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT Open Agent BOOLEAN

TRUE to remove the focus from a
window before text is captured. By
default, this is FALSE.

OPT_REPLAY_HIGHLIGHT_TIME Open Agent NUMBER

The number of seconds before each
invoke command that the object is
highlighted.

By default, this is 0, which means that
objects are not highlighted by default.

OPT_REPLAY_MODE Classic Agent

Open Agent

NUMBER

The replay mode defines how replays
on a control are executed: They can
be executed with mouse and
keyboard (low level) or using the API
(high level). Each control defines
which replay mode is the default
mode for the control. When the

Open Agent | 35

Agent Option Agent Supported Description

default replay mode is enabled, most
controls use a low level replay. The
default mode for each control is the
mode that works most reliably. If a
replay fails, the user can change the
replay mode and try again. Each
control that supports that mode will
execute the replay in the specified
mode. If a control does not support
the mode, it executes the default
mode. For example, if PushButton
supports low level replay but uses
high level replay by default, it will use
low level replay only if the option
specifies it. Otherwise, it will use the
high level implementation.

Possible values include 0, 1, and 2. 0
is default, 1 is high level, 2 is low
level. By default, this is 0.

OPT_REQUIRE_ACTIVE Classic Agent BOOLEAN

Setting this option to FALSE allows
4Test statements to be attempted
against inactive windows.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_RESIZE_APPLICATION_BEFORE_RECO
RDING

Open Agent BOOLEAN

Define whether to resize the
application under test (AUT) when a
recording session starts, to display
the Silk Recorder next to the AUT. If
this option is disabled, the AUT and
the Silk Recorder might overlap. This
option is TRUE by default.

OPT_SCROLL_INTO_VIEW Classic Agent BOOLEAN

TRUE to scroll a control into view
before recording events against it or
capturing its bitmap. This option
applies only when
OPT_SHOW_OUT_OF_VIEW is set
to TRUE. This option is useful for
testing Web applications in which
dialog boxes contain scroll bars. This
option applies only to HTML objects
when you are using the DOM
extension.

OPT_SET_TARGET_MACHINE Classic Agent STRING

36 | Open Agent

Agent Option Agent Supported Description

The IP address and port number to
use for the target machine in
distributed testing using the
SetOption method. To set the
target machine, type:
Agent.SetOption(OPT_SET_T
ARGET_MACHINE, <
IPAddress >:< PortNumber
>) .

Note: A colon must separate
the IP address and the port
number.

To return the IP address and port
number of the current target machine,
type:
Agent.GetOption(OPT_SET_T
ARGET_MACHINE)

OPT_SHOW_OUT_OF_VIEW Classic Agent BOOLEAN

TRUE to have the agent see a control
not currently scrolled into view;
FALSE to have the Agent consider an
out-of-view window to be invisible.
This option applies only to HTML
objects when you are using the DOM
extension.

OPT_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: When you upgrade from a Silk
Test version prior to Silk Test 13.0,
and you had set the
OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box will
display the default value of the
OPT_SYNC_TIMEOUT, although
your timeout is still set to the value
you have defined.

OPT_TEXT_NEW_LINE Classic Agent STRING

The keys to type to enter a new line
using the SetMultiText method
of the TextField class. The default
value is "<Enter>".

OPT_TRANSLATE_TABLE Classic Agent STRING

Specifies the name of the translation
table to use. If a translation DLL is in
use, the QAP_SetTranslateTable

Open Agent | 37

Agent Option Agent Supported Description

entry point is called with the string
specified in this option.

OPT_TRIM_ITEM_SPACE Classic Agent BOOLEAN

TRUE to trim leading and trailing
spaces from items on windows, or
FALSE to avoid trimming spaces.

OPT_USE_ANSICALL Classic Agent BOOLEAN

If set to TRUE, each following DLL
function is called as ANSI. If set to
FALSE, which is the default value,
UTF-8 DLL calls are used. For single
ANSI DLL calls you can also use the
ansicall keyword.

OPT_USE_SILKBEAN Classic Agent BOOLEAN

TRUE to enable the agent to interact
with the SilkBean running on a UNIX
machine.

Default is FALSE.

OPT_VERIFY_ACTIVE Classic Agent

Open Agent

BOOLEAN

TRUE to verify that windows are
active before interacting with them;
FALSE to not check. See Active and
Enabled Statuses for information
about how this option affects Silk Test
Classic methods.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_APPREADY Classic Agent BOOLEAN

TRUE to synchronize the agent with
the application under test. Calls to the
agent will not proceed unless the
application is ready.

OPT_VERIFY_CLOSED Classic Agent BOOLEAN

TRUE to verify that a window has
closed. When FALSE, Silk Test
Classic closes a window as usual, but
does not verify that the window
actually closed.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_COORD Classic Agent BOOLEAN

38 | Open Agent

Agent Option Agent Supported Description

TRUE to check that coordinates
passed to a method are inside the
window before the mouse is pressed;
FALSE to not check. Typically, you
use the checking feature unless you
need to be able to pass coordinates
outside of the window, such as
negative coordinates.

If this option is set to TRUE and
coordinates fall outside the window,
Silk Test Classic raises the exception
E_COORD_OUTSIDE_WINDOW.

OPT_VERIFY_CTRLTYPE Classic Agent BOOLEAN

TRUE to check that objects are of the
specified type before interacting with
them; FALSE to not check.

When TRUE, Silk Test Classic
checks, for example, that an object
that claims to be a listbox is actually a
listbox. For custom objects, you must
map them to the standard types to
prevent the checking from signaling
an exception, using the Silk Test
Classic class map facility.

Default is FALSE.

OPT_VERIFY_ENABLED Classic Agent BOOLEAN

TRUE to verify that windows are
enabled before interacting with them;
FALSE to not check. For information
about how this option affects various
Silk Test Classic methods, see Active
and Enabled Statuses.

OPT_VERIFY_EXPOSED Classic Agent BOOLEAN

TRUE to verify that windows are
exposed (that is, not covered,
obscured, or logically hidden by
another window) before interacting
with them; FALSE to not check.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_RESPONDING Classic Agent BOOLEAN

Setting this option to FALSE
suppresses "control not responding"
errors.

OPT_VERIFY_UNIQUE Classic Agent BOOLEAN

Open Agent | 39

Agent Option Agent Supported Description

Open Agent TRUE to raise the
E_WINDOW_NOT_UNIQUE
exception upon encountering two or
more windows with the same tag;
FALSE to not raise the exception.
When OPT_VERIFY_UNIQUE is
FALSE, Silk Test Classic ignores the
duplication and chooses the first
window with that tag that it
encounters.

You can use a modified tag syntax to
refer to a window with a non-unique
tag, even when
OPT_VERIFY_UNIQUE is TRUE. You
can either include an index number
after the object, as in
myDialog("Cancel[2]"), or you can
specify the window by including the
text of a child that uniquely identifies
the window, such as "myDialog/
uniqueText/...", where the unique text
is the tag of a child of that window.

OPT_WAIT_ACTIVE_WINDOW Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active. If a window does not become
active within the specified time, Silk
Test Classic raises an exception.

To require the Open Agent to check
the active state of a window, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW is set
to 2 seconds.

OPT_WAIT_ACTIVE_WINDOW_RETRY Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active before trying to verify again that
the window is active.

To require the Open Agent to retry the
active state of an object, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW_RET
RY is set to 0.5 seconds.

OPT_WINDOW_MOVE_TOLERANCE Classic Agent INTEGER

40 | Open Agent

Agent Option Agent Supported Description

The number of pixels allowed for a
tolerance when a moved window does
not end up at the specified position.

For some windows and GUIs, you
cannot always move the window to
the specified pixel. If the ending
position is not exactly what was
specified and the difference between
the expected and actual positions is
greater than the tolerance, Silk Test
Classic raises an exception.

On Windows, the tolerance can be set
through the Control Panel, by setting
the desktop window granularity
option. If the granularity is zero, you
can place a window at any pixel
location. If the granularity is greater
than zero, the desktop is split into a
grid of the specified pixels in width,
determining where a window can be
placed. In general, the tolerance
should be greater than or equal to the
granularity.

OPT_WINDOW_RETRY Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits between attempts to
verify a window, if the window does
not exist or is in the incorrect state.
Silk Test Classic continues trying to
find the window until the time
specified with
OPT_WINDOW_TIMEOUT is
reached.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

• OPT_VERIFY_ENABLED

• OPT_VERIFY_ACTIVE

• OPT_VERIFY_EXPOSED

• OPT_VERIFY_UNIQUE

OPT_WINDOW_SIZE_TOLERANCE Classic Agent INTEGER

The number of pixels allowed for a
tolerance when a resized window
does not end at the specified size.

Open Agent | 41

Agent Option Agent Supported Description

For some windows and GUIs, you
cant always resize the window to the
particular size specified. If the ending
size is not exactly what was specified
and the difference between the
expected and actual sizes is greater
than the tolerance, Silk Test Classic
raises an exception.

On Windows, windows cannot be
sized smaller than will fit comfortably
with the menu bar.

OPT_WINDOW_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits for a window to appear
and be in the correct state. If a
window does not appear within the
specified timeout, Silk Test Classic
raise an exception.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

• OPT_VERIFY_ENABLED

• OPT_VERIFY_ACTIVE

• OPT_VERIFY_EXPOSED

• OPT_VERIFY_UNIQUE

OPT_WPF_CHECK_DISPATCHER_FOR_IDLE Open Agent BOOLEAN

For some WPF applications the Silk
Test synchronization might not work
due to how certain controls are
implemented, resulting in Silk Test
Classic not recognising when the
WPF application is idle. Setting this
option to FALSE disables the WPF
synchronization and prevents Silk
Test Classic from checking the WPF
dispatcher, which is the thread that
controls the WPF application. Set this
option to FALSE to solve
synchronization issues with certain
WPF applications. By default, this is
TRUE.

OPT_WPF_CUSTOM_CLASSES Open Agent LIST OF STRING

Specify the names of any WPF
classes that you want to expose

42 | Open Agent

Agent Option Agent Supported Description

during recording and playback. For
example, if a custom class called
MyGrid derives from the WPF Grid
class, the objects of the MyGrid
custom class are not available for
recording and playback. Grid objects
are not available for recording and
playback because the Grid class is
not relevant for functional testing
since it exists only for layout
purposes. As a result, Grid objects
are not exposed by default. In order to
use custom classes that are based on
classes that are not relevant to
functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record,
playback, find, verify properties, and
perform any other supported actions
for the specified classes.

OPT_WPF_PREFILL_ITEMS Open Agent BOOLEAN

Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFListBox,
are pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items
are not available for Silk Test Classic
if they are not scrolled into view. Turn
pre-filling on, which is the default
setting, to additionally access items
that are not accessible without
scrolling them into view. However,
some applications have problems
when the items are pre-filled by Silk
Test Classic in the background, and
these applications can therefore
crash. In this case turn pre-filling off.

OPT_XBROWSER_ENABLE_IFRAME_SUPPO
RT

Open Agent BOOLEAN

Specifies whether to enable iframe
and frame support for browsers. If you
are not interested in the content of the
iframes in a web application, disabling
the iframe support might improve
replay performance. For example,
disabling the iframe support might
significantly improve replay
performance for web pages with many
adds and when testing in a mobile
browser. This option is ignored by

Open Agent | 43

Agent Option Agent Supported Description

Internet Explorer. This option is
enabled by default.

OPT_XBROWSER_EXCLUDE_IFRAMES Open Agent Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are considered during testing.
Wildcards are allowed, for example
the entry "src:*advertising*" would
exclude <IFRAME src=http://
my.domain/advertising-banner.html>.
This option is ignored by Internet
Explorer. If the list is empty, all
iframes and frames are considered
during testing. Separate multiple
entries with a comma.

OPT_XBROWSER_FIND_HIDDEN_INPUT_FIE
LDS

Open Agent BOOLEAN

Specifies whether to display hidden
input fields, which are HTML fields for
which the tag includes
type="hidden". The default value
is TRUE.

OPT_XBROWSER_INCLUDE_IFRAMES Open Agent Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are excluded. Wildcards are allowed,
for example the entry "name:*form"
would include <IFRAME name="user-
form" src=…>. This option is ignored
by Internet Explorer. If the list is
empty, all iframes and frames are
considered during testing. Separate
multiple entries with a comma.

OPT_XBROWSER_SYNC_MODE Open Agent STRING

Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you
can test simple Web pages. If more
complex scenarios with Java script
are used, it might be necessary to
manually script synchronization
functions, such as
WaitForObject,
WaitForProperty,
WaitForDisappearance, or
WaitForChildDisappearance
. Using the AJAX mode eliminates the

44 | Open Agent

Agent Option Agent Supported Description

need to manually script
synchronization functions. By default,
this value is set to AJAX.

OPT_XBROWSER_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

OPT_XBROWSER_SYNC_EXCLUDE_URLS Open Agent STRING

Specifies the URLs of any services or
web pages that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently
open in order to retrieve
asynchronous data from the server.
These requests may let the
synchronization hang until the
specified synchronization timeout
expires. To prevent this situation,
either use the HTML synchronization
mode or specify the URL of the
problematic request in the
Synchronization exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://
test.com/timeService or
timeService. Separate entries by
comma. For example:

Agent.SetOption(OPT_XBROW
SER_SYNC_EXCLUDE_URLS,
{ "fpdownload.macromedia.
com",
"fpdownload.adobe.com",
"download.microsoft.com"
})

Setting the Default Agent
Silk Test Classic automatically assigns a default agent to your project or scripts. When you create a new
project, the agent currently selected in the toolbar is the default agent. Silk Test Classic automatically starts
the default agent when you open a project or create a new project. You can configure Silk Test Classic to
automatically connect to the Open Agent or the Classic Agent by default.

To set the default agent, perform one of the following:

• Click Options > Runtime and set the default agent in the Runtime Options dialog box.

Open Agent | 45

• Click the appropriate agent icon in the toolbar.

When you enable extensions, set the recovery system, configure the application, or record a test case, Silk
Test Classic uses the default agent. When you run a test, Silk Test Classic automatically connects to the
appropriate agent. Silk Test Classic uses the window declaration, locator, or Find or FindAll command
to determine which agent to use.

Setting the Default Agent Using the Runtime Options
Dialog Box
To set the default agent using the Runtime Options dialog box:

1. In the main menu, click Options > Runtime. The Runtime Options dialog box opens.

2. Select the agent that you want to use as the default from the Default Agent list box.

3. If you use the Classic Agent, select the type of network you want to use in the Network list box. If you
select the Open Agent, TCP/IP is automatically selected.

4. If you use named agents, select the local agent name from the Agent Name list box. For instance, if
your environment uses multiple agents or a port that uses a value other than the default, select the local
agent.

5. Click OK.
When you record a test case, Silk Test Classic automatically uses the default agent.

Setting the Default Agent Using the Toolbar Icons
From the main toolbar, click one of the following icons to set the default agent:

• to use the Classic Agent.
• to use the Open Agent.

Connecting to the Default Agent
Typically, the default agent starts automatically when it is needed by Silk Test Classic. However, you can
connect to the default agent manually if it does not start or to verify that it has started.

To connect to the default Agent, from the main menu, click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine, depending on which agent
is specified as the default in the Runtime Options dialog box. If the Agent does not start within 30
seconds, a message is displayed. If the default Agent is configured to run on a remote machine, you must
connect to it manually.

Creating a Script that Uses Both Agents
You can create a script that uses the Classic Agent and the Open Agent. Recording primarily depends on
the default agent while replaying the script primarily depends on the window declaration of the underlying
control. If you create a script that does not use window declarations, the default agent is used to replay the
script.

1. Set the default agent to the Classic Agent.

2. In the Basic Workflow bar, enable extensions for the application automatically.

3. In the Basic Workflow bar, click Record Testcase and record your test case.

4. When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s).

46 | Open Agent

5. Click OK. The frame now contains window declarations from the Classic Agent.

6. Click File > Save to save the test case.

7. Type a name for the file into the File name field and click Save.

8. Set the default agent to the Open Agent.

9. Click Options > Application Configurations. The Edit Application Configurations dialog box opens.

10.Click Add.

The Select Application dialog box opens.

11.Configure a standard or Web site test configuration.

12.Click OK.

13.Click Record Testcase in the Basic Workflow bar and record your test case.

14.When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s). The frame now contains window declarations from both the Classic Agent and the Open
Agent. Silk Test Classic automatically detects which agent is required for each test based on the
window declaration and changes the agent accordingly.

15.Click File > Save to save the test case.

16.Click Run Testcase in the Basic Workflow bar to replay the test case. Silk Test Classic automatically
recognizes which agent to use based on the underlying window declarations.

You can also use the function Connect([sMachine, sAgentType]) in a script to connect a machine
explicitly with either the Classic Agent or the Open Agent. Using the connect function changes the default
agent temporarily for the current test case, but it does not change the default agent of your project.
However, this does not override the agent that is used for replay, which is defined by the window
declaration.

Overview of Record Functionality Available for the Silk
Test Agents

The Open Agent provides the majority of the same record capabilities as the Classic Agent and the same
replay capabilities.

The following table lists the record functionality available for each Silk Test agent.

Record
Command

Classic Agent Open Agent

Window
Declarations

Supported Supported

Application
State

Supported Supported

Testcase Supported Supported

Actions Supported Supported

Window
Identifiers

Supported Not Supported

Window
Locations

Supported Not Supported

Window
Locators

Not Supported Supported

Class/Scripted Supported Not Supported

Open Agent | 47

Record
Command

Classic Agent Open Agent

Class/
Accessibility

Supported Not Supported

Method Supported Not Supported

Defined
Window

Supported Not Supported

Note: Silk Test Classic determines which agent to use by detecting whether a locator or Find or
FindAll command is used. If a locator or Find or FindAll command is present, Silk Test Classic
uses the Open Agent. As a result, you do not need to record window declarations for the Open Agent.
For calls that use window declarations, the agent choice is made based on the presence or absence
of the locator keyword and on the presence or absence of TAG_IS_OPEN_AGENT in a tag or multitag.
When a window declaration contains both locators and tags and either could be used for resolving the
window, check or uncheck the Prefer Locator check box in the General Options dialog box to
determine which method is used.

Setting the Window Timeout Value to Prevent Window Not
Found Exceptions

The window timeout value is the number of seconds Silk Test Classic waits for a window to display. If the
window does not display within that period, the Window not found exception is raised. For example, loading
an Apache Flex application and initializing the Apache Flex automation framework may take some time,
depending on the machine on which you are testing and the complexity of your Apache Flex application. In
this case, setting the Window timeout value to a higher value enables your application to fully load.

If you suspect that Silk Test Classic is not waiting long enough for a window to display, you can increase
the window timeout value in the following ways:

• Change the window timeout value on the Timing tab of the Agent Options dialog box.
• Manually add a line to the script.

If the window is on the screen within the amount of time specified in the window timeout, the tag for the
object might be the problem.

Manually Setting the Window Timeout Value
In some cases, you may want to increase the window timeout value for a specific test, rather than for all
tests in general. For example, you may want to increase the timeout for Flex application tests, but not for
browser tests.

1. Open the test script.

2. Add the following to the script: Agent.SetOption (OPT_WINDOW_TIMEOUT, numberOfSeconds).

Setting the Window Timeout Value in the Agent
Options Dialog Box
To change the window timeout value in the Agent Options dialog box:

1. Click Options > Agent.

2. Click the Timing tab.

3. Type the value into the Window timeout text box.

48 | Open Agent

The value should be based on the speed of the machine, on which you are testing, and the complexity
of the application that you are testing. By default, this value is set to 5 seconds. For example, loading
and initializing complex Flex applications generally requires more than 5 seconds.

4. Click OK.

Configuring the Connections Between the Silk Test
Classic Components

To enable connecting to a remote machine through a firewall or to enable connecting to a remote machine
securely by using HTTPS, you can configure the ports through which Silk Test Classic communicates with
the information service and the Open Agent.

When the Open Agent starts, a random available port is assigned to Silk Test Classic and to the application
that you are testing. The port numbers are registered on the Silk Test information service (information
service).

The information service provides the following information to Silk Test Classic:

• The number of the port Silk Test Classic can use to connect to the Open Agent. Communication runs
directly between Silk Test Classic and the agent. You might need to configure this port for remote agent
scenarios, for example to avoid firewall conflicts.

• The browsers that are available on the machine on which the information service is installed.
• The mobile devices that are connected to the machine on which the information service is installed.
• The emulators that are available on the machine on which the information service is installed.
• The mobile browsers that are available on the previously mentioned mobile devices and emulators.

By default, the Open Agent communicates with the information service on HTTPS port 48561. You can
configure additional ports for the information service as alternate ports that work when the default port is
not available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you want to test on a remote
machine and there is a port number conflict or an issue with a firewall between the machine on which Silk
Test Classic is installed and the test machine, you can configure the port number for the communication
between Silk Test Classic and the Open Agent on the remote machine or the port number for the
communication between Silk Test Classic and the information service on the remote machine. If you have
multiple remote machines on which you want to test, you can use different port numbers for each remote
machine or you can use the same available port numbers for all remote machines.

Open Agent | 49

Configuring the Port to Connect to the Information
Service
Before you begin this task, stop the Silk Test Open Agent.

This functionality is supported only if you are using the Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

By default, the port that is used to connect Silk Test Classic with the information service over a secure
HTTPS connection is port 48561. When you can use the default port, you can type hostname without the
port number for ease of use. If you do specify a port number, ensure that it matches the value for the

50 | Open Agent

default port of the information service or one of the additional information service ports. Otherwise,
communication will fail.

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

• In a Microsoft Windows system, this file is located in C:\ProgramData\Silk\Silk Test\conf,
where “C:\ProgramData” is equivalent to the content of the ALLUSERSPROFILE environment
variable, which is set by default on Windows systems.

• On macOS, this file is located in /Users/<user>/.silk/silktest/conf.

This file contains commented text and sample alternate port settings.

2. Specify whether Silk Test Classic should communicate with the information service over a secure
connection through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

3. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk Test Classic should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

4. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk Test Classic should communicate with
the information service as the infoservice.default.port.

The default port is 22901.

5. Save the file as infoservice.properties.

6. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Port to Connect to the Open Agent
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

If necessary, change the port number that the Silk Test client or the application that you want to test uses to
connect to the Open Agent.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:\Users
\<user name>\AppData\Silk\SilkTest\conf where <user name> equals the current user
name.

2. Change the value for the appropriate port.

Typically, you configure port settings to resolve a port conflict.

Note: Each port number must be unique. Ensure that the port numbers for the Agent differ from
the information service port settings.

Port numbers can be any number from 1 to 65535.

Port settings include:

Open Agent | 51

• agent.vtadapter.port – Controls communication between Silk Test Workbench and the Open
Agent when running tests.

• agent.xpmodule.port – Controls communication between Silk Test Classic and the Agent when
running tests.

• agent.autcommunication.port – Controls communication between the Open Agent and the
application that you are testing.

• agent.rmi.port – Controls communication with the Open Agent and Silk4J.
• agent.ntfadapter.port – Controls communication with the Open Agent and Silk4NET.
• agent.heartbeat.port – Required to test with an Open Agent that is installed on a remote

machine.

Note: The ports for Apache Flex testing are not controlled by this configuration file. The assigned
port for Flex application testing is 6000 and increases by 1 for each Flex application that is tested.
You cannot configure the starting port for Flex testing.

3. Save the file as agent.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Editing the Properties of the Silk Test Information
Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk Test Classic should communicate with the information service over a secure
connection through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk Test Classic should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk Test Classic should communicate with
the information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

52 | Open Agent

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Replacing the Certificates that are Used for the HTTPS
Connection to the Information Service
When using a secure connection through HTTPS between Silk Test Classic and the information service,
the following self-signed certificate files are used:

• The keystore certificate file is used for the information service HTTPS server.
• The following certificate files are used for the machine on which the Silk Test Classic client is running:

• cacerts

• cacerts.p12

• cacerts.pem

You can use OpenSSL and the Java keytool executable to replace these files with your own certificate files.

1. Ensure that OpenSSL and a JDK are installed on your machine.

2. Start the Java keytool executable from the bin folder of your JDK installation folder.

3. Create a private and public key pair in your private keystore file on the information service HTTPS
server:

keytool -genkey -alias jetty -keyalg RSA -keypass Borland -storepass
Borland -keystore keystore -validity 1095

4. When prompted to type a first and last name, type * as a wildcard for the host.

5. Export the information from your private keystore to a temporary certificate file named server.cer:

keytool -export -alias jetty -storepass Borland -file server.cer -keystore
keystore

This temporary certificate file is required to generate the certificate files for the machine on which the
Silk Test Classic client is running.

6. Create a certificate file named cacerts from the server.cer file.

keytool -import -v -trustcacerts -alias jetty -file server.cer -keystore
cacerts -keypass Borland -storepass Borland

7. Import the information from the cacerts file into the temporary certificate file cacerts.p12.

keytool -importkeystore -srckeystore cacerts -destkeystore cacerts.p12 -
srcstoretype JKS -deststoretype PKCS12 -srcstorepass Borland -deststorepass
Borland

8. Create the public keystore file cacerts.pem in the PKCS12 keystore format from the temporary
certificate file cacerts.p12

openssl pkcs12 -in cacerts.p12 -out cacerts.pem -cacerts -nokeys

9. Deploy the files keystore, cacerts, cacerts.p12, and cacerts.pem to the configuration folder:

• On a Windows machine, deploy the files to %PROGRAMDATA%\Silk\SilkTest\conf, for example
C:\ProgramData\Silk\SilkTest\conf.

Open Agent | 53

• On macOS, deploy the files to ~/.silk/silktest/conf/.

Stopping the Open Agent After Test Execution
You can stop the Open Agent by using the command-line option -shutDown or from a script, to ensure that
the agent does not continue running after the end of the test execution. The following code sample shows
how you can stop the Open Agent from the command line:

openAgent.exe -shutDown

To stop the agent from a script:

1. Open or create a script that is executed when the test execution is finished.

For example, open an existing script that is used for cleanup after test execution.

2. Add the ShutDown method to the script.

Note: The Open Agent will restart as soon as the agent is required by another script.

Enabling the Classic Agent
Enable the Classic Agent to run legacy tests that are using the Classic Agent.

Enabling the Classic Agent might have a negative impact on the performance of Silk Test. If you have no
legacy tests that are using the Classic Agent, or you are unsure about whether you have such legacy tests,
Micro Focus recommends leaving the Classic Agent disabled.

If you are facing issues when running tests that require the Classic Agent, you can enable the Classic
Agent from the Silk Test Classic UI:

1. Click Tools in the Silk Test Classic menu.

2. Click Enable Classic Agent.

54 | Open Agent

Basic Workflow for the Open Agent
The Basic Workflow bar guides you through the process of creating a test case. To create and execute a
test case, click each icon in the workflow bar to perform the relevant procedures. The procedures and the
appearance of the workflow bar differ depending on whether your test uses the Open Agent or the Classic
Agent.

The Basic Workflow bar is displayed by default. You can display it or hide it by checking and un-checking
the Workflows > Basic check box. If your test uses both the Open Agent and the Classic Agent, the Basic
Workflow bar changes when you switch between the agents.

When you use the Open Agent, the Basic Workflow uses dynamic object recognition to record and replay
test cases that use XPath queries to find and identify objects.

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. The Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.

If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.

Project files with a .vtp (Verify Test Project) extension, projectname.vtp, and a
projectname.ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.

After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or by clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.

You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname.ini to this location and copies the extension .ini files, which
are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Basic Workflow for the Open Agent | 55

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you
are using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

Configuring Applications
When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

Silk Test Classic has slightly different procedures depending on which type of application you are
configuring:

• A standard application, which is an application that does not use a web browser, for example a
Windows application or a Java SWT application.

• A web application, which is an application that uses a web browser, for example a web page, a web-
based application on a mobile device, or an Apache Flex application.

• A mobile native application, which is a non web-based application on a mobile device.

Recording Test Cases for Standard and Web Applications
Note: Before you can record a test case, you have to configure the application that you want to test.

This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Select Test Type dialog box opens.

2. Select 4Test Testcase.

3. Click OK. The Record Testcase dialog box opens.

4. Type the name of your test case into the Testcase name field.

Test case names are not case sensitive; they can have any length and they can consist of any
combination of alphabetic characters, numerals, and underscore characters.

5. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you choose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

6. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

7. In the application under test, perform the actions that you want to test.

56 | Basic Workflow for the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

For information about the actions available during recording, see Actions Available During Recording.

8. To stop recording, click Stop in the Recorder. Silk Test Classic displays the Record Testcase dialog
box, which contains the code that has been recorded for you.

9. To resume recording your interactions, click Resume Recording.

10.To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

11.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

12.Click OK. Silk Test Classic adds the recorded actions to the specified script file, and opens the file in the
editor.

Recording Test Cases for Mobile Applications
This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Select Test Type dialog box opens.

2. Select 4Test Testcase.

3. Click OK. The Record Testcase dialog box opens.

4. Type the name of your test case into the Testcase name field.

Test case names are not case sensitive; they can have any length and they can consist of any
combination of alphabetic characters, numerals, and underscore characters.

5. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you choose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

6. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

7. On the device or the Emulator, interact with your native mobile application, driving it to the state that you
want to test.

8. In the Recording window, perform the actions that you want to record.

Basic Workflow for the Open Agent | 57

a) Click on the object with which you want to interact. Silk Test Classic performs the default action for
the object. If there is no default action, or if you have to insert text or specify parameters, the
Choose Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields. Silk Test
Classic automatically validates the parameters.

d) Click OK to close the Choose Action dialog box. Silk Test Classic adds the action to the recorded
actions and replays it on the mobile device or emulator.

For information about how to record an interaction with a mobile device, see Interacting with a Mobile
Device.

9. To verify an image or a property of a control during recording, click Ctrl+Alt.

10.Optional: To interact with an object that is currently not visible in the Recording window, use the
Hierarchy View:

a) Click Toggle Hierarchy View. The Hierarchy View opens.
b) In the object tree, right-click on the object on which you want to perform an action.
c) Click Add New Action. The Choose Action dialog box opens.
d) Proceed as with any other action.

For example, to open the main menu of the device or emulator, right-click on the MobileDevice object in
the object tree and select the action PressMenu().

11.To pause the recording of interactions with the application, for example to move the application into a
different state, click Pause.

12.To resume recording interactions, click Start.
13.To add the recorded interactions to a script, click Stop. If you have interacted with objects in your

application that have not been identified in your include files, the Update Files dialog box opens.

14.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

58 | Basic Workflow for the Open Agent

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

Viewing Test Results
Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.

2. On the Results Files dialog box, navigate to the file that you want to review and click Open.

Silk Test Classic provides the following result files:

• .res files, which include information about the execution of the test case, script, suite, test plan, or
keyword-driven test.

• .tlz files, which include a TrueLog with optional screenshots before and after each action.
• .htm for HTML reports with summary information about the test run and detailed information about the

executed actions.

By default, Silk Test Classic writes both a TrueLog and an HTML report when running a test. You can select
which result formats Silk Test Classic should generate under Options > TrueLog.

By default, a results file has the same name as the executed script, suite, or test plan.

Basic Workflow for the Open Agent | 59

Migrating from the Classic Agent to the
Open Agent

This section includes several useful topics that explain the differences between the Classic Agent and the
Open Agent. If you plan to migrate from testing using the Classic Agent to the Open Agent, review this
information to learn how to migrate your existing assets including window declarations and scripts.

Differences for Agent Options Between the Silk Test
Agents

Before you migrate existing Classic Agent scripts to the Open Agent, review the Agent Options listed below
to determine if any additional action is required to facilitate the migration.

Classic Agent Option Action for Open Agent

OPT_AGENT_CLICKS_ONLY Option not needed.

Note: Use OPT_REPLAY_MODE for switching
between high-level (API) clicks and low-level clicks.

OPT_CLOSE_MENU_NAME Not supported by Open Agent.

OPT_COMPATIBLE_TAGS Option not needed.

OPT_COMPRESS_WHITESPACE Not supported by Open Agent.

OPT_DROPDOWN_PICK_BEFORE_GET Option not needed. The Open Agent performs this action by
default during replay.

OPT_EXTENSIONS Option not needed.

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Not supported by Open Agent.

OPT_KEYBOARD_LAYOUT Not supported by Open Agent.

OPT_MENU_INVOKE_POPUP No action. Pop-up menu handling using the Open Agent
does not need such an option.

OPT_MENU_PICK_BEFORE_GET Option not needed.

OPT_NO_ICONIC_MESSAGE_BOXES Option not needed.

OPT_PLAY_MODE Option not needed.

OPT_RADIO_LIST Open Agent always sees RadioList items as individual
objects.

OPT_REL1_CLASS_LIBRARY Obsolete option.

OPT_REQUIRE_ACTIVE Use the option OPT_ENSURE_ACTIVE instead.

OPT_SCROLL_INTO_VIEW Option not needed. Open Agent only requires scrolling into
view for low-level replay. By default, high-level replay is used,
so no scrolling needs to be performed. However,
CaptureBitmap never scrolls an object into view.

OPT_SET_TARGET_MACHINE Option not needed.

60 | Migrating from the Classic Agent to the Open Agent

Classic Agent Option Action for Open Agent

OPT_SHOW_OUT_OF_VIEW Option not needed. Out-of-view objects are always
recognized.

OPT_TEXT_NEW_LINE Option not needed. The Open Agent always uses Enter to
type a new line.

OPT_TRANSLATE_TABLE Not supported by Open Agent.

OPT_TRAP_FAULTS Fault trap is no longer active.

OPT_TRAP_FAULTS_FLAGS Fault trap is no longer active.

OPT_TRIM_ITEM_SPACE Option not needed. If required, use a * wildcard instead.

OPT_USE_ANSICALL Not supported by Open Agent.

OPT_USE_SILKBEAN SilkBean is not supported on the Open Agent.

OPT_VERIFY_APPREADY Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_CLOSED Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_COORD Option not needed. The Open Agent does not typically check
for native input in order to allow clicking outside of an object.

OPT_VERIFY_CTRLTYPE Option not needed.

OPT_VERIFY_EXPOSED Option not needed. The Open Agent performs this action
when it sets a window to active.
OPT_ENSURE_ACTIVE_OBJECT_DEF should yield the
same result.

OPT_VERIFY_RESPONDING Option not needed.

OPT_WINDOW_MOVE_TOLERANCE Option not needed.

Differences in Object Recognition Between the Silk Test
Agents

When recording and executing test cases, the Classic Agent uses the keywords tag or multitag in a window
declaration to uniquely identify an object in the test application. The tag is the actual name, as opposed to
the identifier, which is the logical name.

When using the Open Agent, you typically use dynamic object recognition with a Find or FindAll
function and an XPath query to locate objects in your test application. To make calls that use window
declarations using the Open Agent, you must use the keyword locator in your window declarations. Similar
to the tag or multitag keyword, the locator is the actual name, as opposed to the identifier, which is the
logical name. This similarity facilitates a smooth transition of legacy window declarations, which use the
Classic Agent, to dynamic object recognition, which leverages the Open Agent.

The following sections explain how to migrate the different tag types to valid locator strings.

Caption

Classic Agent tag “<caption string>”

Open Agent locator “//<class name>[@caption=’<caption string>’]”

Note: For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic
automatically expands the syntax to use full XPath strings when you run a script.

Migrating from the Classic Agent to the Open Agent | 61

You can omit:

• The hierarchy separator, “.//”. Silk Test Classic defaults to “//”.
• The class name. Silk Test Classic defaults to the class name of the window that contains the locator.
• The surrounding square brackets of the attributes, “[]”.
• The “@caption=” if the XPath string refers to the caption.

Note: Classic Agent removes ellipses (…) and ampersands (&) from captions. Open Agent removes
ampersands, but not ellipses.

Example

Classic Agent:

CheckBox CaseSensitive
 tag “Case sensitive”

Open Agent:

CheckBox CaseSensitive
 locator “//CheckBox[@caption='Case sensitive']”

Or, if using the shortened form:

CheckBox CaseSensitive
 locator “Case sensitive”

Prior text

Classic Agent tag “^Find What:”

Open Agent locator “//<class name>[@priorlabel=’Find What:’]”

Note: Only available for Windows API-based and Java Swing applications. For other technology
domains, use the Locator Spy to find an alternative locator.

Index

Classic
Agent

tag “#1”

Open Agent Record window locators for the test application. The Classic Agent creates index values
based on the position of controls, while the Open Agent uses the controls in the order
provided by the operating system. As a result, you must record window locators to identify
the current index value for controls in the test application.

Window ID

Classic Agent tag “$1041”

Open Agent locator “//<class name>[@windowid=’1041’]”

Location

Classic Agent tag “@(57,75)”

Open Agent not supported

Note: If you have location tags in your window declarations, use the Locator Spy to find an
alternative locator.

62 | Migrating from the Classic Agent to the Open Agent

Multitag

Classic Agent multitag “Case sensitive” “$1011”

Open Agent locator “//CheckBox[@caption=’Case sensitive’ or @windowid=’1011’]” ‘parent’ statement

No changes needed. Multitag works the same way for the Open Agent.

Differences in the Classes Supported by the Silk Test
Agents

The Classic Agent and the Open Agent differ slightly in the types of classes that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

Windows-based applications

Both Agents support testing Windows API-based client/server applications. The Open Agent classes,
functions, and properties differ slightly from those supported on the Classic Agent for Windows API-based
client/server applications.

Classic Agent Open Agent

AnyWin AnyWin

AgentClass (Agent) AgentClass (Agent)

CheckBox CheckBox

ChildWin <no corresponding class>

ClipboardClass (Clipboard) ClipboardClass (Clipboard)

ComboBox ComboBox

Control Control

CursorClass (Cursor) CursorClass (Cursor)

CustomWin CustomWin

DefinedWin <no corresponding class>

DesktopWin (Desktop) DesktopWin (Desktop)

DialogBox DialogBox

DynamicText <no corresponding class>

Header HeaderEx

ListBox ListBox

ListView ListViewEx

MainWin MainWin

Menu Menu

MenuItem MenuItem

MessageBoxClass <no corresponding class>

Migrating from the Classic Agent to the Open Agent | 63

Classic Agent Open Agent

MoveableWin MoveableWin

PageList PageList

PopupList ComboBox

PopupMenu <no corresponding class>

PopupStart <no corresponding class>

PopupSelect <no corresponding class>

PushButton PushButton

RadioButton Note: Items in Radiolists are recognized as RadioButtons on the CA. OA only
identifies all of those buttons as RadioList.

RadioList RadioList

Scale Scale

ScrollBar ScrollBar, VerticalScrollBar, HorizontalScrollBar

StaticText StaticText

StatusBar StatusBar

SysMenu <no corresponding class>

Table TableEx

TaskbarWin (Taskbar) <no corresponding class>

TextField TextField

ToolBar ToolBar

Additionally: PushToolItem, CheckBoxToolItem

TreeView, TreeViewEx TreeView

UpDown UpDownEx

The following core classes are supported on the Open Agent only:

• CheckBoxToolItem
• DropDownToolItem
• Group
• Item
• Link
• MonthCalendar
• Pager
• PushToolItem
• RadioListToolItem
• ToggleButton
• ToolItem

Web-based Applications

Both Agents support testing Web-based applications. The Open Agent classes, functions, and properties
differ slightly from those supported on the Classic Agent for Windows API-based client/server applications.

64 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent

Browser BrowserApplication

BrowserChild BrowserWindow

HtmlCheckBox DomCheckBox

HtmlColumn <no corresponding class>

HtmlComboBox <no corresponding class>

HtmlForm DomForm

HtmlHeading <no corresponding class>

HtmlHidden <no corresponding class>

HtmlImage <no corresponding class>

HtmlLink DomLink

HtmlList <no corresponding class>

HtmlListBox DomListBox

HtmlMarquee <no corresponding class>

HtmlMeta <no corresponding class>

HtmlPopupList DomListBox

HtmlPushButton DomButton

HtmlRadioButton DomRadioButton

HtmlRadioList <no corresponding class>

HtmlTable DomTable

HtmlText <no corresponding class>

HtmlTextField DomTextField

XmlNode <no corresponding class>

Xul* Controls <no corresponding class>

Note: The DomElement class of the Open Agent enables you to access any element on an HTML
page. If the Open Agent has no class associated with a specific class supported on the Classic Agent,
you can use the DomElement class to access the controls in the class.

Java AWT/Swing Applications

Both Agents support testing Java AWT/Swing applications. The Open Agent classes, functions, and
properties differ slightly from those supported on the Classic Agent for Windows API-based client/server
applications.

Classic Agent Open Agent

JavaApplet AppletContainer

JavaDialogBox AWTDialog, JDialog

JavaMainWin AWTFrame, JFrame

JavaAwtCheckBox AWTCheckBox

Migrating from the Classic Agent to the Open Agent | 65

Classic Agent Open Agent

JavaAwtListBox AWTList

JavaAwtPopupList AWTChoice

JavaAwtPopupMenu <no corresponding class>

JavaAwtPushButton AWTPushButton

JavaAwtRadioButton AWTRadioButton

JavaAwtRadioList <no corresponding class>

JavaAwtScrollBar AWTScrollBar

JavaAwtStaticText AWTLabel

JavaAwtTextField AWTTextField, AWTTextArea

JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenuItem JCheckBoxMenuItem

JavaJFCChildWin <no corresponding class>

JavaJFCComboBox JComboBox

JavaJFCImage <no corresponding class>

JavaJFCListBox JList

JavaJFCMenu JMenu

JavaJFCMenuItem JMenuItem

JavaJFCPageList JTabbedPane

JavaJFCPopupList JList

JavaJFCPopupMenu JPopupMenu

JavaJFCProgressBar JProgressBar

JavaJFCPushButton JButton

JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenuItem JRadioButtonMenuItem

JavaJFCRadioList <no corresponding class>

JavaJFCScale JSlider

JavaJFCScrollBar JScrollBar, JHorizontalScrollBar, JVerticalScrollBar

JavaJFCSeparator JComponent

JavaJFCStaticText JLabel

JavaJFCTable JTable

JavaJFCTextField JTextField, JTextArea

JavaJFCToggleButton JToggleButton

JavaJFCToolBar JToolBar

JavaJFCTreeView JTree

66 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent

JavaJFCUpDown JSpinner

Java SWT/RCP Applications

Only the Open Agent supports testing Java SWT/RCP-based applications. For a list of the classes, see
Supported SWT Widgets for the Open Agent.

Differences in the Parameters Supported by the Silk Test
Agents

The Classic Agent and the Open Agent differ slightly in the function parameters that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

For some parameters, the Open Agent uses a hard-coded default value internally. If one of these
parameters is set in a 4Test script, the Open Agent ignores the value and uses the value listed here.

Function Parameter Classic Agent Value Open Agent Value

AnyWin::PressKeys/
ReleaseKeys

nDelay Any number. 0

AnyWin::PressKeys/
ReleaseKeys

sKeys More than one key is
supported.

Only one key is supported.
The first key is used and
the remaining keys are
ignored. For example
MainWin.PressKeys(
"<Shift><Left>") will
only press the Shift key. To
press both keys, specify
MainWin.PressKeys(
"<Shift>")
MainWin.PressKeys(
"<Left >").

AnyWin::TypeKeys sEvents Keystrokes to type or
mouse buttons to press.

The Open Agent supports
keystrokes only.

AnyWin::GetChildren bInvisible TRUE or FALSE. FALSE.

AnyWin::GetChildren bNoTopLevel TRUE or FALSE. FALSE.

TextField::GetFontName iLine The Classic Agent
recognizes this parameter.

The Open Agent ignores
this parameter.

AnyWin::GetCaption bNoStaticText TRUE or FALSE. FALSE.

AnyWin::GetCaption,

Control::GetPriorStatic

bRawMode TRUE or FALSE. FALSE. However, the
returned strings include
trailing and leading spaces,
but ellipses, accelerators,
and hot keys are removed.

PageList::GetContents/

GetPageName

bRawMode TRUE or FALSE. FALSE. However, the
returned strings include
trailing and leading spaces,
ellipses, and hot keys but
accelerators are removed.

Migrating from the Classic Agent to the Open Agent | 67

Function Parameter Classic Agent Value Open Agent Value

AnyWin::Click/

DoubleClick/

MoveMouse/ MultiClick/

PressMouse/

ReleaseMouse,

PushButton::Click

bRawEvent The Classic Agent
recognizes this parameter.

The Open Agent ignores
this value.

Overview of the Methods Supported by the Silk Test
Agents

The winclass.inc file includes information about which methods are supported for each Silk Test
Classic Agent. The following 4Test keywords indicate Agent support:

supported_ca Supported on the Classic Agent only.

supported_oa Supported on the Open Agent only.

Standard 4Test methods, such as AnyWin::GetCaption(), can be marked with one of the preceding
keywords. A method that is marked with the supported_ca or supported_oa keyword can only be executed
successfully on the corresponding Agent. Methods that do not have a keyword applied will run on both
Agents.

To find out which methods are supported on each Agent, open the .inc file, for instance winclass.inc,
and verify whether the supported_ca or supported_oa keyword is applied to it.

Classic Agent

Certain functions and methods run on the Classic Agent only. When these are recorded and replayed, they
default to the Classic Agent automatically. You can use these in an environment that uses the Open Agent.
Silk Test Classic automatically uses the appropriate Agent. The functions and methods include:

• C data types for use in calling functions in DLLs.
• ClipboardClass methods.
• CursorClass methods.
• Certain SYS functions.

SYS Functions Supported by the Open Agent and the
Classic Agent

The Classic Agent supports all SYS functions. The Open Agent supports all SYS functions with the
exception of SYS_GetMemoryInfo. SYS_GetMemoryInfo defaults to the Classic Agent when a script is
executed.

The following SYS functions behave differently depending on the agent that is used:

SYS Function Description

SYS_GetRegistryValue With the Classic Agent, SYS_GetRegistryValue returns an incorrect value
when a binary value is used. Use the Open Agent with
SYS_GetRegistryValue to avoid this issue.

68 | Migrating from the Classic Agent to the Open Agent

SYS Function Description

SYS_FileSetPointer When setting the pointer after the end of the file, the Open Agent does not
throw an exception, while the Classic Agent does throw an exception.

SYS_IniFileGetValue The Open Agent does not allow the] character to be part of a section name,
while the Classic Agent does allow it. Also, with the Open Agent, = must not be
part of a key name. The Classic Agent allows = to be part of a key name, but
produces incorrect results.

Note: Error messages and exceptions might differ between the Open Agent and the Classic Agent.

Migrating from the Classic Agent to the Open Agent | 69

Silk Test Classic Projects
Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy for you to see your test environment, and to manage it and work
within it.

Silk Test Classic projects store relevant information about your project, including the following:

• References to all the resources associated with a test set, such as the following:

• Data.
• Frame files.
• Include files.
• .ini files.
• Keyword-driven tests.
• Option sets.
• Results.
• Script files.
• Test plan files.

• Configuration information.
• Editor settings.
• Data files for attributes and queries.

All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you might never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

When you create a new project, Silk Test Classic automatically uses the agent that is selected in the
toolbar.

Each project is a unique testing environment

By default, new projects do not contain any settings, such as enabled extensions, class mappings, or agent
options. If you want to retain the settings from your current test set, save them as a options set by opening
Silk Test Classic and clicking Options > Save New Options Set. You can include the options set when you
create your project. You can create a project manually or you can let Silk Test Classic automatically
generate a project for you, based on existing files that you specify.

Note: To optimally use the functionality that Silk Test Classic provides, create an individual project for
each application that you want to test, except when testing multiple applications in the same test.

Storing Project Information
Silk Test Classic stores project-related information in the following project files:

projectname.vtp The project file has a Verify Test Project (.vtp) extension and is organized as
an .ini file. It stores the names and locations of files used by the project.

projectname.ini The project initialization file, similar to the partner.ini file, stores
information about options sets, queries, and other resources included in your
project.

70 | Silk Test Classic Projects

SilkTestClassic.ini A user-specific initialization file that stores user-specific information about the
location of the last projects, the size of the project history, and the location of
the current project.

These files are created in the projectname folder. When you create your project, Silk Test Classic
prompts you to store your project in the default location C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within the specified
directory, saves the projectname.vtp and projectname.ini to this location and copies the
extension .ini files, which are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the
extend subdirectory. If you do not want to save your project in the default location, click Browse and
specify the folder in which you want to save your project.

When you export a project, the default location is the project directory.

Note: The extension .ini files, which are appexpex.ini, axext.ini, domex.ini, and
javaex.ini, located in your <Silk Test Classic installation directory>\extend
folder are copied to the extend directory of your project, regardless of what extension you have
enabled. Do not rename the extend directory; this directory must exist in order for Silk Test Classic
to open your project.

You can have Silk Test Classic automatically enable the appropriate extension using the basic workflow
bar, or you can manually enable extensions. The current project uses the extension options in the
extension .ini file copied to the extend directory of your project. Any modifications you make to the options
for this enabled extension will be saved to the copy stored within the current project in the extend
directory.

The extend directory is used only for local testing on the host machine. If you want to test on remote
agent machines, you must copy the .ini files from the extend directory of your project to the extend
directory on the target machines.

File references

Whether you are emailing, packaging, or adding files to a project, it is important to understand how Silk
Test Classic stores the path of the file. The .vtp files of Silk Test Classic use relative paths for files on the
same root drive and absolute paths for files with different root drives. The use of relative and absolute file
paths is not configurable and cannot be overridden. If you modify the .vtp file to change file references from
relative paths to absolute paths, the next time you open and close the project it will have relative paths and
your changes will be lost.

Accessing Files Within Your Project
Working with Silk Test Classic projects makes it easy to access your files - once you have added a file to
your project, you can open it by double-clicking it in the Project Explorer. The Project Explorer contains
the following two tabs:

Tab Description

Files Lists all of the files included in the project. From the Files tab, you can view, edit, add, and
remove files from the project, as well as right-click to access menu options for each of the file
types. From the Files tab, you can also add, rename, remove and work with folders within each
category.

Global Displays all the resources that are defined at a global level within the project's files. For example
test cases, functions, classes, window declarations, and others. When you double-click an object
on the Global tab, the file in which the object is defined opens and your cursor displays at the
beginning of the line in which the object is defined. You can run and debug test cases and

Silk Test Classic Projects | 71

Tab Description

application states from the Global tab. You can also sort the elements that display within the
folders on the Global tab.

Existing test sets do not display in the Project Explorer by default; you must convert them into projects.

Sharing a Project Among a Group
Apply the following guidelines to share a Silk Test Classic project among a group:

• Create the project in the location from which it will be shared. For example, you can create the project
on a network drive.

• Ensure that testers create the same directory structure on their machines.

Project Explorer
Use the Project Explorer to view and work with all the resources within a Silk Test Classic project. You can
access the Project Explorer by clicking:

• File > Open Project and specifying the project you want to open.
• File > New Project and creating a new project.
• Project > View Explorer, if you currently have a project open and do not have the Project Explorer

view on.
• Project > New Project or Open Project on the Basic Workflow bar.

The resources associated with the project are grouped into categories. You can easily navigate among and
access all of these resources using the Files and Global tabs. When you double-click a file on the Files
tab, or an object on the Global tab, the file opens in the right pane. You can drag the divider to adjust the
size of the Project Explorer windows and click Project > Align to change the orientation of the tabs from
left to right.

Files tab

The Files tab lists all of the files that have been added to the project. The file name displays first, followed
by the path. If files exist on a network drive, they are referenced using Universal Naming Conventions
(UNC). Files are grouped into the following categories:

Category Description

Profile Contains project-specific initialization files, such as the projectname.ini and option
sets files, which means .opt files, that are associated with the project.

Script Contains test scripts, which means .t and .g.t files, that are associated with the project.

Include/Frame Contains include files, which means .inc files, and frame/object files that are associated
with the project.

Plan Contains test plans and suite files, which means .pln and .s files, that are associated with
the project.

Results Contains results, which means .res and .rex files, that are associated with the project.

Data Contains data associated with the project, such as Microsoft Word documents, text files,
bitmaps, and others. Double-click the file to open it in the appropriate application. You
must open files that are not associated with application types in the Windows Registry
using the File/Open dialog box.

From the Files tab, you can view, edit, add, remove and work with files within the project. For example, to
add a file to the project, right-click the category name, for example Script, and then click Add File. After

72 | Silk Test Classic Projects

you have added the file, you can right-click the file name to view options for working with the file, such as
record test case and run test case. Silk Test Classic functionality has not changed - it is now accessible
through a project.

You can work with the folders within the categories on the Files tab, by adding, renaming, moving, and
deleting folders within each category.

Global tab

The Global tab lists resources that are defined at a global level within the entire project. The resource
name displays first, followed by the file in which it is defined. Resources contained within the project's files
are grouped into the following categories:

• Records
• Classes
• Enums
• Window Declarations
• Testcases
• Appstates
• Functions
• Constants

From the Global tab, you can go directly to the location in which a global object or resource is defined.
Double-click any object within the folders to go to the location in which the object is defined. Silk Test
Classic opens the file and positions your cursor at the beginning of the line in which the object is defined.

You can also run and debug test cases and application states by right-clicking a test case or application
state, and then selecting the appropriate option. For example, right-click a test case within the Testcase
folder and then click Run. Silk Test Classic opens the file containing the test case you selected, and
displays the Run Testcase dialog box with the selected test case highlighted. You can input argument
values and run or debug the test case.

On the Global tab, you can sort the resources within each node by resource name, file name, or file date.

Note: Methods and properties are not listed on the Global tab since they are specific to classes or
window declarations. You can access methods and properties by double-clicking the class or window
declaration in which they are defined.

You cannot move files within the Project Explorer. For example, you cannot drag a script file under the
Frame file node. However, you can drag the file to another folder within the same category node.

Note: If you change the location or name of a file included in your project, outside of Silk Test Classic,
you must make sure the projectname.vtp contains the correct reference.

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. The Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.

Silk Test Classic Projects | 73

If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.

Project files with a .vtp (Verify Test Project) extension, projectname.vtp, and a
projectname.ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.

After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or by clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.

You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname.ini to this location and copies the extension .ini files, which
are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you
are using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

Opening an Existing Project
You can open a Silk Test Classic project as well as open an archived Silk Test Classic project. You can also
open a Silk Test Classic project or archived project through the command line.

To open an existing project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

If you already have a project open, a dialog box opens informing you that the open project will be
closed. If you associated Silk Test Classic file types with Silk Test Classic during installation, then you
can open a Silk Test Classic project or package by double-clicking the .vtp or .stp file.

2. If you are opening a packaged Silk Test Classic project, which means an .stp file, you must perform the
following steps:

a) Indicate into what directory you want to unpack the project in the Base path text box. The files are
unpacked to the directory you indicate in the Base path text box.

b) Enter a password into the Password text box if the archived Silk Test Classic project was saved with
a password.

If you open a package by double-clicking the .stp file, the base path is the directory that contains
the .stp file.

When you select a location for unpacking the archive on the Open Project dialog box, Silk Test
Classic uses that directory path, the base path, to substitute for the drive and root directory in the
Use Path and Use Files paths.

The Base path and Password text boxes are enabled only if you are opening an .stp file.

3. On the Open Project dialog box, specify the project that you want to open, and then click Open.

If you open a project file (.vtp) by clicking File > Open command, the projectname.vtp file will open
in the 4Test Editor, but the project and its associated settings will not be loaded. Projects do not display
in the recently opened files list. To close all open files within a project, click Window > Close All.

74 | Silk Test Classic Projects

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Converting Existing Tests to a Project
Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by clicking Options > Save New Options Set. You can include the
options set when you create your project.

To convert existing test sets to a project:

1. Create a new project.

2. Manually add the files to the project.

Using Option Sets in Your Project
To use an options set within your project, you must make sure that the options set is loaded into memory.
You can tell if an options set is loaded by looking at the Silk Test Classic title bar. If filename.opt
displays in the title bar, then the options set filename.opt is loaded. If an options set is loaded, it
overrides the settings contained in the projectname.ini file.

Note: When an options set is loaded, the context menu options are available only for the loaded
options set; these menu options are grayed out for .ini and .opt files that are not loaded.

You can load an options set into your project using any of the following methods:

• If the options set is included in your project, within the Profile node on the Files tab, right-click the
options set that you want to load and then click Open Options Set.

• Right-click Save New Options Set to load the options set and add it under the Profile node on the
Files tab.

• Use the Options menu; click Options > Open Options Set, browse to the options set (.opt) that you
want to load, and then click Open.

• Load the options set at runtime using the optionset keyword. This loads the options set at the point in
the plan file in which the options set is called. All test cases that follow use this options set.

If an options set was loaded when you closed Silk Test Classic, Silk Test Classic automatically re-loads this
options set when you re-start Silk Test Classic.

To include an options set in your project, you can add the options set by right-clicking Profile on the Files
tab, clicking Add File, selecting the options set you want to add to the project, and then clicking OK. You
can also click Save New Options Set; this loads the options set and adds it under the Profile node on the
Files tab.

Editing an Options Set
To edit an options set in your project:

1. On the Files tab, expand the Profile node.

2. Right-click the options set that you want to edit and click Open Options Set. The options set is loaded
into memory.

3. Right-click the options set that you want to edit again and select the type of option you want to edit.

For example Runtime, Agent, Extensions, and others.

4. Modify your options and then click OK. Your current settings are changed and saved to the .opt file.

If you want to change settings for future use, double-click the options set that you want to edit on the Files
tab. This opens the options file in the Editor without loading the options file into memory. Changes you

Silk Test Classic Projects | 75

make to the options set in the Editor will be saved, but will not take effect until you load the options set by
selecting Open Options Set from the Options menu or the right-click shortcut.

Silk Test Classic File Types
Silk Test Classic uses the following types of files in the automated testing process, each with a specific
function. The files marked with an * are required by Silk Test Classic to create and run test cases.

File Type Exte
nsio
n

Description

Project .vtp Silk Test Classic projects organize all the resources associated with a test set and present them
visually in the Project Explorer, making it easy to see, manage, and work within your test
environment.

The project file has a Verify Test Project (.vtp) extension and is organized as an .ini file; it
stores the names and locations of files used by the project. Each project file also has an
associated project initialization file: projectname.ini.

Exported
Project

.stp A Silk Test Project (.stp) file is a compressed file that includes all the data that Silk Test Classic
exports for a project. A file of this type is created when you click File > Export Project.
The .stp file includes the configuration files that are necessary for Silk Test Classic to set up
the proper testing environment.

Testplan .pln An automated test plan is an outline that organizes and enhances the testing process,
references test cases, and allows execution of test cases according to the test plan detail. It can
be of type masterplan or of subplan that is referenced by a masterplan.

Test
Frame*

.inc A specific kind of include file that upon creation automatically captures a declaration of the AUT’s
main window including the URL of the Web application or path and executable name for client/
server applications; acts as a central repository of information about the AUT; can also include
declarations for other windows, as well as application states, variables, and constants.

4Test
Script*

.t Contains recorded and hand-written automated test cases, written in the 4Test language, that
verify the behavior of the AUT.

Data-
Driven
Script

.g.t Contains data-driven test cases that pull their data from databases.

4Test
Include File

.inc A file that contains window declarations, constants, variables, classes, and user defined
functions.

Suite .s Allows sequential execution of several test scripts.

Text File .txt An ASCII file that can be used for the following:

• Store data that will be used to drive a data driven test case.
• Print a file in another document (Word) or presentation (PowerPoint).
• Accompany your automation as a readme file.
• Transform a tab-delimited plan into a Silk Test Classic plan.

Results
File

.res Is automatically created to store a history of results for a test plan or script execution.

Results
Export File

.rex A single compressed results file that you can relocate to a different machine. Click Results >
Export to create a .rex file out of the existing results files of a project.

TrueLog
File

.xlg A file that contains the captured bitmaps and the logging information that is captured when
TrueLog is enabled during a test case run.

Keyword-
Driven Test
File

.kdt An executable file which contains keywords. Keyword-driven test files are used when testing with
the keyword-driven testing methodology.

76 | Silk Test Classic Projects

File Type Exte
nsio
n

Description

Keyword
Sequence

.kseq A keyword-sequence file contains a combination of keywords, which are always executed in the
same order. A keyword-sequence file cannot be executed on its own, only when included in a
keyword-driven test. In context of a keyword-driven test, a keyword-sequence can be used as
any other keyword. Keyword sequence files are used when testing with the keyword-driven
testing methodology.

Organizing Projects
This section includes the topics that are available for organizing projects.

Adding Existing Files to a Project
You can add existing files to a project or create new files to add to the project. We recommend adding all
referenced files to your project so that you can easily see and access the files, and the objects contained
within them. Referenced files do not have to be included in the project. Plans and scripts will continue to
run, provided the paths that are referenced are accurate.

When you add a file to a project, project files (.vtp files) use relative paths for files on the same root drive
and absolute paths for files with different root drives. The use of relative and absolute files is not
configurable and cannot be overridden.

To add an existing file to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project to which you want to add a file, and then click Open.

2. On the Project Explorer, select the Files tab, right-click the node associated with the type of file you
want to add, and then click Add File.

For example, to add a script file to the project, right-click Script, and then click Add File.

3. On the Add File to Project dialog box, specify the file you want to add to the open project, and then
click Open.

The file name, followed by the path, displays under the appropriate category on the Files tab sorted
alphabetically by name and is associated with the project through the projectname.vtp file. If files
exist on a network drive, they are referenced using Universal Naming Conventions (UNC).

You can also add existing files to the project by clicking Project > Add File. Silk Test Classic automatically
places the file in the appropriate node, based on the file type; for example if you add a file with a .pln
extension, it will display under the Plan node on the Files tab. We do not recommend adding
application .ini files or Silk Test Classic .ini files, which are qaplans.ini, propset.ini, and the
extension.ini files, to your project. If you add object files, which are .to and .ino files, to your project,
the files will display under the Data node on the Files tab. Objects defined in object files will not display in
the Global tab. You cannot modify object files within the Silk Test Classic editor because object files are
binary. To modify an object file, open the source file, which is a .t or .inc file, edit it, and then recompile.

Renaming Your Project
The projectname.ini and the projectname.vtp refer to each other; make sure the references are
correct in both files when you rename your project.

To rename your project:

1. Make sure the project you want to rename is closed.

Silk Test Classic Projects | 77

2. In Windows Explorer, locate the projectname.vtp and projectname.ini associated with the
project name you want to change.

3. Change the names of projectname.vtp and projectname.ini. Make sure that you use the same
projectname for both files.

4. In a text editor outside of Silk Test Classic, open projectname.vtp, change the reference to the
projectname.ini file to the new name, and then save and close the file. Do not open the project in
Silk Test Classic yet.

5. In a text editor outside of Silk Test Classic, open projectname.ini, change the reference to the
projectname.vtp file to the new name, and then save and close the file.

6. In Silk Test Classic, open the project by clicking File > Open Project or Open ProjectOpen Project on
the basic workflow bar. The new project name displays.

Working with Folders in a Project
In addition to working with files, you can also add your own folders to all nodes listed on the File tab of the
Project Explorer. For example, the Files tab of the Project Explorer can include notes.

You can also right-click a folder and click the following:

• Expand All to display all contents of a folder.
• Collapse All to collapse the contents of the folder.
• Display Full Path to show the full path for the contents.
• Display Date/Time to show creation information for the content file.

Adding a Folder to the Files Tab of the Project Explorer
You may add a folder to any of the categories (nodes) on the Files tab of the Project Explorer. You may
not add a folder to the root project folder, nor change the titles of the root nodes.

To add a folder to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Add Folder.

3. On the Add Folder dialog box, enter the name of the new folder, then click OK.

When you are naming a folder, you may use alphanumeric characters, underscore character, character
space, or hyphens. Folder names may be a maximum of 256 characters long. Creating folders with
more than 256 characters is possible, but Silk Test Classic will truncate the name when you save the
project. The concatenated length of the names of all folders within a project may not exceed 256
characters. You may not use periods or parentheses in folder names. Within a node, folder names must
be unique.

Moving Files and Folders
You may move an individual file or files between folders within the same category on the Files tab of the
Project Explorer. You cannot move the predefined Silk Test Classic folders (nodes) such as Profile Script,
Plan, Frame, and Data.

You may also move sub-folders within the same category on the Files tab. You cannot move sub-folders
across categories.

To move a folder or file:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab. Click a file, a folder, or shift-click to select several files or
folders, then drag the items to the new location.

78 | Silk Test Classic Projects

3. Release the mouse to move the items.
There is no undo.

Removing a Folder from the Files tab of the Project Explorer
You may delete folders on the Files tab of the Project Explorer, however, you may not delete any of the
predefined Silk Test Classic categories (nodes) such as Profile Script, Plan, Frame, and Data.

Note: There is no undo.

To remove a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Remove Folder to delete it
from the Project Explorer. If you select a folder with child folders or a folder that contains items, Silk
Test Classic displays a warning before deleting the folder.

Renaming a Folder on the Files Tab of the Project Explorer
You may rename any folder that you have added to a project. You may not rename any of the predefined
Silk Test Classic folders (nodes) such as Profile, Script, Include/Frame, Plan, Results, or Data.

To rename a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, then navigate to the folder you want to rename.

3. Right-click the folder and select Rename Folder.
4. On the Rename Folder dialog box, enter the new name of the folder then click OK.

When naming a folder, you may use alphanumeric characters, underscore character, character space,
or hyphens. Folder names may be a maximum of 64 characters long. You may not use periods or
parentheses in folder names. Within a node, folder names must be unique.

Sorting Resources within the Global Tab of the Project Explorer
On the Global tab of the Project Explorer, you can sort the resources within each category (node) by
resource name, file name, or file date.

To sort resources:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project whose elements you want to sort, and then click Open.

2. On the Project Explorer, click the Global tab, right-click the node associated with the type of element
you want to sort, and then click Sort by FileName or Sort by FileDate.
The default is sort by element name.

3. Click Ascending or Descending to indicate how you want to organize the sort.
For example, to sort the elements of a script file by file date in reverse chronological order, right-click the
Script node and select Sort by FileDate, then click Descending.
When you release the mouse, the elements are sorted by the parameters you selected.

Moving Files Between Projects
We recommend that you use Export Project to move projects, but if you want to move only a few files
rather than an entire project, you can open the project in Silk Test Classic and remove the files that you
want to move from the project. Move the files to their new location in Windows Explorer, and then add the
files back to the currently open project.

Silk Test Classic Projects | 79

You can also move your project by opening the projectname.vtp and projectname.ini files in a text
editor outside of Silk Test Classic and updating references to the location of source files. However, we
recommend that you have strong knowledge of your files and how the partner and projectname .ini files
work before attempting this. We advise you to use great caution if you decide to edit the projectname .vtp
and projectname .ini files.

Removing Files from a Project
You cannot remove the projectname.ini file.

To remove a file from a project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

2. Click the plus sign [+] to expand the node associated with the type of file you want to remove, and then
choose one of the following:

• Right-click the file you want to remove, and then click Remove File.
• Select the file in the Project Explorer and press the Delete key.
• Select the file you want to remove on the Files tab, and then click Project > Remove File.

The file is removed from the project and references to the file are deleted from the projectname.vtp.
The file itself is not deleted; it is just removed from the project.

Turning the Project Explorer View On and Off
The Project Explorer view is the default. If you do not want to view the Project Explorer, uncheck Project
> View Explorer. You can continue to work with your files within the project, you just will not see the
Project Explorer.

To turn Project Explorer view on, check Project > View Explorer.

If you do not want to use projects in Silk Test Classic, close the open project, if any, by clicking File > Close
Project, and then use Silk Test Classic as you would have in the past.

Viewing Resources Within a Project
1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar and select

the project that you want to open.

2. Click one of the following:

• The Files tab to view all the files associated with the open project.
• The Global tab to view global objects defined in the files associated with the project.

3. To close all open files within a project, click Window > Close All.

Packaging a Silk Test Classic Project
You can package your Silk Test Classic project into a single compressed file that you can relocate to a
different computer. When you unpack your project you will have a fully functional set of test files. This is
useful if you need to relocate a project, email a project to a co-worker, or send a project to technical
support.

Source files included in the packaged project

When you package a project, Silk Test Classic includes all of the source files, meaning the related files
used by a project, such as:

80 | Silk Test Classic Projects

Description Extension

plan files .pln

script files .t

include files .inc

suite files .s

results files (optional) .res and .rex

data files -

Silk Test Classic takes these files and bundles them up into a new file with an .stp extension. The .stp file
includes the configuration files necessary for Silk Test Classic to set up the proper testing environment
such as project.ini, testplan.ini, optionset .opt files, and any .ini files found in the …\Silk Test
Classic projects\<Project name>\extend directory.

You have the option of including .res and .rex files when you package a Silk Test Classic project because
these files are sometimes quite large and not necessary to run the project.

Relative paths in comparison to absolute paths

When you work with Silk Test Classic projects, the files that make up the project are identified by
pathnames that are either absolute or relative. A relative pathname begins at a current folder or some
number of folders up the hierarchy and specifies the file’s location from there. An absolute pathname
begins at the root of the file system (the topmost folder) and fully specifies the file’s location from there. For
example:

Absolute path C:\Users\<Current user>\Documents\Silk Test Classic Projects
\<Project name>\options.ini

Relative path ..\tesla\Silk Test\options\options.ini or SUSDir\options.inc

When you package a project, Silk Test Classic checks to make sure that the paths used within the project
are properly maintained. If you try to compress a project containing ambiguous paths, Silk Test Classic
displays a warning message. Silk Test Classic tracks the paths in a project in a log file.

Including all files needed to run tests

Files associated with a project, but not necessary to run tests, for example bitmap or document files, which
you have manually added to the project are included when Silk Test Classic packages a project.

If Silk Test Classic finds any include:, script:, or use: statements in the project files that refer to files with
absolute paths, c:\program files\Silk\Silk Test\, Silk Test Classic verifies if you have checked
the Use links for absolute files? check box on the Export Project or on the Email Project dialog boxes.

• If you check the Use links for absolute files? check box, Silk Test Classic treats any file referenced by
an absolute path in an include, script, or use statement as a placeholder and does not include those
files in the package. For example, if there are use files within the Runtime Options dialog box referred
to as "q:\qaplans\SilkTest\frame.inc" or "c", these files are not included in the package. The assumption
is that these files will also be available from wherever you unpack the project.

• If you uncheck the Use links for absolute files? check box, Silk Test Classic includes the files
referenced by absolute paths in the packaged project. For example, if the original file is stored on c:
\temp\myfile.t, when unpacked at the new location, the file is placed on c:\temp\myfile.t.

The following table compares the results of packaging projects based on whether there are any absolute
file references in your source files, and how you respond to the Use links for absolute files? check box on
the Export Project or on the Email Project dialog boxes.

Silk Test Classic Projects | 81

Any absolute references in source
files?

Use links for absolute files? Results

No Checked or unchecked Package unpacks to any location.

Yes Checked Files referenced by absolute paths
are not included in the packaged
project.

Yes Unchecked Files referenced by absolute paths
are put into a ZIP file within the
packaged project.

Note:

• If there are any source files located on a different drive than the .vtp project file, and if there are
files referenced by absolute paths in the source files, Silk Test Classic treats the source files as
referenced by absolute paths. The assumption is that the absolute paths will be available from the
new location. Silk Test Classic therefore puts the files into a zip file within the packaged project for
you to unpack after you unpack the project.

• Files not included in the package - The assumption is that since these files are referenced by
absolute paths, these same files and paths will be available when the files are unpacked. On
unpacking, Silk Test Classic warns you about these files and lists them in a log file (manifest.XXX).

• ip files – Because you elected not to use links for files referenced by absolute paths, these files are
put into a zip file within the packaged project. The zip file is named with the root of the absolute
path. For example, if the files are located on c:/, the zip file is named c.zip.

Tips for successful packaging and unpacking

For best results when packaging and unpacking Silk Test Classic projects:

• Put your .vtp project file and source files on the same drive.
• Use relative paths to reference the following:
• • include statements

• options sets
• use paths set within the Runtime Options dialog box
• use statements in 4Test scripts
• script statements

• Uncheck the default Use links for absolute files? check box if your source files are on a different drive
as the .vtp project file and if there are files referenced by absolute paths in your source files.

Packaging with Silk Test Classic Runtime and the Agent

If you are running Silk Test Classic Runtime, you may not package or email a project.

If you are running the Agent, you may package or email a project.

Emailing a Project
Emailing a project automatically packages a Silk Test Classic project and then emails it to an email
address. In order for this to work, you must have an email client installed on the computer that is running
Silk Test Classic.

You cannot email a project if you are running Silk Test Classic Runtime.

One of the options you can select before emailing is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the email.

Silk Test Classic supports any MAPI-compliant email clients such as Outlook Express.

82 | Silk Test Classic Projects

The maximum size for the emailed project is determined by your email client. Silk Test Classic does not
place any limits on the size of the project.

To email your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Email Project.

You can only email a project if you have that project open.

3. On the Email Project dialog box, type the email address where you want to send the Silk Test Classic
project.

For example, enter support@acme.com to send a package to Acme Technical Support.

Tip: If you are not sure about the email address, you can just enter some text here. Once you click
OK, this information is passed to your default mail system where you can correct the address.

4. Optional: Check the Create file references for files with absolute paths check box to use links for
any absolute file reference.

By default, this check box is checked.

Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.

5. Optional: Check the Compile before exporting check box to compile the project before emailing it.

By default, this check box is checked.

6. Optional: Check the Include results files of all tests (.res, .rex, and .xlg) check box to
include .res, .rex, and .xlg results files in the emailed project.

Only results files that were added to the Results folder of the project are emailed. By default, this check
box is unchecked.

7. Optional: Check the Include extend.ini file check box to include extensions that you have configured
for target machines in the project that you export.

Typically, when working with a project, extension configurations are stored in the project specific
project.ini file. However, you can also configure extensions for target machines in the extend.ini
file, by using the Extension Enabler, a tool which is available from the Start menu. By default, this
check box is unchecked.

8. Optional: Check the Protect Silk Test Classic package files with password check box to secure the
compressed file with a password.

If you have secured the compressed file with a password, you cannot extract any files from the
compressed package without specifying this password. This option is available only when you have
checked the Export to single Silk Test Classic package check box.

a) Type the password into the Enter password field.

A password may include up to 79 alphanumeric characters.
b) Re-enter the password into the Confirm password field to confirm it.

9. Click OK. If you opted to compile the project before packaging it, Silk Test Classic displays a warning
message if any file failed to compile. Silk Test Classic opens a new email message and attaches the
packaged project to a message. You can edit the recipient, add a subject line, and text, just as you can
for any outgoing message.

10.Click Send to add the project to your outgoing queue. If your email client is already open, your message
is sent automatically. If your email client was not open, the message is placed in your outgoing queue.

Note: If the email process does not finish successfully, Micro Focus recommends deleting any
partially packaged project or draft email message and restarting the email process.

Silk Test Classic Projects | 83

Exporting a Project
Exporting a Silk Test Classic project lets you copy all the files associated with a project to a directory or a
single compressed file in a directory.

You cannot export a project if you are running Silk Test Classic Runtime.

Silk Test Classic will not change the file creation dates when copying the project’s files.

One of the options you can select before exporting is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the compile.

To export your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Export Project.

You can only export a project if you have the project open.

3. On the Export Project dialog box, enter the directory to which you want to export the project or click

 to locate the export folder.

The default location is the parent directory of the project folder, which means the folder containing the
project file, not the project's current location.

4. Check the Export to single Silk Test Classic package check box if you want to package the Silk Test
Classic project into a single compressed file.

5. Optional: Check the Create file references for files with absolute paths check box to use links for
any absolute file reference.

By default, this check box is checked.

Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.

6. Optional: Check the Compile before exporting check box to compile the project before exporting it.

By default, this check box is checked.

7. Optional: Check the Include results files of all tests check box to include .res and .rex results files
in the exported project or package.

Only results files that were added to the Results folder of the project are exported. By default, this
check box is unchecked.

8. Optional: Check the Include extend.ini file check box to include extensions that you have configured
for target machines in the project that you export.

Typically, when working with a project, extension configurations are stored in the project specific
project.ini file. However, you can also configure extensions for target machines in the extend.ini
file, by using the Extension Enabler, a tool which is available from the Start menu. By default, this
check box is unchecked.

9. Optional: Check the Protect Silk Test Classic package files with password check box to secure the
compressed file with a password.

If you have secured the compressed file with a password, you cannot extract any files from the
compressed package without specifying this password. This option is available only when you have
checked the Export to single Silk Test Classic package check box.

a) Type the password into the Enter password field.

A password may include up to 79 alphanumeric characters.
b) Re-enter the password into the Confirm password field to confirm it.

84 | Silk Test Classic Projects

10.Click OK. Silk Test Classic determines all the files necessary for the project and copies them to the
selected directory or compresses them into a package. Silk Test Classic displays a warning message if
any of the files could not be successfully packaged and gives you the option of continuing.

Tip: If the export process does not finish successfully, Micro Focus recommends deleting any partially
packaged project and restarting the export process.

Troubleshooting Projects
This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project
If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a .vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

• If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

• If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File
If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectIni= line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>.ini file and the ProjectIni=
line no longer points to the correct location of the .ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your .ini file. Additionally, the <projectname>.ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>.vtp file:

[ProjectProfile]
ProjectIni=C:\Program Files\<Silk Test install directory>
\SilkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project
You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

Silk Test Classic Projects | 85

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run
The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

Project files that are moved or corrupted. Open the SilkTestClassic.ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>.ini and
<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner.ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>
 \SilkTest\Examples\ProjectName.vtp

A testplan.ini file that is corrupted. Delete or rename the corrupted testplan.ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List
After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test
If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files
You require good knowledge of your files and how the partner and <projectname>.ini files work before
attempting to edit these files. Be cautious when editing the <projectname>.vtp and
<projectname>.ini files.

To edit the <projectname>.vtp and <projectname>.ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname.ini files has changed, make sure you update that as well. Each file refers to the
other.

86 | Silk Test Classic Projects

The ProjectProfile section in the projectname.vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>.vtp and <projectname>.ini files in a text editor outside of Silk Test
Classic.

Note: Do not edit the projectname.vtp and projectname.ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>.ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

Project Description Dialog Box
Use the Project Description dialog box to view or edit the description of the current project.

Open a project and click Project > Project Description.

Description Displays the description of this project. The original description is the text that you typed in
the Description field on the Create Project dialog box or the AutoGenerate Project dialog
box when you created the project. You can modify the project description as necessary,
typing up to 1024 characters. The project description is stored in the System Settings
section of the projectname.vtp file.

Silk Test Classic Projects | 87

Enabling Extensions for Applications
Under Test

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section describes how you can use extensions to extend the capabilities of a program or the data that
is available to the program.

An extension is a file that serves to extend the capabilities of, or the data available to, a basic program. Silk
Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Related Files

If you are using a project, the extension configuration information is stored in the partner.ini file. If you
are not using a project, the extension configuration information is stored in the extend.ini file.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. Extensions that use
technologies on the Classic Agent are located in the <Silk Test Classic project directory>
\extend\ directory.

Extensions that Silk Test Classic can Automatically
Configure

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the Basic Workflow, Silk Test Classic can automatically configure extensions for many development
environments, including:

• Browser applications and applets running in one of the supported browsers.
• .NET standalone Windows Forms applications.
• Standalone Java and Java AWT applications.
• Java Web Start applications and InstallAnywhere applications and applets.
• Java SWT applications.
• Visual Basic applications.
• Client/Server applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

You cannot enable extensions for Silk Test Classic (partner.exe), Classic Agent (agent.exe), or Open
Agent (openAgent.exe).

You can also click Tools > Enable Extensions to have Silk Test Classic automatically set your extension.

If the Basic workflow does not support your configuration, you can enable the extension manually.

If you use the Classic Agent, the Basic Workflow does not automatically configure browser applications
containing ActiveX objects. To configure a browser application with ActiveX objects, check the ActiveX
check box in the row for the extension that you are enabling in the Extensions dialog box. Or use the Open
Agent.

88 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Extensions that Must be Set Manually
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the Basic Workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If the Basic Workflow does not support your configuration or you prefer to
enable extensions manually, enable the extension on your host machine and enable the extension on your
target machine, regardless of whether the application you plan to test will run locally or on remote
machines. Enable extensions manually if you:

• Want to change your currently enabled extension.
• Want to enable additional options for the extension you are using, such as Accessibility, Active X, or

Java.
• Are testing embedded browser applications using the Classic Agent, for example, if DOM controls are

embedded within a Windows Forms application.
• Are testing an application that does not have a standard name.

If you are testing Web applications using the Classic Agent, Silk Test Classic enables the extension
associated with the default browser you specified on the Select Default Browser dialog box during the Silk
Test Classic installation. If you want to use the extension you specified during the Silk Test Classic
installation, you do not need to complete this procedure unless you need additional options, such as
Accessibility, Java, or ActiveX.

If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic.

Silk Test Classic automatically enables Java support in the browser if your web page contains an applet.
The Enable Applet Support check box on the Extension Settings dialog for browser is automatically
selected when the Enable Extensions workflow detects an applet. You can uncheck the check box to
prevent Silk Test Classic from loading the extension. If no applet is detected, the check box is not available.

Extensions on Host and Target Machines
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must define which extensions Silk Test Classic should load for each application under test, regardless
of whether the application will run locally or on remote machines. You do this by enabling extensions on
your host machine and on each target machine before you record or run tests.

Extensions on the host machine

On the host machine, we recommend that you enable only those extensions required for testing the current
application. Extensions for all other applications should be disabled on the host to conserve memory and
other system resources. By default, the installation program:

• Enables the extension for your default Web browser environment on the host machine.
• Disables extensions on the host machine for all other browser environments.
• Disables extensions for all other development environments.

When you enable an extension on the host machine, Silk Test Classic does the following:

• Adds the include file of the extension to the Use Files text box in the Runtime Options dialog box, so
that the classes of the extension are available to you.

Enabling Extensions for Applications Under Test | 89

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

• Makes sure that the classes defined in the extension display in the Library Browser. Silk Test Classic
does this by adding the name of the extension’s help file, which is browser.ht, to the Help Files For
Library Browser text box in General Options dialog box and recompiling the help file used by the
Library Browser.

• Merges the property sets defined for the extension with the default property sets. The web-based
property sets are in the browser.ps file in the Extend directory. The file defines the following property
sets: Color, Font, Values, and Location.

Extensions on the target machine

The Extension Enabler dialog box is the utility that allows you to enable or disable extensions on your
target machines. All information that you enter in the Extension Enabler is stored in the extend.ini file
and allows the Agent to recognize the non-standard controls you want to test on target machines.

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.

4. Click Enable Extensions.

You cannot enable extensions for Silk Test Classic (partner.exe), the Classic Agent (agent.exe), or
the Open Agent (openAgent.exe).

5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.
6. If your test application does not display in the list, click Refresh. Or, you may need to add your

application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.

8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Enabling Extensions on a Host Machine Manually
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

90 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Using the Basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A host machine is the system that runs the Silk Test Classic software process, in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

There is overhead to having more than one browser extension enabled, so you should enable only one
browser extension unless you are actually testing more than one browser in an automated session.

1. Start Silk Test Classic and click Options > Extensions.
2. If you are testing a client/server project, rich internet application project, or a generic project that uses

the Classic Agent, perform the following steps:
a) On the Extensions dialog box, click the extension you want to enable. You may need to add your

application to this list in order to enable its extension.
b) Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.
c) Disable other extensions that you will not be using by selecting Disabled in the Primary Extension

field. To disable a Visual Basic extension, uncheck the ActiveX check box for the Visual Basic
application.

d) Click OK.

Manually Enabling Extensions on a Target Machine
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test. One Agent process can run locally on the host machine, but in a networked
environment, any number of Agents can run on remote machines.

If you are running local tests, that is, your target and host are the same machine, complete this procedure
and enable extensions on a host machine manually.

1. Make sure that your browser is closed.
2. From the Silk Test Classic program group, choose Extension Enabler. To invoke the Extension

Enabler on a remote non-Windows target machine, run extinst.exe, located in the directory on the
target machine in which you installed the Classic Agent.

3. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate. To get
information about the files used by an extension, select an extension and click Details. You may need to
add your application to this list in order to enable its extension.

4. Click OK to close the Extension Enabler dialog box.

If you enable support for ActiveX in this dialog box, make sure that it is enabled in the Extensions
dialog box as well.

5. Restart your browser, if you enabled extensions for web testing.

Once you have set your extension(s) on your target and host machines, verify the extension settings to
check your work. Be sure to consider how you want to work with borderless tables. If you are testing
non-Web applications, you must disable browser extensions on your host machine. This is because the
recovery system works differently when testing Web applications than when testing non-Web
applications. For more information about the recovery system for testing Web applications, see Web
applications and the recovery system. When you select one or both of the Internet Explorer extensions
on the host machine’s Extension dialog box, Silk Test Classic automatically picks the correct version of

Enabling Extensions for Applications Under Test | 91

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

the host machine’s Internet Explorer application in the Runtime Options dialog box. If the target
machine’s version of Internet Explorer is not the same as the host machine’s, you must remember to
change the target machine’s version.

Enabling Extensions for Embedded Browser Applications
that Use the Classic Agent

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To test an embedded browser application, enable the Web browser as the primary extension for the
application in both the Extension Enabler and in the Silk Test Classic Extensions dialog boxes. For
instance, if you are testing an application with DOM controls that are embedded within a .NET application,
follow the following instructions to enable extensions.

1. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler.

2. Browse to the location of the application executable.

3. Select the executable file and then click Open.

4. Click OK.

5. From the Primary Extension list box, select the DOM extension for the application that you added.

6. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

7. Click OK.

8. Start Silk Test Classic and then choose Options > Extensions. The Extensions dialog box opens.

9. Click New.

10.Browse to the location of the application executable.

11.Select the executable file and then click Open.

12.Click OK.

13.From the Primary Extension list box, select the DOM extension for the application that you added.

14.Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

15.Click OK.

16.Restart Silk Test Classic.

Note: The IE DOM extension may not detect changes to a web page that occur when JavaScript
replaces a set of elements with another set of elements without changing the total number of
elements. To force the DOM extension to detect changes in this situation, call the FlushCache()
method on the top-level browserchild for the embedded browser. This problem might occur more often
for embedded browsers than for browser pages, because Silk Test Classic is not notified of as many
browser events for embedded browsers. Also call FlushCache() if you get a Coordinate out of
bounds exception when calling a method, for example Click(), on an object that previously had
been scrolled into view. The BrowserPage window identifier is not valid when using embedded
browsers because the default browser type is '(none)' (NULL).

92 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Enabling Extensions for HTML Applications (HTAs)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must enable extensions on the host and target machines manually in order to use HTML applications
(HTAs).

Before you begin, create a project that uses the Classic Agent.

1. Click Options > Extensions to open the Extensions dialog box.

2. Click New to open the Extension Application dialog box.

3.
Click to navigate to the location of the .hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

4. Select the .hta file and then click Open.

5. Click OK.

6. In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

7. Click OK.

8. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler. (Or use the command line to launch "C:
\Progam Files\Silk\SilkTest\Tools\extinst.exe".)

9. On the Extension Enabler dialog box, click New to open the Extension Application dialog box.

10.
Click to navigate to the location of the .hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

11.Select the .hta file and then click Open.

12.Click OK.

13.In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

14.Click OK.

Adding a Test Application to the Extension Dialog Boxes
This functionality is available only for projects or scripts that use the Classic Agent.

You must manually add the following applications to the Extensions dialog box and the Extension
Enabler dialog box:

• Applications that are embedded in Web pages and use the Classic Agent.
• All test applications that do not have standard names and use the Classic Agent.
• When you add a test application to the Extensions dialog box on the host machine, you should

immediately add it to the Extension Enabler dialog box on each target machine on which you intend to
test the application.

You may also add new applications by duplicating existing applications and then changing the application
name.

To add a test application to the Extension dialog boxes:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test program group.

Enabling Extensions for Applications Under Test | 93

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

2. If you are testing a client/server project, Rich Internet Application project, or a generic project that uses
the Classic Agent, perform the following steps:

a) Click New to open the Extension Application dialog box.
b) Click ... to browse to the application’s executable or DLL file.

Separate multiple application names with commas. If the executable name contains spaces, be sure
to enclose the name in quotation marks.

c) Select the executable file and then click Open.
d) Click OK.

3. Click OK to close the dialog box.

Verifying Extension Settings
This functionality is available only for projects or scripts that use the Classic Agent.

If the extension settings for the host and target machines do not match, neither extension will load properly.

• To see the target machine setting, choose Options > Extensions. Verify that the Primary Extension is
enabled and other extensions are enabled, if appropriate. If you enabled a browser extension, you can
also verify the extension settings on the target machine by starting the browser and Silk Test Classic,
and then right-clicking the task bar Agent icon and selecting Extensions > Detail.

• To verify that the setting on the host machine is correct, choose Options > Runtime. Make sure that
the default browser in the Default Browser field on the Runtime Options dialog box is correct.

Why Applications do not have Standard Names
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In the following situations applications might not have standard names, in which case you must add them to
the Extension Enabler dialog box and the Extensions dialog box:

• Visual Basic applications can have any name, and therefore the Silk Test Classic installation program
cannot add them to the dialog box automatically.

• You are running an application developed in Java as a stand-alone application, outside of its normal
runtime environment.

• You have explicitly changed the name of a Java application.

Duplicating the Settings of a Test Application in Another
Test Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can add new applications to the Extension Enabler dialog box or the Extensions dialog box by
duplicating existing applications and renaming the new application. All the settings of the original
application, that is, primary extension, other extensions, or options set on the Extensions dialog box, are
copied.

You can only duplicate applications that you entered manually and that use the Classic Agent.

To copy a test application’s settings into another application:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

94 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

2. Select the application that you want to copy.

3. Click Duplicate. The Extension Application dialog box opens.

4. Type the name of the new application you want to copy.

Separate multiple application names with commas.

5. Click OK to close the Extension Application dialog box. The new applications display in the dialog box
you opened.

6. Click OK to close the dialog box.

Deleting an Application from the Extension Enabler or
Extensions Dialog Box

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

After completing your testing of an application or if you make a mistake, you might want to delete the
application from the Extension Enabler dialog box or the Extensions dialog box. You can delete only
applications that you have entered manually. Visual Basic applications fall into this category.

To remove an application from the Extension Enabler or Extensions dialog box:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to delete from the dialog box.

3. Click Remove. The application name is removed from the dialog box.

4. Click OK.

Disabling Browser Extensions
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. In Silk Test Classic, choose Options > Extensions.

2. From the Primary Extension list, select Disabled for the extension you want to disable.

3. In the Other extensions field, uncheck any checked check boxes.

4. Click OK.

If you are testing non-Web applications, you must disable browser extensions on your host machine. This is
because the recovery system works differently when testing Web applications than when testing non-Web
applications.

Comparison of the Extensions Dialog Box and the
Extension Enabler Dialog Box

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Extensions dialog box and the Extension Enabler dialog box look similar; they are both based on a
grid and have identical column headings and have some of the same buttons. However, they configure
different aspects of the product:

Enabling Extensions for Applications Under Test | 95

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Extensions Dialog Box Extension Enabler Dialog Box

Enables AUTs and extensions On host machine On target machines

Provides information for Silk Test Classic Agent

Available from Options menu Silk Test Classic program group

Information stored in partner.ini extend.ini

When to enable/disable AUTs and
extensions

Enable the AUTs and extensions you
want to test now; disable others.

Enable all AUTs and extensions you
ever intend to test. No harm in leaving
them enabled, even if you are not
testing them now.

What you specify on each:

• Primary environment
• Java or ActiveX, if required
• Accessibility

• Yes, according to the type
• Enable and set options
• Enable and set options

• Yes, according to the type
• Enable only
• Enable only

What installation does:

• Default browser (If any)
• Other browsers (if any)
• Java runtime environment
• Oracle Forms runtime

environment
• Visual Basic 5 & 6

• Displayed and enabled
• Displayed but disabled
• Displayed but disabled
• Displayed but disabled
• Not displayed or enabled

• Displayed and enabled
• Displayed and enabled
• Displayed and enabled
• Displayed but disabled
• Not displayed or enabled

Configuring the Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In order for Silk Test Classic to work properly, make sure that your browser is configured correctly.

If your tests use the recovery system of Silk Test Classic, that is, your tests are based on DefaultBaseState
or on an application state that is ultimately based on DefaultBaseState, Silk Test Classic makes sure that
your browser is configured correctly.

If your tests do not use the recovery system, you must manually configure your browser to make sure that
your browser displays the following items:

• The standard toolbar buttons, for example Home, Back, and Stop, with the button text showing. If you
customize your toolbars, then you must display at least the Stop button.

• The text box where you specify URLs. Address in Internet Explorer.
• Links as underlined text.
• The browser window’s menu bar in your Web application. It is possible through some development tools

to hide the browser window’s menu bar in a Web application. Silk Test Classic will not work properly
unless the menu bar is displayed. The recovery system cannot restore the menu bar, so you must make
sure the menu bar is displayed.

• The status bar at the bottom of the window shows the full URL when your mouse pointer is over a link.

We recommend that you configure your browser to update cached pages on a frequent basis.

Internet Explorer

1. Click Tools > Internet Options, then click the General tab.
2. In the Temporary Internet Files area, click Settings.
3. On the Settings dialog box, select Every visit to the page for the Check for newer versions of

stored pages setting.

96 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Mozilla Firefox

1. Choose Edit > Preferences > Advanced > Cache.
2. Indicate when you want to compare files and update the cache. Select Every time I view the page at

the Compare the page in the cache to the page on the network field.

AOL

Even though AOL's Proxy cache is updated every 24 hours, you can clear the AOL Browser Cache and
force a page to reload. To do this, perform one of the following steps:

• Delete the files in the temporary internet files folder located in the Windows directory.
• Press the CTRL key on your keyboard and click the AOL browser reload icon (Windows PC only).

Friendly URLs

Some browsers allow you to display "friendly URLs," which are relative to the current page. To make sure
you are not displaying these relative URLs, in your browser, display a page of a web site and move your
mouse pointer over a link in the page.

• If the status bar displays the full URL (one that begins with the http:// protocol name and contains the
site location and path), the settings are fine. For example: http://www.mycompany.com/
products.htm

• If the status bar displays only part of the URL (for example, products.htm), turn off "friendly URLs."
(In Internet Explorer, this setting is on the Advanced tab of the Internet Options dialog box.)

Setting Agent Options for Web Testing
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you first install Silk Test Classic, all the options for Web testing are set appropriately. If, for some
reason, for example if you were testing non-Web applications and changed them, you have problems with
testing Web applications, perform the following steps:

1. Click Options > Agent. The Agent Options dialog box opens.

2. Ensure the following settings are correct.

Tab Option Specifies Setting

Timing OPT_APPREADY_TIMEOU
T

The number of seconds that the agent
waits for an application to become
ready. Browser extensions support this
option.

Site-specific; default is 180
seconds.

Timing OPT_APPREADY_RETRY The number of seconds that the agent
waits between attempts to verify that
the application is ready.

Site-specific; default is 0.1
seconds.

Other OPT_SCROLL_INTO_VIE
W

That the agent scrolls a control into
view before recording events against it.

TRUE (checked); default is
TRUE.

Other OPT_SHOW_OUT_OF_VIE
W

Enables Silk Test Classic to see objects
not currently scrolled into view.

TRUE (checked); default is
TRUE.

Verification OPT_VERIFY_APPREADY Whether to verify that an application is
ready. Browser extensions support this
option.

TRUE (checked); default is
TRUE.

3. Click OK. The Agent Options dialog box closes.

Enabling Extensions for Applications Under Test | 97

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Specifying a Browser for Silk Test Classic to Use in
Testing a Web Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can specify a browser for Silk Test Classic to use when testing a Web application at runtime or you can
use the browser specified through the Runtime Options dialog box.

To completely automate your testing, consider specifying the browser at runtime. You can do this in one of
the following ways:

• Use the SetBrowserType function in a script. This function takes an argument of type BROWSERTYPE.
• Pass an argument of type BROWSERTYPE to a test case as the first argument.

For an example of passing browser specifiers to a test case, see the second example in BROWSERTYPE. It
shows you how to automate the process of running a test case against multiple browsers.

Specifying a browser through the Runtime Options dialog box

When you run a test and do not explicitly specify a browser, Silk Test Classic uses the browser specified in
Runtime Options dialog box. To change the browser type, you can:

1. Run a series of tests with a specific browser.
2. Specify a different browser in the Runtime Options dialog box.
3. Run the tests again with the new browser.

Most tests will run unchanged between browsers.

Specifying your Default Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Whenever you record and run test cases, you must specify the default browser that Silk Test Classic should
use. If you did not choose a default browser during the installation of Silk Test Classic or if want to change
the default browser, perform the following steps:

1. Click Options > Runtime. The Runtime Options dialog box opens.

2. Select the browser that you want to use from the Default Browser list box.

The list box displays the browsers whose extensions you have enabled.

3. Click OK.

Enable Extensions Dialog Box (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to select the application for which you want to enable extensions. The environments listed in the dialog
box are used for running the applications that you want to test. The extensions enable recognition of the
non-standard controls in your environment.

You can automatically configure extensions for many development environments.

The dialog box content changes based on the agent that your project or script uses. Ensure that the agent
that you want to use is selected before you open the dialog box. If necessary, close this dialog box, click
the appropriate Agent icon in the toolbar to change the agent, and re-open the dialog box.

98 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Click Tools > Enable Extensions or click Enable Extensions on the Basic Workflow bar (Workflows >
Basic).

Silk Test Classic does not support 64-bit applications. If you are running a 64-bit application, it will display
in the Enable Extensions dialog box, but an error occurs when you try to enable extensions. Silk Test
Classic does support 32-bit applications that run in 64-bit environments and extensions will enable properly
for these applications.

If you are using a project, the information you specify in the Enable Extensions dialog box is stored in the
partner.ini file. If you are not using a project, the information you specify in the Enable Extensions
dialog box is stored in the extend.ini file.

When you enable extensions, an include file is added based on the technology or browser type that you
enable to the Use files location in the Runtime Options dialog box. For instance, if you enable extensions
for Internet Explorer, Silk Test Classic adds the explorer.inc file to the Runtime Options dialog box.

Application(s) Lists all open applications that are not minimized, including any Web applications (or
Java applets), which are identified by the currently loaded page’s title. Click an
application and then click Select to choose the application for which you want enable
extensions. If you choose an executable name containing spaces, you must enclose the
name in quotation marks.

Applets are automatically detected and can be selected from the Application list.

Select Selects the highlighted application. Information is gathered from the application that you
select and the suggested extension settings are displayed on the Extension Settings
dialog box.

Refresh Click to update the list of applications from which you can select.

Cancel Click to exit the dialog box without selecting an application.

Extension Information Dialog Box
Use the Extension Information dialog box to view information about the enabled extensions for the agent.

Click the Classic Agent icon in the taskbar and then click Extensions > Details. If the agent is not already
running, click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Classic
Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Classic Agent.

Extension Displays the currently loaded extensions.

Status Displays the status of the currently loaded extensions. The status may be one of the
following:

Loaded The extension is loaded in the application under test.

Enabled The extension is enabled, but not loaded in the application under test.

Error An error message may appear if an error has occurred.

Refresh Click to update the information that appears in the dialog box.

Extension Settings Dialog Box (.NET)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a .NET application on the Enable Extensions dialog box, the Extension Settings dialog
box displays information that is specific to .NET applications.

Enabling Extensions for Applications Under Test | 99

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Enable
Accessibility

Click to better recognize objects such as the Microsoft Office Word menu. If you are
testing an application with Microsoft Accessibility objects, we recommend that you
check this box. If your client/server application does not have these types of objects,
you may leave the check box unchecked.

OK Click to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Extension Settings Dialog Box (Web)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a Web application on the Enable Extensions dialog box, the Extension Settings dialog
box displays information that is specific to Web applications. Verify the information displayed on this dialog
box, and then click OK to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Primary Extension area

Displays the extension that will be used to test your application. An extension is a file that serves to extend
the capabilities of, or data available to, a more basic program. Extensions are provided for testing
applications that use non-standard controls in specific development and browser environments.

DOM Enables the Document Object Model (DOM) extension which is used to query the browser directly
for information about the objects on a Web page.

Secondary Extension (Select as required) area

Enable Applet
Support

Check if you are testing an application with applets. This check box is automatically
selected when the Enable Extensions workflow detects an applet. You can clear
the check box to prevent loading the extension. If no applet is detected, the check
box is not available.

Enable
Accessibility

Check if you are testing an application with Microsoft Accessibility objects or other
objects that may be unrecognizable. If your application does not have these types of
objects, you may leave the check box unchecked.

Enable ActiveX
Support

Check if you are testing an application with ActiveX objects. If your application does
not have these types of objects, you may leave the check box unchecked.

Extension Settings Dialog Box (Client/Server)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a client/server application on the Enable Extensions dialog box, the Extension Settings
dialog box displays information that is specific to client/server applications.

Enable
Accessibility

Click to better recognize objects such as the Microsoft Office Word menu. If you are
testing an application with Microsoft Accessibility objects, we recommend that you
check this box. If your client/server application does not have these types of objects,
you may leave the check box unchecked.

100 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

OK Click to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Extension Settings Dialog Box (Java)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a standalone Java application on the Enable Extensions dialog box, the Extension
Settings dialog box displays the path to the Java Virtual Machine (JVM), which is used by the application
you have selected.

Verify that the JVM information is correct and then click OK to enable the extension automatically. The
SilkTest_JavaX.jar file will be copied to the \lib\ext subdirectory of the JVM that the application is
using. If necessary, the accessibilities.properties file in the \lib directory of this JVM will be
updated or installed.

For JVM versions 1.3+, the Copying Dlls dialog box will display the location of the qapjconn.dll and
qapjarex.dll files. During installation, these files are placed in the Windows\System32 folder (copies
are also placed in the SilkTest\Extend folder). If the default directory for your library files is in a location
other than Windows\System32, you can use the list to select the alternate location. Click OK to save your
changes.

After the extension is enabled, a test is run to verify that the extension is working correctly.

Note:

If you defined your CLASSPATH in multiple set statements, it will be aggregated into a single set
statement with all parameters fully expanded. Every time the CLASSPATH is updated, the current
autoexec.bat is backed up and saved as autoexec.bak.

Enabling Extensions for Applications Under Test | 101

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Understanding the Recovery System for
the Open Agent

The built-in recovery system is one of the most powerful features of Silk Test Classic because it allows you
to run tests unattended. When your application fails, the recovery system restores the application to a
stable state, known as the BaseState, so that the rest of your tests can continue to run unattended.

The recovery system can restore your application to its BaseState at any point during test case execution:

• Before the first line of your test case begins running, the recovery system restores the application to the
BaseState even if an unexpected event corrupted the application between test cases.

• During a test case, if an application error occurs, the recovery system terminates the execution of the
test case, writes a message in the error log, and restores the application to the BaseState before
running the next test case.

• After the test case completes, if the test case was not able to clean up after itself, for example it could
not close a dialog box it opened, the recovery system restores the application to the BaseState.

• The recovery system cannot recover from an application crash that produces a modal dialog box, such
as a General Protection Fault (GPF).

Silk Test Classic uses the recovery system for all test cases that are based on DefaultBaseState or based
on a chain of application states that ultimately are based on DefaultBaseState.

• If your test case is based on an application state of none or a chain of application states ultimately
based on none, all functions within the recovery system are not called. For example, SetAppState and
SetBaseState are not called, while DefaultTestCaseEnter, DefaultTestCaseExit, and error handling are
called.

Such a test case will be defined in the script file as:

testcase Name () appstate none

Silk Test Classic records test cases based on DefaultBaseState as:

testcase Name ()

How the default recovery system is implemented

The default recovery system is implemented through several functions.

Function Purpose

DefaultBaseState Restores the default BaseState, then call the application’s BaseState function, if defined.

DefaultScriptEnte
r

Executed when a script file is first accessed.

Default action: none.

DefaultScriptExit Executed when a script file is exited.

Default action: Call the ExceptLog function if the script had errors.

DefaultTestCaseEn
ter

Executed when a test case is about to start.

Default action: Set the application state.

DefaultTestCaseEx
it

Executed when a test case has ended.

Default action: Call the ExceptLog function if the script had errors, then set the
BaseState.

102 | Understanding the Recovery System for the Open Agent

Function Purpose

DefaultTestPlanEn
ter

Executed when a test plan is entered.

Default action: none.

DefaultTestPlanEx
it

Executed when a test plan is exited.

Default action: none.

You can write functions that override some of the default behavior of the recovery system.

Setting the Recovery System for the Open Agent
The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

For applications that use the Open Agent and dynamic object recognition, the recovery system is
configured automatically whenever the New frame file dialog box opens and you save a file. This dialog
box opens when:

• You click Configure Applications on the Basic Workflow bar and follow the steps in the wizard.
• You click File > New and click Test frame.
• You click the Create a new file icon in the toolbar and then click Test frame.
• You click Record > Testcase, Record > Application State, or Record > Window Locators before you

configure an application, the New Test Frame dialog box opens before recording starts.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Classic
Agent to start the application, set the recovery system for the Classic Agent.

Base State
An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk Test Classic automatically ensures that your application is at its base state during the following stages:

• Before a test case runs.
• During the execution of a test case.
• After a test case completes successfully.

When an error occurs, Silk Test Classic does the following:

• Stops execution of the test case.
• Transfers control to the recovery system, which restores the application to its base state and logs the

error in a results file.
• Resumes script execution by running the next test case after the failed test case.

The recovery system makes sure that the test case was able to "clean up" after itself, so that the next test
case runs under valid conditions.

Understanding the Recovery System for the Open Agent | 103

Modifying the Base State (Open Agent)
This functionality is supported only if you are using the Open Agent.

To define the state in which your application under test (AUT) should be before the execution of a test, you
can change the executable location, working directory, locator, or URL of the base state. For example, if
you want to launch tests from a production web site that were previously tested on a testing web site,
change the base state URL and the tests are executed in the new environment.

1. Open the project for which you want to change the base state.

2. If you are testing a web application, change the browser in which the tests will be executed in the Edit
Application Configurations dialog box.
a) Click Options > Application Configurations. The Edit Application Configurations dialog box

appears.
b) Click Edit to the right of the application configuration that you want to change. The Edit Browser

Application Configuration dialog box appears.
c) Select the browser that you want to use and click OK.
d) If you are testing a web application or a mobile native application on a remote location, for example

on a mobile device that is connected to a Mac, and you want to edit the remote location, click
Change to open the Select Application dialog box and then click Edit Remote Locations.

e) In the Edit Application Configuration dialog box, click OK.

3. If you are testing a web application, change the URL of the web application in the .inc file.

a) In the File tree, expand the Include/Frame node.
b) Double click on the .inc file to open the file.
c) Locate the URL in the file.

The URL section looks similar to the following:

// The start URL
const sUrl = "http://demo.borland.com/gmopost/";

d) Change the URL.
e) Save the .inc file.

4. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as the
screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

5. Optional: Select an Orientation for the browser window.

6. If you are testing a desktop application, change the application configuration in the Edit Application
Configurations dialog box.
a) Click Options > Application Configurations. The Edit Application Configurations dialog box

appears.
b) Click Edit to the right of the application configuration that you want to change. The Edit Windows

Application Configuration dialog box appears.
c) Type the executable name and file path of the desktop application that you want to test into the

Executable Pattern text box.
For example, you might type *\calc.exe to specify the Calculator.

d) If you want to use a command line pattern in combination with the executable file, type the command
line pattern into the Command Line Pattern text box.

7. If you are testing a mobile native application:
a) Click Options > Application Configurations. The Edit Application Configurations dialog box

appears.
b) Click Edit to the right of the application configuration that you want to change. The Edit Mobile

Application Configuration dialog box appears.

104 | Understanding the Recovery System for the Open Agent

c) In the Connection String text box, specify the platform the location, the name of the mobile device,
and the name of the mobile application that you want to test.

For example, if the device ID is 11111111, the operating system of the device is Android 5.1.1, the
device is connected to the remote machine with the IP address 10.0.0.1, and you want to test the
application abc.apk, type:

platformName=Android;platformVersion=5.1.1;deviceName=MotoG3;udid=11111111
;host=http://10.0.0.1;app=C:\Temp\abc.apk;

Tip: If the application under test usually takes a long time to start, increase the application ready
timeout in the replay options.

DefaultBaseState Function
Silk Test Classic provides a DefaultBaseState for applications, which ensures the following conditions
are met before recording and executing a test case:

• The application is running.
• The application is not minimized.
• The application is the active application.
• No windows other than the application’s main window are open. If the UI of the application is localized,

you need to replace the strings, which are used to close a window, with the localized strings. The
preferred way to replace these buttons is with the lsCloseWindowButtons variable in the object’s
declaration. You can also replace the strings in the Close tab of the Agent Options dialog box.

For Web applications that use the Open Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

• The browser is running.
• Only one browser tab is open, if the browser supports tabs and the frame file does not specify

otherwise.
• The active tab is navigated to the URL that is specified in the frame file.

For web applications that use the Classic Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

• The browser is ready.
• Constants are set.
• The browser has toolbars, location and status bar are displayed.
• Only one tab is opened, if the browser supports tabs.

DefaultBaseState Types

Silk Test Classic includes two slightly different base state types depending on whether you use the Open
Agent and dynamic object recognition or traditional hierarchical object recognition. When you use dynamic
object recognition, Silk Test Classic creates a window object named wDynamicMainWindow in the base
state. When you set the recovery system for a test that uses hierarchical object recognition, Silk Test
Classic creates a window object called wMainWindow in the base state. Silk Test Classic uses the window
object to determine which type of DefaultBaseState to execute.

Understanding the Recovery System for the Open Agent | 105

Adding Tests that Use the Open Agent to the
DefaultBaseState

If you want the recovery system to perform additional steps after it restores the default base state, record a
new test case based on no application state and paste it into the declaration of the main window of your
application.

1. Open your test application and the frame file of the test application.

2. Click Record > Testcase. Silk Test Classic displays the Record Testcase dialog box.

3. From the Application state list box, select (None).

4. Click Start Recording. Silk Test Classic opens the Recording window, which indicates that you can
begin recording.

5. When you have finished recording the actions that you want to perform whenever the base state is
restored, click Stop on the Recording window. Silk Test Classic displays the Record Testcase dialog
box.

6. Click Paste to Editor.

7. In the Update Files dialog box, select Paste testcase and update window declarations(s).

8. Click OK. Silk Test Classic creates a new script file with the new test case.

9. Add a new method named BaseState to the declaration of the main window in the test frame file.

10.Paste the recorded actions from the script file into the new BaseState method.

11.Choose File > Save to save the test frame file.

Examples

For example, if you want the Insurance Company web application to preselect Auto
Quote each time the base state is restored, the new declaration for the main window in
the frame file should look similar to the following:

window BrowserApplication WebBrowser
 locator "//BrowserApplication"

 // Go to Options -> Application Configurations... to switch
the browser
 // Alternatively set sDir and sCmdLine if you want to start a
custom browser

 // The working directory of the application when it is invoked
 // const sDir = "."

 // The command line used to invoke the application
 // const sCmdLine = ""

 // The start URL
 const sUrl = "http://demo.borland.com/InsuranceWebExtJS/
index.jsf"

 const bCloseOtherTabs = TRUE

 // The list of windows the recovery system is to leave open
 // const lwLeaveOpenWindows = {?}
 // const lsLeaveOpenLocators = {?}
 BrowserWindow BrowserWindow
 locator "//BrowserWindow"
 DomListBox QuickLinkJumpMenu
 locator "SELECT[@id='quick-link:jump-menu']"

106 | Understanding the Recovery System for the Open Agent

 // ...

 // Recorded actions, which should be performed whenever the
base state of the application is restored
 Basestate()
 WebBrowser.BrowserWindow.QuickLinkJumpMenu.Select("Auto
Quote")

To execute the same web application on Apple Safari on an iOS device each time the
base state is restored, the new declaration for the main window in the frame file should
look similar to the following:

window BrowserApplication WebBrowser
 locator "//BrowserApplication"

 // Go to Options -> Application Configurations... to switch
the browser
 // Alternatively set sDir and sCmdLine if you want to start a
custom browser

 // The working directory of the application when it is invoked
 // const sDir = "."

 // The command line used to invoke the application
 // const sCmdLine = ""

 // The start URL
 const sUrl = "http://demo.borland.com/InsuranceWebExtJS/
index.jsf"

 const bCloseOtherTabs = TRUE

 // Overrides the browser type of the application configuration
 STRING sBrowserType = BROWSER_TYPE_SAFARI

 // Overrides the connection string of the application
configuration
 STRING sConnectionString = "host=macmini1702.microfocus.com"

 // The list of windows the recovery system is to leave open
 // const lwLeaveOpenWindows = {?}
 // const lsLeaveOpenLocators = {?}
 BrowserWindow BrowserWindow
 locator "//BrowserWindow"
 DomListBox QuickLinkJumpMenu
 locator "SELECT[@id='quick-link:jump-menu']"
 // ...

 // Recorded actions, which should be performed whenever the
base state of the application is restored
 Basestate()
 WebBrowser.BrowserWindow.QuickLinkJumpMenu.Select("Auto
Quote")

To execute the native mobile application InsuranceMobile.apk on an Android device
each time the base state is restored, the new declaration for the main window in the
frame file should look similar to the following:

[-] window MobileDevice Device
 [] locator "/MobileDevice"
 []
 [] // Go to Options -> Application Configurations... to
switch the mobile device
 [] // Alternatively set sConnectionString

Understanding the Recovery System for the Open Agent | 107

 []
 [] // Overrides the connection string of the application
configuration
 [] STRING sConnectionString =
"deviceName=MotoG3;platformName=Android;app=C:\\Temp
\InsuranceMobile.apk"
 []
 [] // The list of windows the recovery system is to leave
open
 [-] MobileTextField Email
 [] locator "@resource-id='silktest.insurancemobile:id/
email'"

DefaultBaseState and the wDynamicMainWindow Object
Silk Test Classic executes the DefaultBaseState for dynamic object recognition when the default agent
is the Open Agent and the global constant wDynamicMainWindow is defined. DefaultBaseState works
with the wDynamicMainWindow object in the following ways:

1. If the wDynamicMainWindow object does not exist, invoke it, either using the Invoke method defined
for the MainWin class or a user-defined Invoke method built into the object.

2. If the wDynamicMainWindow object is minimized, restore it.

3. If there are child objects of the wDynamicMainWindow open, close them.

4. If the wDynamicMainWindow object is not active, make it active.

5. If there is a BaseState method defined for the wDynamicMainWindow object, execute it.

Flow of Control
This section describes the flow of control during the execution of each of your test cases.

The Non-Web Recovery Systems Flow of Control
Before you modify the recovery system, you need to understand the flow of control during the execution of
each of your test cases. The recovery system executes the DefaultTestcaseEnter function. This
function, in turn, calls the SetAppState function, which does the following:

1. Executes the test case.

2. Executes the DefaultTestcaseExit function, which calls the SetBaseState function, which calls
the lowest level application state, which is either the DefaultBaseState or any user defined
application state.

Note: If the test case uses AppState none, the SetBaseState function is not called.

DefaultTestCaseEnter() is considered part of the test case, but DefaultTestCaseExit() is not.
Instead, DefaultTestCaseExit() is considered part of the function that runs the test case, which
implicitly is main() if the test case is run standalone. Therefore an unhandled exception that occurs during
DefaultTestCaseEnter() will abort the current test case, but the next test case will run. However, if the
exception occurs during DefaultTestCaseExit(), then it is occurring in the function that is calling the
test case, and the function itself will abort. Since an application state may be called from both
TestCaseEnter() and TestCaseExit(), an unhandled exception within the application state may cause
different behavior depending on whether the exception occurs upon entering or exiting the test case.

108 | Understanding the Recovery System for the Open Agent

How the Non-Web Recovery System Closes Windows
The built-in recovery system restores the base state by making sure that the non-Web application is
running, is not minimized, is active, and has no open windows except for the main window. To ensure that
only the main window is open, the recovery system attempts to close all other open windows, using an
internal procedure that you can customize as you see fit.

To make sure that there are no application windows open except the main window, the recovery system
calls the built-in CloseWindows method. This method starts with the currently active window and attempts
to close it using the sequence of steps below, stopping when the window closes.

1. If a Close method is defined for the window, call it.
2. Click the Close menu item on the system menu, on platforms and windows that have system menus.
3. Click the window’s close box, if one exists.
4. If the window is a dialog box, type each of the keys specified by the OPT_ CLOSE_DIALOG_KEYS

option and wait one second for the dialog box to close. By default, this option specifies the Esc key.
5. If there is a single button in the window, click that button.
6. Click each of the buttons specified by the OPT_CLOSE_WINDOW_ BUTTONS option. By default, this

option specifies the Cancel, Close, Exit, and Done keys.
7. Select each of the menu items specified by the OPT_CLOSE_WINDOW_ MENUS option. By default, this

option specifies the File > Exit and the File > Quit menu items.
8. If the closing of a window causes a confirmation dialog box to open, CloseWindows attempts to close

the dialog box by clicking each of the buttons specified with the OPT_CLOSE_CONFIRM_BUTTONS
option. By default, this option specifies the No button.

When the window, and any resulting confirmation dialog box, closes, CloseWindows repeats the
preceding sequence of steps with the next window, until all windows are closed.

If any of the steps fails, none of the following steps is executed and the recovery system raises an
exception. You may specify new window closing procedures.

In a Web application, you are usually loading new pages into the same browser, not closing a page before
opening a new one.

How the Non-Web Recovery System Starts the
Application
To start a non-Web application, the recovery system executes the Invoke method for the main window of
the application. The Invoke method relies on the sCmdLine constant as recorded for the main window
when you create a test frame.

For example, here is how a declaration for the sCmdLine constant might look for a sample Text Editor
application running under Windows:

const sCmdLine = "c:\ProgramFiles\<SilkTest install directory>\SilkTest
\TextEdit.exe"

After it starts the application, the recovery system checks whether the main window is minimized, and, if it
is, uses the Restore method to open the icon and restore the application to its proper size.

The limit on the sCmdLine constant is 8191 characters.

Modifying the Default Recovery System
The default recovery system is implemented in defaults.inc, which is located in the directory in which
you installed Silk Test Classic. If you want to modify the default recovery system, instead of overriding

Understanding the Recovery System for the Open Agent | 109

some of its features, as described in Overriding the default recovery system, you can modify
defaults.inc.

We cannot provide support for modifying defaults.inc or the results. We recommend that you do not
modify defaults.inc. This file might change from version to version. As a result, if you manually modify
defaults.inc, you will encounter issues when upgrading to a new version of Silk Test Classic.

If you decide to modify defaults.inc, be sure that you:

• Make a backup copy of the shipped defaults.inc file.
• Tell Technical Support when reporting problems that you have modified the default recovery system.

Overriding the Default Recovery System
The default recovery system specifies what Silk Test Classic does to restore the base state of your
application. It also specifies what Silk Test Classic does whenever:

• A script file is first accessed.
• A script file is exited.
• A test case is about to begin.
• A test case is about to exit.

You can write functions that override some of the default behavior of the recovery system.

To override Define the following

DefaultScriptEnter ScriptEnter

DefaultScriptExit ScriptExit

DefaultTestCaseEnter TestCaseEnter

DefaultTestCaseExit TestCaseExit

DefaultTestPlanEnter TestPlanEnter

DefaultTestPlanExit TestPlanExit

If ScriptEnter, ScriptExit, TestcaseEnter, TestcaseExit, TestPlanEnter, or
TestPlanExit are defined, Silk Test Classic uses them instead of the corresponding default function. For
example, you might want to specify that certain test files are copied from a server in preparation for running
a script. You might specify such processing in a function called ScriptEnter in your test frame.

If you want to modify the default recovery system, instead of overriding some of its features, you can modify
defaults.inc. We do not recommend modifying defaults.inc and cannot provide support for
modifying defaults.inc or the results.

Example

If you are planning on overriding the recovery system, you need to write your own
TestCaseExit(Boolean bException). In the following example, DefaultTestcaseExit() is
called inside TestCaseExit() to perform standard recovery systems steps and the bException
argument is passed into DefaultTestCaseExit().

if (bException)
 DefaultTestcaseExit(bException)

If you are not planning to call DefaultTestcaseExit() and plan to handle the error logging in your own
way, then you can use the TestcaseExit() signature without any arguments.

Use the following function signature if you plan on calling DefaultTestCaseExit(Boolean
bException) or if your logic depends on whether an exception occurred. Otherwise, you can simply use

110 | Understanding the Recovery System for the Open Agent

the function signature of TestcaseExit() without any arguments. For example, the following is from the
description of the ExceptLog() function.

TestCaseExit (BOOLEAN bException)
if (bException)
 ExceptLog()

Here, DefaultTestcaseExit() is not called, but the value of bException is used to determine if an
error occurred during the test case execution.

Handling Login Windows
Silk Test Classic handles login windows differently, depending on whether you are testing Web or client/
server applications. These topics provide information on how to handle login windows in your application
under test.

Handling Login Windows in Non-Web Applications that Use the Open
Agent
Although a non-Web application’s main window is usually displayed first, it is also common for a login or
security window to be displayed before the main window.

Use the wStartup constant and the Invoke method

To handle login windows, record a declaration for the login window, set the value of the wStartup
constant, and write a new Invoke method for the main window that enters the appropriate information into
the login window and dismisses it. This enables the DefaultBaseState routine to perform the actions
necessary to get past the login window.

You do not need to use this procedure for splash screens, which disappear on their own.

1. Open the login window that precedes the application’s main window.

2. Open the test frame.

3. Click Record > Window Locators to record a locator for the window.

4. Point to the title bar of the window and then press Ctrl+Alt. The locator is captured in the Record
Window Locators dialog box.

5. Click Paste to Editor to paste the locator into the test frame.

6. In the Record Window Locators dialog box, click Close.

7. Close your application.

8. In your test frame file, find the stub of the declaration for the wStartup constant, located at the top of
the declaration for the main window:

// First window to appear when application is invoked
// const wStartup = ?

9. Complete the declaration for the wStartup constant by:

• Removing the comment characters, the two forward slash characters, at the beginning of the
declaration.

• Replacing the question mark with the identifier of the login window, as recorded in the window
declaration for the login window.

10.Define an Invoke method in the main window declaration that calls the built-in Invoke method and
additionally performs any actions required by the login window, such as entering a name and password.

After following this procedure, your test frame might look like this:

window MainWin MyApp
 locator "/MainWin[@caption='MyApp']"
 const wStartup = Login

 // the declarations for the MainWin should go here

Understanding the Recovery System for the Open Agent | 111

 Invoke ()
 derived::Invoke ()
 Login.Name.SetText ("Your name")
 Login.Password.SetText ("password")
 Login.OK.Click ()

window DialogBox Login
 locator "/DialogBox[@caption='Login']"

 // the declarations for the Login window go here
 PushButton OK
 locator "OK"

Note: Regarding the derived keyword and scope resolution operator. The statement
derived::Invoke () uses the derived keyword followed by the scope resolution operator
(::) to call the built-in Invoke method, before performing the operations needed to fill in and
dismiss the login window.

Specifying Windows to be Left Open for Tests that Use
the Open Agent
By default, the non-Web recovery system closes all windows in your test application except the main
window. To specify which windows, if any, need to be left open — such as a child window that is always
open — use the lwLeaveOpenWindows or lsLeaveOpenLocators constant.

lwLeaveOpenWindows and lsLeaveOpenLocators constants

When you record and paste the declarations for your application’s main window, the stub of a declaration
for the lwLeaveOpenWindows constant is automatically included. Additionally, it is possible to specify
windows to leave open by using XPath locator strings. These can be specified with the variable
lsLeaveOpenLocators, which must be a list of strings. The following example shows the
lwLeaveOpenWindows and lsLeaveOpenLocators constants before they have been edited:

// The list of windows the recovery system is to leave open
// const lwLeaveOpenWindows = {?}
// const lsLeaveOpenLocators = {?}

To complete the declaration for these constants:

1. For lwLeaveOpenWindows, replace the question mark in the comment with the 4Test identifiers of the
windows you want to be left open. Separate each identifier with a comma.

2. For lsLeaveOpenLocators, click Record > Window Locators and record the locators that you want
to include.

3. Replace the question mark in the comment with the locator strings for the windows that you want to be
left open. Separate each identifier with a comma.

4. Remove the comment characters (the two forward slash characters) at the beginning of the
lwLeaveOpenWindows declaration.

For example, the following code shows how to set the lwLeaveOpenWindows constant so that the
recovery system leaves open the window with the identifier DocumentWindow when it restores the
BaseState.

const lwLeaveOpenWindows = {DocumentWindow}

5. Remove the comment characters (the two forward slash characters) at the beginning of the
lsLeaveOpenLocators declaration.

For example, the following code shows how to set the lsLeaveOpenLocators constant so that the
recovery system leaves open the About dialog box when it restores the BaseState.

lsLeaveOpenLocators = {“/MainWin[@caption=’*Information*’]”, “//
Dialog[@caption=’About’]”}

112 | Understanding the Recovery System for the Open Agent

Specifying New Window Closing Procedures
When the recovery system cannot close a window using its normal procedure, you can reconfigure it in one
of two ways:

• If the window can be closed by a button press, key press, or menu selection, specify the appropriate
option either statically in the Close tab of the Agent Options dialog box or dynamically at runtime.

• Otherwise, record a Close method for the window.

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChild objects/classes.

Specifying Buttons, Keys, and Menus that Close
Windows

Specify statically

To specify statically the keys, menu items, and buttons that the non-Web recovery system should use to
close all windows, choose Options > Agent and then click the Close tab.

The Close tab of the Agent Options dialog box contains a number of options, each of which takes a
comma-delimited list of character string values.

Specify dynamically

As you set close options in the Agent Options dialog box, the informational text at the bottom of the dialog
box shows the 4Test command you can use to specify the same option from within a script; add this 4Test
command to a script if you need to change the option dynamically as a script is running.

Specify for individual objects

If you want to specify the keys, menu items, and buttons that the non-web recovery system should use to
close an individual dialog box, define the appropriate variable in the window declaration for the dialog box:

• lsCloseWindowButtons

• lsCloseConfirmButtons

• lsCloseDialogKeys

• lsCloseWindowMenus

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChild objects/classes.

Recording a Close Method for Tests that Use the Open
Agent
To specify the keys, menu items, and buttons that the non-web recovery system uses to close an individual
dialog box, record a Close method to define the appropriate variable in the window declaration for the
dialog box.

1. Open your application.

2. Open the application’s test frame file.

3. Choose Record > Testcase. Silk Test Classic displays the Record Testcase dialog box.

Understanding the Recovery System for the Open Agent | 113

4. From the Application state list box, click (None).

5. Click Start Recording. Silk Test Classic opens the Recording window, which indicates that you can
begin recording the Close method.

6. When you have finished recording the Close method, click Stop on the Recording window. Silk Test
Classic redisplays the Record Testcase dialog box.

7. Click Paste to Editor and then copy and paste the script in the declaration for the dialog box in the test
frame file.

8. Choose File > Save to save the test frame file.

You can also specify buttons, keys, and menus that close windows. This is only for classes derived from the
MoveableWin class: DialogBox, ChildWin, and MessageBox. Specifying window closing procedures
is not necessary for Web pages, so this does not apply to BrowserChild objects/classes.

Set Recovery System Dialog Box
Use the Set Recovery System dialog box to identify the starting point of the application you are testing,
the BaseState. The recovery system will return your application to this BaseState:

• Before running a test case.
• During a test case.
• If an error occurs.
• After a test case completes.

If you are using the Basic workflow bar, click Set Recovery System .

If you are recording a test case, click Set Recovery System on the Record Application State dialog box
or the Record Testcase dialog box.

Frame filename Displays the default name and path of the frame file you are creating. This field appears
only if you access this dialog box from the Basic workflow bar. The default is
frame.inc. If frame.inc already exists, Silk Test appends the next logical number to
the new frame file name. For example, frame1.inc.

Modify the frame file name and click Browse to specify the location in which you want
to save this file. Frame files must have a .inc extension.

Application Lists all open applications that are not minimized, including any Web applications,
which are identified by the title of the currently loaded page. Click to select an
application. This list is dynamic and will update if you open a new application.

If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

Command line Displays the path to the executable (.exe) for the application that you selected. This field
does not display if you have selected a Web application.

Start testing on
this page

Displays the URL for the application you selected. This field displays only if you have
selected a Web application. If an application displays in the list, but the URL does not
display in this field, your extensions may not be enabled correctly. Click the Enable
Extensions button in the Basic workflow bar to automatically enable and test
extension settings.

Working
directory

Displays the path of the application you selected. This field does not display if you have
selected a Web application.

114 | Understanding the Recovery System for the Open Agent

Window name Displays the window name, a suggested identifier that you can use in your test cases to
identify your application. You can change the window name. We recommend using a
short name to identify your application.

Understanding the Recovery System for the Open Agent | 115

Test Plans
A test plan usually is a hierarchically-structured document that describes the test requirements and
contains the statements, 4Test scripts, and test cases that implement the test requirements. A test plan is
displayed in an easy-to-read outline format, which lists the test requirements in high-level prose
descriptions. The structure can be flat or many levels deep.

Indentation and color indicate the level of detail and various test plan elements. Large test plans can be
divided into a master plan and one or more sub-plans. A test plan file has a .pln extension, such as
find.pln.

Structuring your test plan as an hierarchical outline provides the following advantages:

• Assists the test plan author in developing thoughts about the test problem by promoting and supporting
a top-down approach to test planning.

• Yields a comprehensive inventory of test requirements, from the most general, through finer and finer
levels of detail, to the most specific.

• Allows the statements that actually implement the tests to be shared by group descriptions or used by
just a single test description.

• Provides reviewers with a framework for evaluating the thoroughness of the plan and for following the
logic of the test plan author.

• If you are using the test plan editor, the first step in creating automated tests is to create a test plan. If
you are not using the test plan editor, the first step is creating a test frame.

Structure of a Test Plan
A test plan is made up of the following elements, each of which is identified by color and indentation on the
test plan.

Element Description Color

Comment Provide documentation throughout the test plan;
preceded by //.

Green

Group Description High level line in the test requirements outline that
describes a group of tests.

Black

Test Description Lowest level line describing a single test case; is a
statement of the functionality to be tested by the
associated test case.

Blue

Test Plan Statement Used to provide script name, test case name, test data,
or include statement.

Red when a sub plan is not
expanded.

Magenta statement when sub-plan is
expanded

A statement placed at the group description level applies to all the test descriptions contained by the group.
Conversely, a statement placed at the test description level applies only to that test description. Levels in
the test plan are represented by indentation.

Because there are many ways to organize information, you can structure a test plan using as few or as
many levels of detail as you feel are necessary. For example, you can use a list structure, which is a list of
test descriptions with no group description, or a hierarchical structure, which is a group description and test
description. The goal when writing test plans is to create a top-down outline that describes all of the test
requirements, from the most general to the most specific.

116 | Test Plans

Overview of Test Plan Templates
Because a test plan is initially empty, you may want to insert a template, which is a hierarchical outline you
can use as a guide when you create a new test plan.

The template contains placeholders for each GUI object in your application. Although you may not want to
structure the test plan in a way which mirrors the hierarchy of your application’s GUI, this can be a good
starting point if you are new to creating test plans.

In order to be able to insert a template, you must first record a test frame, which contains declarations for
each of the GUI objects in your application.

Example Outline for Word Search Feature
Because a test plan is made up of a large amount of information, a structured, hierarchical outline provides
an ideal model for organizing and developing the details of the plan. You can structure an outline using as
few or as many levels of detail as you feel necessary.

The following is a series of sample outlines, ranging from a simple list structure to a more specific
hierarchical structure. For completeness, each of the plans also shows the script and test case statements
that link the descriptions to the 4Test scripts and test cases that implement the test requirements.

For example, consider the Find dialog box from the Text Editor application, which allows a user to search in
a document. A user enters the characters to search for in the Find What text box, checks the Case
sensitive check box to consider case, and clicks either the Up or Down radio button to indicate the
direction of the search.

List Structure

At its simplest, an outline is a hierarchy with just a single level of detail. In other words, it is a list of test
descriptions, with no group descriptions.

Using the list structure, each test is fully described by a single line, which is followed by the script and test
case that implement the test. You may find this style of plan useful in the beginning stages of test plan
design, when you are brainstorming the list of test requirements, without regard for the way in which the
test requirements are related. It is also useful if you are creating an ad hoc test plan that runs a set of
unrelated 4Test scripts and test cases.

Example for List Structure

For example:

Test Plans | 117

Hierarchical Structure

The following test plan has a single level of group description, preceding the level that contains each of the
test descriptions. The group description indicates that all the tests are for the Find dialog box.

As the figure shows, the test plan editor indicates levels in the outline with indentation. Each successive
level is indented one level to the right. The minus icons indicate that each of the levels is fully expanded. By
clicking on the minus icon at any level, you collapse the branch below that level. When working with large
test plans, collapsing and expanding test plan detail makes it easy to see as much or as little of the test
plan as you need. You could continue this test plan by adding a second level of group description,
indicating whether or not the tests in the group are case sensitive, and even more detail by adding a third
level of group descriptions which indicate whether the tests in the group search in the forward or backward
direction.

118 | Test Plans

Converting a Results File to a Test Plan
You can use the Convert Results to Plan dialog box to transform a results file to a test plan.

1. Open a results file that was generated by running a script file.

2. Click Results > Convert to Plan. The Convert Results to Plan dialog box appears.

3. Select the results file that you want to convert.

4. Click OK.

When creating a test plan from a results file generated for a script, the test plan editor uses the # symbol
so that when this test plan is run, the testdata statement doubles as description. Since the results file
was for a script, not a test plan, it does not contain any group or test case descriptions. The # symbol can
be used with any test plan editor statement so that the statement will double as description.

Working with Test Plans
This section describes how you can work with test plans.

Creating a New Test Plan
1. Click File > New.

2. Click Test plan and click OK. An empty test plan window opens.

Test Plans | 119

3. Create your test plan and then click File > Save.

4. Specify the name and location in which to save the file, and then click OK.

5. If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes
if you want to add the file to the open project, or No if you do not want to add this file to the project.

Before you can begin testing, you must enable extensions for applications you plan to test on both the
target machine and the host machine.

Indent and Change Levels in an Outline
You can use menu, keyboard, or toolbar commands to enter or change group and test descriptions as you
are typing them. The following table summarizes the commands:

Action Menu Item Key

Indent one level Outline/Move Right ALT + forward arrow

Outdent one level Outline/Move Left ALT + back arrow

Swap with line above Outline/Transpose Up ALT + up arrow

Swap with line below Outline/Transpose Down ALT + down arrow

Each command acts on the current line or currently selected lines.

Silk Test Classic ignores comments when compiling, with the exception of functions and test cases.
Comments within functions and test cases must be within the scope of the function/test case. If a comment
is outdented beyond the scope of the function/test case, the compiler assumes that the function/test case
has ended. As long as comments do not violate the function/test case scope, they can be placed anywhere
on a line.

Note: Comments beyond the scope can also impact expand/collapse functionality and may prevent a
function/test case from being fully expanded/collapsed. We recommend that you keep comments
within scope.

Adding Comments to Test Plan Results
You can add comments to your test plans which will display in the results when you run your tests. You can
annotate your tests with such comments to ease the interpretation of the test results.

To add a comment to a test plan, include the following statement in the test plan:

comment: Your comment text

For example, running the following piece of a test plan:

Find dialog
 Get the default button
 comment: This test should return Find.FindNext
 script: find.t
 testcase: GetButton

produces the following in the results file:

Find dialog
 Get the default button
 Find.FindNext
 comment: This test should return Find.FindNext

Note: You can also preface lines in all 4Test files with // to indicate a single-line comment. Such
comments do not display in test plan results.

120 | Test Plans

Documenting Manual Tests in the Test Plan
Your QA department might do some of its testing manually. You can document the manual testing in the
test plan. In this way, the planning, organization, and reporting of all your testing can be centralized in one
place. You can describe the state of each of your manual tests. This information is used in reports.

To indicate that a test description in the test plan is implemented with a manual test, use the value manual
in the testcase statement, as in:

testcase: manual

By default, whenever you generate a report, it includes information on the tests run for that results file, plus
the current results of any manual tests specified in the test plan. If the manual test results are subsequently
updated, the next time you generate the report, it incorporates the latest manual results. However, this
might not be what you want. If you want the report to use a snapshot of manual results, not the most recent
manual results, merge the results of manual tests into the results file.

Describing the State of a Manual Test
1. Open a test plan containing manual tests.

2. Click Testplan > Run Manual Tests.

3. Select a manual test from the Update Manual Tests dialog box and document it. The Update Manual
Tests dialog box lists all manual tests in the current test plan.

Mark the test
complete

Click the Complete option button.

Complete means that a test has been defined. A manual test marked here as
Complete will be tabulated as complete in Completion reports.

Indicate whether the
test passed or failed

1. Click the Has been run option button.
2. Select Passed or Failed.
3. Specify when the test was run and optionally, specify the machine.

To specify when the test was run, use the following syntax:

YYYY-MM-DD HH:MM:SS

Hours, minutes, and seconds are optional. For example, enter 2006-01-10 to
indicate that the test was run Jan 10, 2006.

A test marked Has been run is also considered complete in Completion
reports.

Add any comments
you want about the
test

Fill in the Comments text box.

Inserting a Template
1. Click Testplan > Insert Template. The Insert Testplan Template dialog box, which lists all the GUI

objects declared in your test frame, opens.

2. Select each of the GUI objects that are related to the application features you want to test.

Because this is a multi-select list box, the objects do not have to be contiguous.

For each selected object, Silk Test Classic inserts two lines of descriptive text into the test plan.

Test Plans | 121

For example, the test plan editor would create the following template for the Find dialog box of the Text
Editor application:

Tests for DialogBox Find
Tests for StaticText FindWhatText
(Insert tests here)
Tests for TextField FindWhat
(Insert tests here)
Tests for CheckBox CaseSensitive
(Insert tests here)
Tests for StaticText DirectionText
(Insert tests here)
Tests for PushButton FindNext
(Insert tests here)
Tests for PushButton Cancel
(Insert tests here)
Tests for RadioList Direction
(Insert tests here)

Changing Colors in a Test Plan
You can customize your test plan so that different test plan components display in unique colors.

To change the default colors:

1. Click Options > Editor Colors.
2. On the Editor Colors dialog box, select the outline editor item you want to change in the Editor Item

list box at the left of the dialog box.
3. Apply a color to the item by selecting a pushbutton from the list of predefined colors or create a new

color to apply by selecting the red, green, and blue values that compose the color.

Default
color

Component Description

Blue Test description Lowest level of the hierarchical test plan outline that describes a single test
case.

Red Test plan statement Link scripts, test cases, test data, closed sub-plans, or an include file, such
as a test frame, to the test plan.

Magenta Include statement
when sub-plan is open

Sub-plans to be included in a master plan.

Green Comment Additional user information that is incidental to the outline; preceded by
double slashes (//); provides documentation throughout the test plan.

Black Other line (group
description)

Higher level lines of the hierarchical test plan outline that describe a group of
tests; may be several levels in depth.

Linking the Test Plan to Scripts and Test Cases
After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:
• Linking a description to a script or test case using the Testplan Detail dialog box if you want to

automate the process of linking scripts and test cases to the test plan.
• Linking to a test plan manually.
• Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and

testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually

122 | Test Plans

good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Insert Testplan Template Dialog Box
Use the Insert Testplan Template dialog box to insert a hierarchical outline (template) of objects into your
testplan. This dialog is only available when a testplan is open and the Testplan dialog is active. In order to
be able to insert a template, you must first record a test frame, which contains declarations for each of the
objects in your application.

Click Testplan > Insert Template.

Windows to
create a template
for

Displays a list of all the objects declared in your test frame. Select objects related to
the application features you want to test in your testplan. (Press Ctrl-Click to
select multiple objects.) For each selected object, two lines of descriptive text are
inserted into the testplan.

Working with Large Test Plans
For large or complicated applications, the test plan can become quite large. This raises the following
issues:

Issue Solution

How to keep track of where you are in the test plan and
what is in scope at that level.

Use the Testplan Detail dialog box.

How to determine which portions of the test plan have
been implemented.

Produce a Completion report.

How to allow several staff members to work on the test
plan at the same time.

Structure your test plan as a master plan with one or
more sub-plans.

This section describes how you can divide your test plan into a master plan with one or more sub-plans to
allow several staff members to work on the test plan at the same time.

Determining Where Values are Defined in a Large Test
Plan
1. Place the insertion point at the relevant point in the test plan and click Testplan > Detail. The Testplan

Detail dialog box opens.

2. Click the level in the list box at the top of the Testplan Detail dialog box, to see just the set of symbols,
attributes, and statements that are defined on a particular level.

3. Once you find the level at which a symbol, attribute, or statement was defined, you can change the
value at that level, causing the inherited value at the lower levels to change also.

Dividing a Test Plan into a Master Plan and Sub-Plans
If several engineers in your QA department will be working on a test plan, it makes sense to break up the
plan into a master plan and sub-plans. This approach allows multi-user access, while at the same time
maintaining a single point of control for the entire project.

Test Plans | 123

The master plan contains only the top few levels of group descriptions, and the sub-plans contain the
remaining levels of group descriptions and test descriptions. Statements, attributes, symbols, and test data
defined in the master plan are accessible within each of the sub-plans.

Sub-plans are specified with an include statement. To expand the sub-plan files so that they are visible
within the master plan, double-click in the left margin next to the include statement. Once a sub-plan is
expanded inline, the sub-plan statement changes from red (the default color for statements) to magenta,
indicating that the line is now read-only and that the sub-plan is expanded inline. At the end of the
expanded sub-plan is the <eof> marker, which indicates the end of the sub-plan file.

Creating a Sub-Plan
You create a sub-plan in the same way you create any test plan: by opening a new test plan file and
entering the group descriptions, test descriptions, and the test plan editor statements that comprise the
sub-plan, either manually or using the Testplan Detail dialog.

Copying a Sub-Plan
When you copy and paste the include statement and the contents of an open include file, note that only the
include statement will be pasted.

To view the contents of the sub-plan, open the pasted include file by clicking Include > Open or double-
click the margin to the left of the include statement.

Opening a Sub-Plan
Open the sub-plan from within the master plan. To do this, you can either:

• double-click the margin to the left of the include statement or
• highlight the include statement and choose Include > Open. (Compiling a script also automatically

opens all sub-plans.)

If a sub-plan does not inherit anything (that is, statements, attributes, symbols, or data) from the master
plan, you can open the sub-plan directly from the File > Open dialog box.

Connecting a Sub-Plan with a Master Plan
To connect the master plan to a sub-plan file, you enter an include statement in the master plan at the
point where the sub-plan logically fits. The include statement cannot be entered through the Testplan
Detail dialog box; you must enter it manually.

The include statement uses this syntax:

include: myinclude.pln

where myinclude is the name of the test plan file that contains the sub-plan.

If you enter the include statement correctly, it displays in red, the default color used for the test plan
editor statements. Otherwise, the statement displays in blue or black, indicating a syntax error (the compiler
is interpreting the line as a description, not a statement).

Refreshing a Local Copy of a Sub-Plan
When another user modifies a sub-plan, those changes are not automatically reflected in your read-only
copy of the sub-plan. Once the other user has released the lock on the sub-plan, there are two ways to
refresh your copy:

1. Close and then reopen the sub-plan.

124 | Test Plans

2. Acquire a lock for the sub-plan.

Sharing a Test Plan Initialization File
All QA engineers working on a test plan that is broken up into a master plan and sub-plans must use the
same test plan initialization file.

To share a test plan initialization file:

1. Click Options > General.

2. On the General Options dialog box, specify the same file name in the Data File for Attributes and
Queries text box.

Saving Changes
When you finish editing, choose Include > Save to save the changes to the sub-plan.

Include > Save saves changes to the current sub-plan while File > Save saves all open master plans and
sub-plans.

Overview of Locks
When first opened, a master plan and its related sub-plans are read-only. This allows many users to open,
read, run, and generate reports on the plan. When you need to edit the master plan or a sub-plan, you
must first acquire a lock, which prevents others from making changes that conflict with your changes.

Acquiring and Releasing a Lock
Acquire a lock Place the cursor in or highlight one or more sub-plans and then choose Include >

Acquire Lock.

The bar in the left margin of the test plan changes from gray to yellow.

Release a lock Select Include > Release Lock.

The margin bar changes from yellow to gray.

Generating a Test Plan Completion Report
To measure your QA department’s progress in implementing a large test plan, you can generate a
completion report. The completion report considers a test complete if the test description is linked to a test
case with two exceptions:

• If the test case statement invokes a data-driven test case and a symbol being passed to the data-driven
test case is assigned the value ? (undefined), the test is considered incomplete.

• If the test case is manual and marked as Incomplete in the Update Manual Tests dialog box, the test is
considered incomplete. A manual test case is indicated with the testcase:manual syntax.

To generate a test plan completion report:

1. Open the test plan on which you want to report.

2. Click Testplan > Completion Report to display the Testplan Completion Report dialog box.

3. In the Report Scope group box, indicate whether the report is for the entire plan or only for those tests
that are marked.

4. To subtotal the report by a given attribute, select an attribute from the Subtotal by Attribute text box.

5. Click Generate.

Test Plans | 125

The test plan editor generates the report and displays it in the lower half of the dialog box. If the test
plan is structured as a master plan with associated sub-plans, the test plan editor opens any closed
sub-plans before generating the report.

You can:

• Print the report.
• Export the report to a comma-delimited ASCII file. You can then bring the report into a spreadsheet

application that accepts comma-delimited data.

Testplan Completion Report Dialog Box
Use the Testplan Completion Report dialog box to generate a report on the number of completed tests.
This dialog is only available when a test plan is open and the Testplan dialog box is active.

To open the Testplan Completion Report dialog box, click Testplan > Completion Report.

The Testplan Completion Report considers a test complete if the test description is linked to a test case,
with two exceptions:

• If the testcase statement invokes a data-driven test case and a symbol being passed to the data-driven
test case has the value ? (undefined) assigned, the test is considered incomplete.

• If the test case is manual and has not been marked as complete with the Finish Test Run button on the
Execute Manual Test dialog box, the test is considered incomplete.

Test plan items that are marked with attributes of type set are not categorized in a Testplan Completion
Report.

Marked tests Select to generate a report only for those tests that are marked within the test plan.

All tests Select to generate a report for all tests within the test plan.

Subtotal by
attribute

If you want to subtotal the report by a specific attribute, select an attribute from the
list. Default attributes are Category, Component, and Developer.

Report tab Displays the completion report for the selected test plan.

Print Click to print the selected test plan completion report.

Export Click to export the report as an ANSI, Unicode, or UTF-8 file.

Generate Click to generate a Testplan Completion Report, based on the options you
specified, for the selected test plan.

Adding Data to a Test Plan
This section describes how you can add data to a test plan.

Specifying Unique and Shared Data
If a data value is
unique to a single test
description

You should place it in the plan at the same level as the test description, using
the testdata statement. You can add the testdata statement using the
Testplan Detail dialog box or type the testdata statement directly into the
test plan.

If data is common to
several tests

You can factor out the data that is common to a group of tests and define it at a
level in the test plan where it can be shared by the group. To do this, you define

126 | Test Plans

symbols and assign them values. Using symbols results in less redundant data,
and therefore, less maintenance.

Adding Comments in the Test Plan Editor
Use two forward slash characters to indicate that a line in a test plan is a comment. For example:

// This is a comment

Comments preceded by // do not display in the results file. You can also specify comments using the
comment statement; these comments will display in the results files.

Testplan Editor Statements
You use the test plan editor keywords to construct statements, using this syntax:

keyword : value

keyword: One of the test plan editor keywords.

value: A comment, script, test case, include file, attribute name, or data value.

For example, this statement associates the script myscript.t with the plan:

script : myscript.t

Spaces before and after the colon are optional.

The # Operator in the Testplan Editor
When a # character precedes a statement, the statement will double as a test description in the test plan.
This helps eliminate possible redundancies in the test plan. For example, the following test description and
script statement:

Script is test.t
 script:test.t

can be reduced to one line in the test plan:

#script: test.t

The test plan editor considers this line an executable statement as well as a description. Any statements
that follow this "description" in the test plan and that trigger test execution must be indented.

Using the Testplan Detail Dialog Box to Enter the
testdata Statement
1. Place the insertion point at the end of the test description. If a testdata statement is not associated

with a test description, the compiler generates an error.
2. Click Testplan > Detail. To provide context, the multi-line list box at the top of the Testplan Detail

dialog box displays the line in the test plan that the cursor was on when the dialog box was invoked,
indicated by the black arrow icon. If the test case and script associated with the current test description
are inherited from a higher level in the test plan, they are shown in blue; otherwise, they are shown in
black.

3. Enter the data in the Test Data text box, separating each data element with a comma.
Remember, if the test case expects a record, you need to enclose the list of data with the list
constructor operator (the curly braces); otherwise, Silk Test Classic interprets the data as individual
variables, not a record, and will generate a data type mismatch compiler error.

4. Click OK. Silk Test Classic closes the Testplan Detail dialog box and enters the testdata statement and
data values in the plan.

Test Plans | 127

Entering the testdata Statement Manually
1. Open up a new line after the test description and indent the line one level.

2. Enter the testdata statement as follows.

• If the test case expects one or more variables, use this syntax: testdata: data [,data], where
data is any valid 4Test expression.

• A record, use the same syntax as above, but open and close the list of record fields with curly
braces: testdata: {data [,data]}, where data is any valid 4Test expression.

Be sure to follow the testdata keyword with a colon. If you enter the keyword correctly, the statement
displays in dark red, the default color. Otherwise, the statement displays in either blue or black,
indicating the compiler is interpreting the line as a description.

Linking Test Plans
This section describes how Silk Test Classic handles linking from a test plan to a script or test case.

Linking a Description to a Script or Test Case using the
Testplan Detail Dialog Box
1. Place the insertion cursor on either a test description or a group description.

2. Click Testplan > Detail. The test plan editor invokes the Testplan Detail dialog box, with the Test
Execution tab showing. The multi-line list box at the top of the dialog box displays the line in the test
plan that the cursor was on when the dialog box was invoked, as well as its ancestor lines. The black
arrow icon indicates the current line. The current line appears in black and white, and the preceding
lines display in blue.

3. If you:

• know the names of the script and test case, enter them in the Script and Testcase fields,
respectively.

• are unsure of the script name, click the Scripts button to the right of the Script field to browse for
the script file.

4. On the Testplan Detail - Script dialog box, navigate to the appropriate directory and select a script
name by double-clicking or by selecting and then clicking OK. Silk Test Classic closes the Testplan
Detail - Script dialog box and enters the script name in the Script field.

5. Click the Testcases button to the right of the Testcase field, to browse for the test case name.

The Testplan Detail – Testcase dialog box shows the names of the test cases that are contained in the
selected script. Test cases are listed alphabetically, not in the order in which they occur in the script.

6. Select a test case from the list and click OK.

7. Click OK. The script and test case statements are entered in the plan.

If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and test case statements manually.

Linking a Test Plan to a Data-Driven Test Case
To link a group of test descriptions in the plan with a data-driven test case, add the test case declaration to
the group description level. There are three ways to do this:

• Linking a test case or script to a test plan using the Testplan Detail dialog box to automate the process.

128 | Test Plans

• Link to a test plan manually.
• Record the test case from within the test plan.

Linking to a Test Plan Manually
If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and testcase statements manually.

1. Place the insertion cursor at the end of a test or group description and press Enter to create a new line.

2. Indent the new line one level.

3. Enter the script and/or test case statements using the following syntax:

script:
scriptfilename.t testcase:
testcasename

Where script and testcase are keywords followed by a colon, scriptfilename.t is the name of the
script file, and testcasename is the name of the test case.

If you enter a statement correctly, it displays in dark red, the default color used for statements. If not, it
will either display in blue, indicating the line is being interpreted as a test description, or black, indicating
it is being interpreted as a group description.

Linking a Test Case or Script to a Test Plan using the
Testplan Detail Dialog Box
The Testplan Detail dialog box automates the process of linking to scripts and test cases. It lets you
browse directories and select script and test case names, and it enters the correct the test plan editor
syntax into the plan for you.

Linking the Test Plan to Scripts and Test Cases
After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:

• Linking a description to a script or test case using the Testplan Detail dialog box if you want to
automate the process of linking scripts and test cases to the test plan.

• Linking to a test plan manually.
• Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and

testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually
good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Test Plans | 129

Example of Linking a Test Plan to a Test Case
For example, consider the data-driven test case FindTest, which takes a record of type SEARCHINFO as a
parameter:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match

testcase FindTest (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()
 Find.Cancel.Click ()
 DocumentWindow.Document.VerifySelText ({Data.sExpected})
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

The following test plan is associated with the FindTest test case. The testcase statement occurs at the
Find dialog group description level, so that each of the test descriptions in the group can call the test case
and pass a unique set of data to the test case:

Testplan FindTest.pln

Find dialog
script: findtest.t
testcase: FindTest
. . . .

Categorizing and Marking Test Plans
This section describes how you can work with selected tests in a test plan.

Marking a Test Plan
Marks are temporary denotations that allow you to work with selected tests in a test plan. For example, you
might want to run only those tests that exercise a particular area of the application or to report on only the
tests that were assigned to a particular QA engineer. To work with selected tests rather than the entire test
plan, you denote or mark those tests in the test plan.

Marks can be removed at any time, and last only as long as the current work session. You can recognize a
marked test case by the black stripe in the margin.

You can mark test cases by:

Choice Select the individual test description, group description, or entire plan that you want to mark,
and then choosing the appropriate marking command on the Testplan menu.

Query You can also mark a test plan according to a certain set of characteristics it possesses. This is
called marking by query. You build a query based on one or more specific test characteristics;
its script file, data, symbols, or attributes, and then mark those tests that match the criteria set

130 | Test Plans

up in the query. For example, you might want to mark all tests that live in the find.t script
and that were created by the developer named Peter. If you name and save the query, you can
reapply it in subsequent work sessions without having to rebuild the query or manually remark
the tests that you’re interested in working with.

Test
failure

After running a test plan, the generated results file might indicate test failures. You can mark
these failures in the plan by selecting Results > Mark Failures in Plan. You then might fix the
errors and re-run the failed tests.

How the Marking Commands Interact
When you apply a mark using the Mark command, the new mark is added to existing marks.

When you mark tests through the query marking commands, the test plan editor by default clears all
existing marks before running the query. Mark by Named Query supports sophisticated query
combinations, and it would not make sense to retain previous marks. However, Mark by Query, which
allows one-time-only queries, lets you override the default behavior and retain existing marks.

To retain existing marks, uncheck the Unmark All Before Query check box in the Mark by Query dialog
box.

Marking One or More Tests
To mark:

A single test Place the cursor on the test description and click Testplan > Mark.

A group of related tests Place the cursor on the group description and click Testplan > Mark. The
test plan editor marks the group description, its associated statements, and
all test descriptions and statements subordinate to the group description.

Two or more adjacent
tests and their
subordinate tests

Select the test description of the adjacent tests and click Testplan > Mark.
The test plan editor marks the test descriptions and statements of each
selected test and any subordinate tests.

Printing Marked Tests
1. Click File > Print.

2. In the Print dialog box, make sure the Print Marked Only check box is checked, as well as any other
options you want.

3. Click OK.

Mark By Query Dialog Box
You can use the Mark By Query dialog box to mark a set of tests in a test plan based on a query which is
constructed out of a combination of attributes, symbols, the script, the test case, and the test data. This
dialog box is only available when a test plan window is active.

To open the Mark By Query dialog box click Testplan > Mark by Query.

The dialog box includes the following controls:

Control Description

Query name Optional: The name of the query. Named queries are stored by default in the
testplan.ini file. The .ini file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Test Plans | 131

Control Description

Unmark all
before query

Check to clear all marks before running the query. Uncheck to retain existing marks. By
default this check box is checked and all marks are cleared.

Mark Click to close the dialog, run the query against the test plan, and mark all tests in the
test plan that are returned by the query.

Test Execution tab

Use the Test Execution tab to select the script, test case, and test data in the test plan for which the query
should search.

Control Description

Script Specify the full path of the script for which the query should search. To browse for the correct
script, click Scripts.

Testcase Specify the name of the test case for which the query should search. To browse for the correct
test case, click Testcases. To query for test cases in a specific script you must specify the
script before you can specify the test case. To build a query that marks only manual tests, type
the keyword manual into the Testcase field.

Test data Specifies the data values for which the query should search. Separate each value with a
comma.

Test Attributes tab

Use the Test Attributes tab to add attribute values in the test plan to the query.

Control Description

Category Select a Category value to add the tests which belong to this category to the query.

Component Select a Component value to add the tests which have this component to the query.

Developer Select a Developer value to add the tests which are developed by this developer to the
query.

Symbols tab

Use the Symbols tab to add symbols in the test plan to the query.

Note: Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters *
(asterisk) and ? (question mark) are supported for partial matches: * is a placeholder for 0 or more
characters, and ? is a placeholder for 1 character.

Control Description

Edit Select a symbol from the list and then click Edit to modify the symbol in the text box below the
list. Click Replace after you have made your modifications.

Remove Select a symbol from the list and then click Remove to remove the symbol from the query.

Add Type the symbol definition in the box below the list of symbols, and then click Add. The newly-
defined symbol appears in the list and is added to the query.

Mark By Named Query Dialog Box
Use the Mark By Named Query dialog box to create, combine, edit, or delete named queries. To use
named queries, you must have defined attributes.

Click Testplan > Mark by Named Query.

132 | Test Plans

Named queries are stored by default in testplan.ini. The testplan.ini file is specified in the Data
File for Attributes and Queries field in the General Options dialog box.

The Mark By Named Query dialog is only available when a test plan is open and the test plan window is
active.

Testplan
Queries

Displays a list of existing test plan queries.

Mark Click to mark the selected query within the test plan.

New Click to access the New/Edit Testplan Query dialog box where you can create a new
test plan query.

Combine Click to access the Combine Testplan Queries dialog where you can select a query to
combine with the currently selected test plan query.

Edit Click to access the New/Edit Testplan Query dialog box where you can modify the
currently selected test plan. The Edit button is not available until you select an existing
query.

Remove Click to delete the selected test plan query. The Remove button is not available until
you select an existing query.

Using Symbols
This section describes symbols, which represent pieces of data in a data driven test case.

Overview of Symbols
A symbol represents a piece of data in a data driven test case. It is like a 4Test identifier, except that its
name begins with the $ character. The value of a symbol can be assigned locally or inherited. Locally
assigned symbols display in black and symbols that inherit their value display in blue in the Testplan Detail
dialog box.

For example, consider the following test plan:

Test Plans | 133

The test plan in the figure uses six symbols:

• $Text is the text to enter in the document window.
• $Position is the position of the insertion point in the document window.
• $Pattern is the pattern to search for in the document window.
• $Case is the state of the Case Sensitive check box.
• $Direction is the direction of the search.
• $Expected is the expected match.

The symbols are named in the parameter list to the FindTest testcase, within the parentheses after
the test case name.

testcase: FindTest ({ $Text, $Position, $Pattern, $Case, $Direction,
$Expected })

• The symbols are only named in the parameter list; they are not assigned values. The values are
assigned at either the group or test description level, depending on whether the values are shared by
several tests or are unique to a single test. If a symbol is defined at a level in the plan where it can be
shared by a group of tests, each test can assign its own local value to the symbol, overriding whatever
value it had at the higher level. You can tell whether a symbol is locally assigned by using the Testplan
Detail dialog box: Locally assigned symbols display in black. Symbols that inherit their values display in
blue.

134 | Test Plans

For example, in the preceding figure, each test description assigns its own unique values to the $Pattern
and the $Expected symbols. The remaining four symbols are assigned values at a group description level:

• The $Text symbol is assigned its value at the Find dialog group description level, because all eight
tests of the Find dialog enter the text Silk Test Classic into the document window of the Text Editor
application.

• The $Case symbol is assigned the value TRUE at the Case sensitive group description level and the
value FALSE at the Case insensitive group description level.

• The $Direction symbol is assigned the value Down at the Forward group description level, and the
value Up at the Backward group description level.

• The $Position symbol is assigned the value <HOME> at the Forward group description level, and the
value <END> at the Backward group description level.

Because the data that is common is factored out and defined at a higher level, it is easy to see exactly what
is unique to each test.

Symbol Definition Statements in the Test Plan Editor
Use symbols to define data that is shared by a group of tests in the plan. Symbol definitions follow these
syntax conventions:

• The symbol name can be any valid 4Test identifier name, but must begin with the $ character.
• The symbol value can be any text. When the test plan editor encounters the symbol, it expands it (in the

same sense that another language expands macros). For example, the following test plan editor
statement defines a symbol named Color and assigns it the STRING value "Red":

$Color = "Red"

• To use a $ in a symbol value, precede it with another $. Otherwise, the compiler will interpret everything
after the $ as another symbol. For example, this statement defines a symbol with the value Some
$String: $MySymbol = "Some$$String "

• To assign a null value to a symbol, do not specify a value after the equals sign. For example:
$MyNullSymbol =

• To indicate that a test is incomplete when generating a test plan completion report, assign the symbol
the ? character. For example: $MySymbol = ?

If a symbol is listed in the argument list of a test case, but is not assigned a value before the test case is
actually called, the test plan editor generates a runtime error that indicates that the symbol is undefined. To
avoid this error, assign the symbol a value or a ? if the data is not yet finalized.

Defining Symbols in the Testplan Detail Dialog box
Place the insertion cursor in the plan where you need to assign a value to a symbol.

1. Click Testplan > Detail.

2. Select the Symbols tab on the Testplan Detail dialog box, and enter the symbol definition in the text
box to the left of the Add button.

You do not need to enter the $ character; the test plan editor takes care of this for you when it inserts
the definitions into the test plan.

3. Click Add. Silk Test Classic adds the symbol to the list box above the Add text text box.

4. Define additional symbols in the same manner, and then click OK when finished.

Silk Test Classic closes the Testplan Detail dialog box and enters the symbol definitions, including the
$ character, into the plan. If a symbol is defined at a level in the plan where it can be shared by a group
of tests, each test can assign its own local value to the symbol, overriding whatever value it had at the
higher level. You can tell whether a symbol is locally assigned by using the Testplan Detail dialog box:
Locally assigned symbols display in black. Symbols that inherit their values display in blue.

Test Plans | 135

Assigning a Value to a Symbol
You can define symbols and assign values to them by typing them into the test plan, using this syntax:

$symbolname = symbolvalue

where symbolname is any valid 4Test identifier name, prefixed with the $ character and symbolvalue is
any string, list, array, or the ? character (which indicates an undefined value).

For example, the following statement defines a symbol named Color and assigns it the STRING value
"Red":

$Color = "Red"

If a symbol is defined at a level in the plan where it can be shared by a group of tests, each test can assign
its own local value to the symbol, overriding whatever value it had at the higher level.

Specifying Symbols as Arguments when Entering a
testcase Statement
1. Place the insertion cursor in the test plan at the location where the testcase statement is to be

inserted. Placing a symbol name in the argument list of a testcase statement only specifies the name
of the symbol; you also need to define the symbol and assign it a value at either the group or test case
description level, as appropriate.

If you do not know the value when you are initially writing the test plan, assign a question mark (?) to
avoid getting a compiler error when you compile the test plan; doing so will also cause the tests to be
counted as incomplete when a Completion report is generated.

2. Click Testplan > Detail.
3. Enter the name of a data driven test case on the Testplan Detail dialog box, followed by the argument

list enclosed in parenthesis. If the test case expects a record, and not individual values, you must use
the list constructor operator (curly braces).

4. Click OK. Silk Test Classic dismisses the Testplan Detail dialog box and inserts the testcase
statement into the test plan.

Attributes and Values
Attributes are site-specific characteristics that you can define for your test plan and assign to test
descriptions and group descriptions. Attributes are used to categorize tests, so that you can reference them
as a group. Attributes can also be incorporated into queries, which allow you to mark tests that match the
query’s criteria. Marked tests can be run as a group.

By assigning attributes to parts of the test plan, you can:

• Group tests in the plan to distinguish them from the whole test plan.
• Report on the test plan based on a given attribute value.
• Run parts of the test plan that have a given attribute value.

For example, you might define an attribute called Engineer that represents the set of QA engineers that are
testing an application through a given test plan. You might then define values for Engineer like David,
Jesse, Craig, and Zoe, the individual engineers who are testing this plan. You can then assign the values of
Engineer to the tests in the test plan. Certain tests are assigned the value of David, others the value of
Craig, and so on. You can then run a query to mark the tests that have a given value for the Engineer
attribute. Finally, you can run just these marked tests.

Attributes are also used to generate reports. You do not need to mark the tests or build a query in this
case.

136 | Test Plans

Attributes and values, as well as queries, are stored by default in testplan.ini which is located in the
Silk Test Classic installation directory. The initialization file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Silk Test Classic ships with predefined attributes. You can also create up to 254 user-defined attributes.

Make sure that all the QA engineers in your group use the same initialization body file. You can modify the
definition of an attribute.

Modifying attributes and values through the Define Attributes dialog box has no effect on existing
attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

Predefined Attributes
The test plan editor has three predefined attributes:

Developer Specifies the group of QA engineers who developed the test cases called by the test plan.

Component Specifies the application modules to be tested in this test plan.

Category Specifies the kinds of tests used in your QA Department, for example, Smoke Test.

User Defined Attributes
You can define up to 254 attributes. You can also rename the predefined attributes.

The rules for naming attributes include:

• Attribute names can be up to 11 characters long.
• Attribute and value names are not case sensitive.

Adding or Removing Members of a Set Attribute
You can assign multiple values to test attributes of the type Set.

For example, you might have a Set attribute called RunWhen with the following three values:

• UI

• regression

• smoke

You can assign any combination of these three values to a test or a group of tests. Separate each value
with a semicolon.

You can use the + operator to add members to a Set attribute and the – operator to remove members from
a Set attribute.

Example 1: Using + to add values

RunWhen: UI; regression Test 1 testcase: t1 RunWhen: + smoke
Test 2 testcase: t2

In this example, Test 1 has the values UI and regression.

The statement RunWhen: + smoke adds the value smoke to the previously assigned
values, so Test 2 has the values UI, regression, and smoke.

Example 2: Using - to remove values

RunWhen: UI; regression Test 1 testcase: t1 RunWhen: -
regression Test 2 testcase: t2

Test Plans | 137

In this example, Test 1 has the values UI and regression.

The statement RunWhen: - regression removes the value regression from the
previously assigned values, so Test 2 has the value UI.

Rules for Using + and -
• You must follow the + or – with a space.
• You can add or remove any number of elements with one statement. Separate each element with a

semicolon.
• You can specify + elements even if no assignments had previously been made. The result is that the

elements are now assigned.
• You can specify – elements even if no assignments had previously been made. The result is that the

set’s complement is assigned. Using the previous example, specifying:

RunWhen: - regression

when no RunWhen assignment had previously been made results in the values UI and smoke being
assigned.

Defining an Attribute and the Values of the Attribute
1. Click Testplan > Define Attributes, and then click New.

2. Type a name for the new attribute into the Name field.

3. Select one of the following types, and then click OK.

Normal You specify values when you define the attribute. Users of the attribute in a test plan pick one
value from the list.

Edit You don't specify values when you define the attribute. Users type their own values when they
use the attribute in a test plan.

Set Like normal, except that users can pick more than one value.

4. On the Define Attributes dialog box, if you:

• have defined an Edit type attribute, you are done. Click OK to close the dialog box.
• are defining a Normal or Set type attribute, type a value into the Values field and click Add.

Once attributes have been defined, you can modify them.

Assigning Attributes and Values to a Test Plan
Attributes and values have no connection to a test plan until you assign them to one or more tests using an
assignment statement. To add an assignment statement, you can do one of the following:

• Type the assignment statement yourself directly in the test plan.
• Use the Testplan Detail dialog box.

Format

An assignment statement consists of the attribute name, a colon, and a valid attribute value, in this format:

attribute-name: attribute value

For example, the assignment statement that associates the Searching value of the Module attribute to a
given test would look like:

Module: Searching

138 | Test Plans

Attributes of type Set are represented in this format:

attribute-name: attribute value; attribute
value; attribute value; ...

Placement

Whether you type an assignment statement yourself or have the Testplan Detail dialog box enter it for you,
the position of the statement in the plan is important.

To have an assignment statement apply to Place it directly after the

An individual test test description

A group of tests group description

Assigning an Attribute from the Testplan Detail Dialog
Box
1. Place the cursor in the test plan where you would like the assignment statement to display, either after

the test description or the group description.

2. Click Testplan > Detail, and then click the Test Attributes tab on the Testplan Detail dialog box. The
arrow in the list box at the top of the dialog box identifies the test description at the cursor position in the
test plan. The attribute will be added to this test description. The Test Attributes tab lists all your
current attributes at this level of the test plan.

3. Do one of the following:

• If the attribute is of type Normal, select a value from the list.
• If the attribute is of type Set, select on or more values from the list.
• If the attribute is of type Edit, type a value.

4. Click OK. Silk Test Classic closes the dialog box and places the assignment statements in the test plan.

Modifying the Definition of an Attribute
Be aware that modifying attributes and values through the Define Attributes dialog box has no effect on
existing attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

1. Click Testplan > Define Attributes.

2. On the Define Attributes dialog box, select the attribute you want to modify, then:

Rename an attribute Edit the name in the Name text box.

Assign a new value
to the attribute

Type the value in the text box at the bottom right of the dialog box, and click
Add. The value is added to the list of values.

Modify a value Select the value from the Values list box, and click Edit. The value displays in
the text box at the bottom right of the dialog box and the Add button is
renamed to Replace. Modify the value and click Replace.

Delete a value Select the value from the Values list box and click Remove. The text box is
cleared and the value is removed from the Values list box.

Delete an attribute Click Delete.

3. Click OK. The attributes and values are saved in the initialization file specified in the General Options
dialog box.

Test Plans | 139

Queries
This section describes how you can use a test plan query to mark all tests that match a user-selected set
of criteria, or test characteristics.

Overview of Test Plan Queries
You can use a test plan query to mark all tests that match a user-selected set of criteria, or test
characteristics. A query comprises one or more of the following criteria:

• Test plan execution: script file, test case name, or test data
• Test attributes and values
• Symbols and values

Test attributes and symbols must have been previously defined to be used in a query.

Named queries are stored by default in testplan.ini. The initialization file is specified in the Data File
for Attributes and Queries text box in the General Options dialog box. The testplan.ini file is in the
Silk Test Classic installation directory. Make sure that all the QA engineers in your group use the same
initialization file.

Overview of Combining Queries to Create a New Query
You can combine two or more existing queries into a new query using the Mark by Named Query dialog
box. The new query can represent the union of the constituent queries (logical OR) or the intersection of
the constituent queries (logical AND).

Combining by union

Combining two or more queries by union creates a new named query that marks all tests that would have
been marked by running each query one after the other while retaining existing marks. Since Mark by
Named Query clears existing marks before running a query, the only way to achieve this result is to create
a new query that combines the constituent queries by union.

Example

Suppose you have two queries, Query1 and Query2, that you want to combine by union.

Query1 Query2

Developer: David Developer: Jesse

Component: Searching TestLevel: 2

The new query created from the union of Query1 and Query2 will first mark those tests
that match all the criteria in Query1 (Developer is David and Component is Searching)
and then mark those tests that match all the criteria in Query2 (Developer is Jesse and
TestLevel is 2).

Combining by intersection

Combining two or more queries by intersection creates a new named query that marks every test that has
the criteria specified in all constituent queries.

Example

For example, combining Query1 and Query2 by intersection would create a new query
that comprised these criteria: Developer is David and Jesse, Component is Searching,

140 | Test Plans

and TestLevel is 2. In this case, the new query would not mark any tests, since it is
impossible for a test to have two different values for the attribute Developer (unless
Developer were defined as type Set under Windows). Use care when combining queries
by intersection.

Guidelines for Including Symbols in a Query
• Use ? (question mark) to indicate an unset value. For example, Mysymbol = ? in a query would mark

those tests where Mysymbol is unset. Space around the equals sign (=) is insignificant.
• If you need to modify the symbol in the query, select it from the list box and click Edit. The test plan

editor places it in the text box and changes the Add button to Replace. Edit the symbol or value and
click Replace.

• To exclude the symbol from the query, select it from the list box and click Remove. The test plan editor
deletes it from the list box.

The Differences between Query and Named Query
Commands
Testplan > Mark by Query or Testplan > Mark by Named Query both create queries, however, Mark by
Named Query provides extra features, like the ability to combine queries or to create a query without
running it immediately. If the query-creation function and the query-running function are distinct in your
company, then use Mark by Named Query. If you intend to run a query only once, or run a query while
keeping existing marks, then use Mark by Query.

The following table highlights the differences between the two commands.

Mary by Query Mark by Named Query

Builds a query based on criteria you select and runs
query immediately.

Builds a new query based on criteria you select. Can run
query at any time.

Name is optional, but note that only named queries are
saved and can be rerun at any time in the Mark by
Named Query dialog box.

Name is required. Query is saved.

Cannot edit or delete a query. Can edit or delete a query.

Cannot combine queries. Can combine queries into a new query.

Lets you decide whether or not to clear existing marks
before running new query. Unmarks by default.

Clears existing marks before running new query.

Unnamed queries can be run only once. If you name the query, you can have the test plan editor run it in
the same or subsequent work sessions without having to rebuild the query or manually remark the tests
that you’re interested in rerunning or reporting on.

Creating a New Query
You can create a new query for a test plan through either Testplan > Mark by Query or Testplan > Mark
by Named Query. You can also create a new query by combining existing queries.

1. Open the test plan and any associated sub-plans.

2. Click Testplan > Mark by Query or Testplan > Mark by Named Query.

3. Identify the criteria you want to include in the query.

• To include a script, a test case, or test data, use the Test Execution tab. Click Script to select a
script and click Testcase to select a test case, or type the full specification yourself. To build a query
that marks only manual tests, type the keyword into the Testccase field.

Test Plans | 141

• To include existing attributes and values in the query, use the Test Attributes tab.
• To include one or more existing symbols and values, use the Symbols tab. Type the information into

the Add field and click Add. The symbol and value are added to the list box.

Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters * (asterisk) and ?
(question mark) are supported for partial matches: * is a placeholder for 0 or more characters, and ? is
a placeholder for 1 character.

Example 1

If you type find_5 (* in the Testcase field, the query searches all the testcase statements in the
plan and marks those test descriptions that match, as well as all subordinate descriptions to which the
matching testcase statement applies, which are the test cases where the find_5 test case passed in
data.

Example 2

If you type find.t in the Script field, the query searches all script statements in the plan and marks
those test descriptions that match exactly, as well as all subordinate descriptions to which the matching
script statement applies, which are the test cases in which you had specified find.t exactly. It
would not match any script statements in which you had specified a full path.

4. Take one of the following actions, depending on the command you chose to create the query:

Mark by
Query

Click Mark to run the query against the test plan. The test plan editor closes the dialog
box and marks the test plan, retaining the existing marks if requested.

Mark by
Named
Query

Click OK to create the query. The New Testplan Query dialog box closes, and the
Mark by Named Query dialog box is once again visible. The new query displays in the
Testplan Queries list box.

If you want to:

• Run the query, select it from the list box and click Mark.
• Close the dialog box without running the query, click Close.

Edit a Query
1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Select a query from the Testplan Queries list box and click Edit.

3. On the Edit Testplan Query dialog box, edit the information as appropriate, and then click OK .

4. To run the query you just edited, select the query and click Mark . To close the dialog box without
running the edited query, click Close .

Delete a Query
1. Click Testplan > Mark by Named Query to open the Mark by Named Query dialog box.

2. Select a query from the Testplan Queries box and click Remove.

3. Click Yes to delete the query, and then click Close to close the dialog box.

Combining Queries
1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Click Combine. The Combine Testplan Queries dialog box lists all existing named queries in the
Queries to Combine list box.

3. Specify a name for the new query in the Query Name text box.

142 | Test Plans

4. Select two or more queries to combine from the Queries to Combine list box.

5. Click the option button that represents the combination method to use: either Union of Queries or
Intersection of Queries.

6. Click OK to save the new query. The Mark by Named Query dialog box displays with the new query in
the Testplan Queries list box.

7. To run the query, select the query and click Mark or click Close to close the dialog box without running
the query.

Combine Testplan Queries Dialog Box
Use to create a new query by combining existing queries.

Click Testplan > Mark by Named Query and then click Combine.

Query name Type the name of the new query that you want to create by combining existing
queries.

Queries to
combine

Displays a list of named queries. Select two or more queries from the list to combine.

Union of queries Click to combine two or more queries by union. This option creates a new named
query that marks all tests that would have been marked by running each query, one
after the other, while retaining existing marks. Since Mark by Named Query clears
existing marks before running a query, the only way to achieve this result is to create
a new query that combines the queries by union.

Intersection of
queries

Click to combine two or more queries by intersection. This option creates a new
named query that marks every test that has the criteria specified in all constituent
queries. Use care when combining queries by intersection.

New/Edit Testplan Query Dialog Box
Use to construct a query from attributes, symbols, the script, the test case, and test data. This dialog is
only available when a test plan is open and the test plan window is active.

Click Testplan > Mark by Named Query and then click New or Edit. To access the Edit Testplan Query
dialog box, you must select an existing test plan query.

Query
name

Type the name of the query. This is optional. Named queries are stored by default in
testplan.ini. The initialization file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Test Execution tab

Script Specifies the full path of the script that you want to display on the current line of the test plan.
To browse for the correct script, click Scripts to display the Testplan Detail Scripts dialog
box. Once you select a script, the Testplan Editor writes the selected script into the test plan,
beginning the line with the reserved word script, followed by a colon.

Test case Specifies the name of the test case that you want to display on the current line of the test
plan. To browse for the correct test case, click Test Cases to view the test cases contained in
the script that you have specified in the Script field. Once you select a test plan from the
Testplan Detail Testcase dialog box, the Testplan Editor writes the selected test case into
the test plan, beginning the line with the reserved word testcase, ddatestcase for a data-
driven test case, followed by a colon. To build a query that marks only manual tests, type the
keyword manual into the Test case field.

Test Plans | 143

Test data Specifies the data values that you want to pass to the test case. Separate each value with a
comma. The Testplan Editor writes the data you specify here to the current line of the test
plan, beginning the line with the reserved word testdata, ddatestdata for a data-driven
test case, followed by a colon.

Scripts Click to select a script to include in the query or type the script name into the Script field.

Test
Cases

Click to select a test case to include in the query or type the test case name into the Test
case field.

Test Attributes tab

Use the Test Attributes tab to assign existing attribute values to your test plan. For information about
adding new attributes and values, see Defining an Attribute and the Values of the Attribute.

Category Lists the available categories. Click the arrow to select a category from the list.

Component Lists the available components. Click the arrow to select a component from the list.

Developer Displays the available developers. Click the arrow to select a developer from the list.

Symbols tab

Note: Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters *
(asterisk) and ? (question mark) are supported for partial matches: * is a placeholder for 0 or more
characters, and ? is a placeholder for 1 character.

Symbols will be ignored for a data-driven test case.

Edit Select a symbol from the list and then click Edit to modify the symbol in the field below the
symbols list. Click Replace after you have made your modifications.

Remove Select a symbol from the list and then click Remove to remove the symbol from the test plan.

Add Type the symbol definition in the field below the symbols list, and then click Add. The newly-
defined symbol displays in the list. You do not need to enter the $ character because the
Testplan Editor takes care of this when it inserts the definitions into the test plan.

Create Session Dialog Box
You can use the Create Session dialog box to create a new manual test session. Select a product, then
use the list boxes to enter test data such as component, platform, version, and build. You can use the
Named Query box to select tests that have been marked by a Named Query.

When you are using the Create Session dialog box for a new manual session, inactive and active products
are displayed.

In order for reports to properly reflect your manual session, it is important to completely assign test data.
For example, if you do not assign a build to this session, this session is not reflected on any reports that
are based on builds.

Testplan Detail Dialog Box
Use the Testplan Detail dialog box to:

• Specify valid script, test case, and test data statements.
• Assign attribute values to your test plan.

144 | Test Plans

• Add, edit, or delete a symbol associated with the test plan.

This dialog box is only available when a test plan is open and the Testplan dialog box is active.

Click Testplan > Testplan Detail. You can also place your cursor in a test case, click the right mouse
button, and then select Test Details.

The box at the top of the dialog displays your cursor position in the test plan when you opened the dialog
box. The black arrow in the left margin identifies the test at which your cursor is positioned in the test plan.
This is the test description to which you are adding details. Any details will apply to this test and any tests
that inherit details from this test. If the test case and script associated with the current test description are
inherited from a higher level in the test plan, they are shown in blue; otherwise, they are shown in black.

Test Execution tab

Script Specifies the full path of the script that you want to appear on the current line of the test plan. To
browse for the correct script, click Scripts to display the Testplan Detail - Script dialog. Once
you select a script, the Testplan Editor writes the selected script into the test plan, beginning
the line with the reserved word script, followed by a colon.

Test
case

Specifies the name of the test case that you want to display on the current line of the test plan.
To browse for the correct test case, click Test Cases to view the test cases contained in the
script you have specified in the Script field. Once you select a test plan from the Testplan
Detail - Testcase dialog box, the Testplan Editor writes the selected test case into the test
plan, beginning the line with the reserved word testcase, or ddatestcase for a data-driven
test case, followed by a colon. Selecting the test case ensures that the proper keywords are
inserted into the test plan.

Test
data

Specifies the data values that you want to pass to the test case. Separate each value with a
comma. The Testplan Editor writes the data you specify here to the current line of the test
plan, beginning the line with the reserved word testdata , or ddatestcase for a data-driven
test case, followed by a colon. To select certain rows to use to run the data-driven test case,
click Specify Rows to view the Specify Rows dialog box.

Test Attributes tab

Use the Test Attributes tab to assign existing attribute values to your test plan.

Category Displays the categories available. Click the arrow to select from the list of available
categories.

Component Displays the components available. Click the arrow to select from the list of available
components.

Developer Displays the available developers. Click the arrow to select from the list of available
developers.

Symbols tab

Use the Symbols tab to add, edit, or delete a symbol associated with the test. If a symbol is defined at a
level in the test plan where it can be shared by a group of tests, each test can assign its own local value to
the symbol, overriding whatever value the symbol had at the higher level. Locally assigned symbols display
in black. Symbols that inherit their values display in blue.

Note: Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters *
(asterisk) and ? (question mark) are supported for partial matches: * is a placeholder for 0 or more
characters, and ? is a placeholder for 1 character. Symbols are ignored for a data-driven test case.

Test Plans | 145

Edit Select a symbol from the list and then click Edit to modify the symbol in the text box below the
list. Click Replace after you have made your modifications.

Remove Select a symbol from the list and then click Remove to remove the symbol from the test plan.

Add Type the symbol definition in the box below the list of symbols and then click Add. The newly-
defined symbol displays in the list. You do not need to enter the $ character because the
Testplan Editor takes care of this for you when it inserts the definitions into the test plan.

Testplan Detail - Testcase Dialog Box
Use the Testplan Detail - Testcase dialog box to select a test case to add to the currently selected test
plan.

Click Testplan > Detail, click the Test Execution tab, specify a script in the Script field, and then click
Testcases.

Testcase Lists the test cases available in the currently selected script. Select the test case that you want
to enter into the test plan from the list. Silk Test Classic enters the correct Testplan Editor
syntax into the test plan.

Define Attributes Dialog Box
Use to define or rename the Testplan Editor attributes, as well as add, rename, or remove attribute
values. This dialog box is only available when a test plan is open and the test plan window is active.
Attribute values are stored in the testplan.ini file.

To open the Define Attributes dialog box, click Testplan > Define Attributes in the Silk Test Classic
menu.

Attributes Displays the list of attributes defined in the Testplan Editor. An attribute is a site-specific
characteristic that you define for your test plan and associate with tests. Attributes allow you
to query or execute sections of the test plan or report on various characteristics. The
Testplan Editor has three predefined attributes:

Category Specifies the type of test case or the type of the group of test cases used in
your QA Department, for example Smoke Test.

Component Specifies the pages or application modules of the application under test
which should be tested in this test plan.

Developer Specifies the group of QA engineers which are assigned to develop the test
case or group of test cases in the test plan.

New Displays the New Attribute dialog box, which you can use to define a new attribute. You can
then use the Define Attributes dialog box to assign values to the new attribute.

Delete Deletes the selected attribute. When you delete an attribute, you also delete the values of the
attribute.

Name Displays the name of the attribute that you have selected in the Attributes list. You can edit
the attribute name by modifying the text in the Name field.

146 | Test Plans

Type Displays the type that is associated with the currently selected attribute in the Attributes list.
An attribute may be one of the following types:

• Normal
• Edit
• Set

This field is display-only.

Values Displays the values that are associated with the selected attribute type.

Edit Click to modify the selected attribute name and value. You must select an attribute from the
Attributes list and a value from the Values list before the Edit button is available. To modify
the attribute name, edit the text in the Name field. To modify the value, edit the text in the field
next to the Replace button, and then click Replace.

Remove Removes the selected value from the list. You must select an attribute from the Attributes list
and a value from the Values list before the Remove button is available. To remove an
attribute, you must select the attribute from the Attributes list, and then click Delete.

Add Allows you to add a new value that should be associated with the selected attribute type. You
must select an attribute from the Attributes list and type a value in the text field before the
Add button is available. You cannot assign values for attributes of type Edit. Attribute values
are stored in the testplan.ini file.

New Attribute Dialog Box
Use to define new attributes. You can define up to 254 attributes or rename the predefined attributes,
Developer, Component, and Category. This dialog is only available from the Define Attributes dialog.

Click Testplan > Define Attributes and then click New.

Name Name of the attribute you are defining, using up to 11 characters. Attribute names cannot have
spaces and are not case sensitive.

Type Click to specify a Type for the new attribute you are defining. Specifying a Type is optional. You
can select from the following types:

Normal Values are assigned when defining the attribute. You can pick a value from the list
when associating attributes with the testplan statement.

Edit Values are not assigned when defining the attribute. You must type your own values
when you use the attribute in a testplan.

Set Values are assigned when defining the attribute. The Set type is similar to the Normal
type, except that you can pick multiple values from the list when associating attributes
with the testplan statement.

Update Manual Tests Dialog Box
Use the Update Manual Tests dialog box to describe the state of manual tests included in the test plan.
This dialog is only available when a test plan that contains manual tests is active.

To open the Update Manual Tests dialog box, click Testplan > Run Manual Tests .

Test Plans | 147

Plan file Displays the path and name of the currently selected test plan.

Manual tests Lists all manual tests contained within the currently selected test plan. Select the
manual test that you want to update from this list.

Incomplete Click to mark the currently selected manual test case incomplete.

Complete Click to mark the currently selected manual test case complete. This means that a test
has been defined. A manual test marked as Complete is tabulated as complete in the
Testplan Completion reports.

Has been run Click to mark the currently selected test case as having been run. The current date and
time display in the Run at box. You can then indicate if the test case passed or failed
by clicking the appropriate button. A test marked Has been run is considered
complete in Testplan Completion reports.

Failed Click to indicate that the currently selected manual test failed. This button is available
only when you select Has been run in the Completion area.

Passed Click to indicate that the currently selected manual test passed. This button is available
only when you select Has been run in the Completion area.

Comments for
<currently
selected
manual
testcase>

Type any comments you want to associate with the currently selected manual test.

Print Click to print status information for the manual tests included in the currently selected
test plan. This includes the test case name, status, and run information, if applicable.

Run at Specify when the test was run using this syntax: year-month-day
hours:minutes:seconds YYYY-MM-DD HH:MM:SS Hours, minutes, and seconds
are optional. For example, enter 2011-10-01 to indicate the test was run Oct 1, 2011.

Machine Optional: Specify the name of the machine on which the test was run.

Duplicate Test Descriptions dialog box
This dialog box is displayed when a managed test plan is saved and duplicate test descriptions are found.
These duplicates are usually a result of the editing process.

You can select a test description that will retain the original test ID, or you can use Reset All IDs to
generate new identifiers for all test descriptions. Reset All IDs has database ramifications and affects any
existing Silk Central and Issue Manager references to the test description ID. This means that an existing
reference will no longer be valid.

148 | Test Plans

Designing and Recording Test Cases with
the Open Agent

This section describes how you can design and record test cases with the Open Agent.

Creating Test Cases with the Open Agent
This section describes how you can use the Open Agent to create test cases.

Recording Test Cases for Standard and Web
Applications

Note: Before you can record a test case, you have to configure the application that you want to test.

This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Select Test Type dialog box opens.

2. Select 4Test Testcase.

3. Click OK. The Record Testcase dialog box opens.

4. Type the name of your test case into the Testcase name field.

Test case names are not case sensitive; they can have any length and they can consist of any
combination of alphabetic characters, numerals, and underscore characters.

5. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you choose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

6. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

7. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

8. To stop recording, click Stop in the Recorder. Silk Test Classic displays the Record Testcase dialog
box, which contains the code that has been recorded for you.

Designing and Recording Test Cases with the Open Agent | 149

9. To resume recording your interactions, click Resume Recording.

10.To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

11.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

12.Click OK. Silk Test Classic adds the recorded actions to the specified script file, and opens the file in the
editor.

Recording Test Cases for Mobile Applications
This functionality is supported only if you are using the Open Agent.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. With this approach, you
combine the advantages of INC files with the advantages of dynamic object recognition. For example,
scripts can use window names in the same manner as traditional, Silk Test Classic tag-based scripts and
leverage the power of XPath queries.

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Select Test Type dialog box opens.

2. Select 4Test Testcase.

3. Click OK. The Record Testcase dialog box opens.

4. Type the name of your test case into the Testcase name field.

Test case names are not case sensitive; they can have any length and they can consist of any
combination of alphabetic characters, numerals, and underscore characters.

5. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you choose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

6. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Testcase dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

7. On the device or the Emulator, interact with your native mobile application, driving it to the state that you
want to test.

8. In the Recording window, perform the actions that you want to record.

a) Click on the object with which you want to interact. Silk Test Classic performs the default action for
the object. If there is no default action, or if you have to insert text or specify parameters, the
Choose Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

150 | Designing and Recording Test Cases with the Open Agent

c) Optional: If the action has parameters, type the parameters into the parameter fields. Silk Test
Classic automatically validates the parameters.

d) Click OK to close the Choose Action dialog box. Silk Test Classic adds the action to the recorded
actions and replays it on the mobile device or emulator.

For information about how to record an interaction with a mobile device, see Interacting with a Mobile
Device.

9. To verify an image or a property of a control during recording, click Ctrl+Alt.

10.Optional: To interact with an object that is currently not visible in the Recording window, use the
Hierarchy View:

a) Click Toggle Hierarchy View. The Hierarchy View opens.
b) In the object tree, right-click on the object on which you want to perform an action.
c) Click Add New Action. The Choose Action dialog box opens.
d) Proceed as with any other action.

For example, to open the main menu of the device or emulator, right-click on the MobileDevice object in
the object tree and select the action PressMenu().

11.To pause the recording of interactions with the application, for example to move the application into a
different state, click Pause.

12.To resume recording interactions, click Start.

13.To add the recorded interactions to a script, click Stop. If you have interacted with objects in your
application that have not been identified in your include files, the Update Files dialog box opens.

14.Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

Recording a Test on Microsoft Edge
This functionality is supported only if you are using the Open Agent.

Before you can record a Silk Test Classic test, you must have created a Silk Test Classic project.

When starting the interaction with a web application on Microsoft Edge, Silk Test Classic closes any open
instance of Microsoft Edge and starts a new browser. This new browser uses a temporary profile without
add-ons and with an empty cache. This instance of Microsoft Edge is closed when shutting down the Open
Agent or when starting to test another application outside Microsoft Edge.

Note: You can currently not record keyword-driven tests on Microsoft Edge.

To record a new test for a web application on Microsoft Edge:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Testcase.

3. Type a name for the new test into the Testcase name field.

4. Click Start Recording.

5. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

6. Optional: Select an Orientation for the browser window.

7. The Interactive Recording window opens and displays the application under test. Perform the actions
that you want to record.

Designing and Recording Test Cases with the Open Agent | 151

a) Click on the object with which you want to interact. Silk Test Classic performs the default action for
the object. If there is no default action, or if you have to insert text or specify parameters, the
Choose Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk Test Classic automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk Test Classic adds the action to the recorded

actions and replays it on the mobile device or emulator.

During recording, Silk Test Classic displays the mouse position next to the recording window. You can
toggle the location to switch between displaying the absolute mouse position on the device display and
the mouse position in relation to the active object. For additional information about the actions available
during recording, see Actions Available During Recording.

8. Click Stop. The Record Testcase dialog box opens.

9. Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

10.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Recording Window Declarations that Include Locator
Keywords
A window declaration specifies a cross-platform, logical name for a GUI object, called the identifier, and
maps the identifier to the object’s actual name, called the tag or locator. You can use locator keywords,
rather than tags, to create scripts that use dynamic object recognition and window declarations. Or, you
can include locators and tags in the same window declaration.

To record window declarations that include locator keywords, you must use the Open Agent.

To record window declarations using the Locator Spy:

1. Configure the application to set up the technology domain and base state that your application requires.

2. Click Record > Window Locators. The Locator Spy opens.

3. Position the mouse over the object that you want to record and perform one of the following steps:

• Press Ctrl+Alt to capture the object hierarchy with the default Record Break key sequence.
• Press Ctrl+Shift to capture the object hierarchy if you specified the alternative Record Break key

sequence on the General Recording Options page of the Recording Options dialog box.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination. To
change the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

• If you use Picking mode, click the object that you want to record and press the Record Break keys.

4. Click Stop Recording Locator.

The Locator text box displays the XPath query string for the object on which the mouse rests. The
Locator Details section lists the hierarchy of objects for the locator that displays in the text box. The
hierarchy listed in the Locator Details section is what will be included in the INC file.

152 | Designing and Recording Test Cases with the Open Agent

5. To refine the locator, in the Locator Details table, click Show additional locator attributes, right-click
an object and then choose Expand subtree. The objects display and any related attributes display in
the Locator Attribute table.

6. To replace the hierarchy that you recorded, select the locator that you want to use as the parent in the
Locator Details table. The new locator displays in the Locator text box.

7. Perform one of the following steps:

• To add the window declarations to the INC file for the project, position your cursor where you want to
add the window declarations in the INC file, and then click Paste Hierarchy to Editor.

• To copy the window declarations to the Clipboard, click Copy Hierarchy to Clipboard and then
paste the window declarations into a different editing window or into the current window at the
location of your choice.

8. Click Close.

Recording Locators Using the Locator Spy
This functionality is supported only if you are using the Open Agent.

Use the Locator Spy to record the locator of a specific object in your application under test. You can then
copy the locator to the test case or to the Clipboard.

1. Configure the application to set up the technology domain and base state that your application requires.

2. Click File > New. The New File dialog box opens.

3. Select 4Test script and then click OK. A new 4Test Script window opens.

4. Click Record > Window Locators. The Record Locator dialog appears.

5. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you choose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

6. Click Start Recording. Silk Test Classic performs the following actions:

• Closes the Record Locator dialog box.
• Starts your application, if it was not already running. If you have not configured the application yet,

the Select Application dialog box opens and you can select the application that you want to test.
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

7. Position the mouse over the object that you want to record. The related locator XPath query string
shows in the Selected Locator text box. The Locator Details section lists the hierarchy of objects for
the locator that displays in the text box.

Note: If you are testing on a browser, the Selected Locator field displays the locator only when
you actually capture it.

8. Perform one of the following steps:

• Press Ctrl+Alt to capture the object. The Locator field displays the XPath query string for the object.
You can edit the locator.

• Press Ctrl+Shift to capture the object if you specified the alternative Record Break key sequence on
the General Recording Options page of the Recording Options dialog box.

Designing and Recording Test Cases with the Open Agent | 153

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination to use to
pause recording. To change the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

• Click Stop Recording Locator to capture the locator that is currently displayed in the Locator field.
• If you use Picking mode, click the object that you want to record and press the Record Break keys.

Note: Silk Test Classic does not verify whether the locator string is unique. Micro Focus
recommends that you ensure that the string is unique, because otherwise additional objects might
be found when you run the test. Furthermore, you might want to exclude some of the attributes
that Silk Test Classic identifies because the string will work without them.

9. Click Validate Locator to highlight the object, to which the locator in the Locator field corresponds, in
the test application.

10.To refine the locator, in the Locator Details table, click Show additional locator attributes, right-click
an object and then choose Expand subtree. The objects display and any related attributes display in
the Locator Attribute table.

11.Optional: You can replace a recorded locator attribute with another locator attribute from the Locator
Details table.

For example, your recorded locator might look like the following:

/Window[@caption='MyApp']//Control[@id='table1']

If you have a caption Files listed in the Locator Details table, you can manually change the locator to
the following:

/Window[@caption='MyApp']//Control[@caption='Files']

The new locator displays in the Selected Locator text box.

12.Copy the locator to the test case or to the Clipboard.

• Click Paste Hierarchy to Editor to paste the window declarations that are displayed in the Locator
Details into the open Silk Test Classic file.

• Click Copy Hierarchy to Clipboard to copy the window declarations that are displayed in the
Locator Details to the Clipboard.

• Click Paste Locator to Editor to paste the contents of the Locator field into the open Silk Test
Classic file.

• Click Copy Locator to Clipboard to copy the contents of the Locator field to the Clipboard.

Tip: If you have copied code to the Clipboard, you can click Edit > Paste in the Silk Test Classic
menu to insert the code into the current window at the location of your choice, or even into a
different editing window.

13.Click Close.

Recording an Application State
You can define an application state routine that Silk Test Classic runs before it executes your test case. You
have to create the application state before recording the test cases that are associated with the application
state. You can manually write an application state routine or you can use the Record Application State
dialog box to record an application state.

To record an application state:

1. Open the file in which you want to place the application state.

This can either be the test frame file for the application or the script file where the associated test cases
are defined.

If you put the application state in the test frame file, it will be available to all test cases. If you put it in the
script file, it will be available only to test cases in that script file.

2. Open the application that you want to test.

154 | Designing and Recording Test Cases with the Open Agent

3. Click Record > Application State. If the current window is not a script or an include file, Silk Test
Classic prompts you to create a new include file.

4. Type the name of your new application state in the Application State Name text box.

The application state name must be less than 64 characters.

5. Select an application state from the Based On list box.

This specifies an existing application state on which the new application state is based. By default, the
last application state that you have specified in this field is selected.

6. If you are using the Classic Agent, you can check the Show AppState status window check box to
display a status window while Silk Test Classic is driving the application to the specified base state. If
the status window obscures critical controls in your application, you can suppress it by un-checking this
check box. By default, this check box is not checked.

7. Click Start Recording. Silk Test Classic closes the Record Application State dialog box and displays
one of the following:

• The Record Status for the Classic Agent window, if you are using the Classic Agent.
• The Recorder window, if you are using the Open Agent.

The Status field flashes Recording.

8. Drive your application to the state you want to record. At any point, you can record a verification by
pressing Ctrl+Alt.

9. When you have finished recording an application state, click Done on the Record Status window.

Silk Test Classic redisplays the Record Application State dialog box. The Application State Code
field contains the 4Test code that you have recorded. You can take the following actions:

All the information in the window is
complete and what you expect.

Click Paste to Editor to paste the recorded 4Test code to the
editor. Silk Test Classic closes the Record Application State
dialog box and places the new application state in your file.

You want to alter the code. Edit the Application State Code field.

The application state name is not
what you want.

Edit the name in the Application State Name field.

The application state on which this
application state is based is not the
one you want.

Delete the code in the Application State Code field, select a
new application state from the list, and click Resume
Recording to re-record the application state.

The application state routine is not
finished.

Click Resume Recording. Silk Test Classic opens the
Record Status window.

10.Click Set Recovery System to specify the base state for the application under test.

This button is only available when wMainWindow has not been set, for example if you have referenced
an include file that does not contain constwMainWindow = MyWin.

Recording Additional Actions Into an Existing Test
This functionality is supported only if you are using the Open Agent.

Once a test is created, you can open the test and record additional actions to any point in the test. This
allows you to update an existing test with additional actions.

1. Open an existing test script.

2. Select the location in the test script into which you want to record additional actions.

Note: Recorded actions are inserted after the selected location. The application under test (AUT)
does not return to the base state. Instead, the AUT opens to the scope in which the preceding
actions in the test script were recorded.

Designing and Recording Test Cases with the Open Agent | 155

3. Click Record > Actions.

Silk Test Classic minimizes and the Recording window opens.

4. Record the additional actions that you want to perform against the AUT.

For information about the actions available during recording, see Actions Available During Recording.

5. To stop recording, click Stop in the Recording window.

6. In the Record Actions dialog box, click Paste to Editor to insert the recorded actions into your script.

7. Click Close to close the Record Actions dialog box.

Actions Available During Recording
This functionality is supported only if you are using the Open Agent.

During recording, you can perform the following actions in the Recording window:

Action Steps

Pause recording. Click Pause to bring the AUT into a specific state without recording the actions,
and then click Record to resume recording.

Change the sequence of the
recorded actions.

To change the sequence of the recorded actions in the Recording window,
select the actions that you want to move and drag them to the new location.

Select multiple actions. To select multiple actions, press Ctrl and click on the actions or press Shift
and click on the first and the last action that you want to select.

Replay recorded actions. To replay recorded actions from the Recording window, select the actions and
click Play. To select all recorded actions, click on Recorded Actions and then
click Play.

Remove a recorded action. To remove a falsely recorded action from the Recording window, hover the
mouse cursor over the action and click Delete.

Verify an image or a property of a
control.

Move the mouse cursor over the object that you want to verify and press Ctrl
+Alt.

Change the object map entry If you are recording against a web application or a mobile web app and if the
automatically generated object map entry for a recorded object is difficult to
read or contains special characters, you might want to change the object map
entry to something more readable. You can do this during recording by right-
clicking on the object and then expanding the Object identification area of the
Choose Action dialog. Then you can edit the object map entry in the Object
Map ID field. For example, the automatically generated object map entry for an
image in our demo application is http demo borland. If you look at the object
map, it is be difficult to understand what object this entry refers to. Changing the
object map entry to something like InsuranceWebHomePageBanner would
possibly provide more context. This functionality is available for all supported
desktop and mobile browsers except Internet Explorer.

Select a different locator If you are recording against a web application or a mobile web app and the
automatically generated locator for a recorded object does not meet your
requirements, you can click on the arrow in the Locator field and let Silk Test
Classic generate alternative locator suggestions for you. All suggested locators
uniquely identify the object. This functionality is available for all supported
desktop and mobile browsers except Internet Explorer.

Setting Recording Options for the Open Agent
This functionality is supported only if you are using the Open Agent.

156 | Designing and Recording Test Cases with the Open Agent

You can set the recording options to optimize recording with the Open Agent in the following two ways:

• In the Recording Options dialog box.
• Within a script, by using the SetOption method.

Using SetOption overrides the value specified for the option in the Recording Options dialog box. If you
do not set an option with SetOption, the value specified in the Recording Options dialog box is the
default.

To set the recording options in the Recording Options dialog box, perform the following actions:

1. Click Options > Recorder. The Recording Options dialog box appears.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

3. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

4. To record mouse move actions for web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

5. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

6. To record text clicks instead of clicks, check the OPT_RECORD_TEXT_CLICK check box.

Recording text clicks is enabled by default, and is the fallback mechanism when testing applications
which display texts. Micro Focus recommends to leave this check box checked.

7. To resize the application under test (AUT) when a recording session starts, check the
OPT_RESIZE_APPLICATION_BEFORE_RECORDING check box.

This check box is checked by default, enabling the Silk Recorder to display next to the AUT. When this
check box is unchecked, the AUT and the Silk Recorder might overlap.

8. Define custom attributes for recording.

a) Select the Custom Attributes tab.
b) Select the technology domain of the application that you are testing.

For example, to set custom attributes for a web application, select xBrowser.
c) Add the attributes that you want to use to the list.

Separate attribute names with a comma.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption
will change when you translate the application into another language, and the index might change
when another object is added. If custom attributes are available, the locator generator uses these
attributes before any other attribute. The order of the list also represents the priority in which the
attributes are used by the locator generator. If the attributes that you specify are not available for the
objects that you select, Silk Test Classic uses the default attributes for the application that you are
testing.

Note: You cannot set custom attributes for Apache Flex applications.

9. Set the classes that you want to ignore during recording and replay.

a) Select the Transparent Classes tab.
b) Add the names of any classes that you want to ignore to the list.

Separate class names with a comma.

Designing and Recording Test Cases with the Open Agent | 157

10.Specify recording options for web applications.

a) Select the Browser tab.
b) Add names of attributes that you want to ignore during recording to the Locator attribute name

exclude list.

For example, if you do not want to record attributes named height, add height to the list. Separate
attribute names with a comma.

c) Add values of attributes that you want to ignore during recording to the Locator attribute value
exclude list.

For example, if you do not want to record attributes that have the value x-auto, add x-auto to the list.
d) Check the OPT_XBROWSER_LOWLEVEL check box to record native user input instead of DOM

functions.

For example to record Click instead of DomClick and TypeKeys instead of SetText.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a
plug-in or AJAX, Micro Focus recommends using high-level DOM functions, which do not require the
browser to be focused or active during playback. As a result, tests that use DOM functions are faster
and more reliable.

e) Specify the maximum length for locator attribute values in the
OPT_XBROWSER_LOCATOR_MAX_ATTRIBUTE_VALUE_LENGTH field.

f) Check the OPT_XBROWSER_ENABLE_SMART_CLICK_POSITION check box to automatically
search for a free click spot on the object.

If disabled, the click is always made in the center of the object, and might possibly be performed an
object layered over the target.

g) To force Mozilla Firefox to open external links in a new tab instead of a new window, check
OPT_FIREFOX_SINGLE_WINDOW_MODE.

Note: This option only works with Mozilla Firefox 52 or later.

h) To disable iframe and frame support for browsers, uncheck
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.

If you are not interested in the content of the iframes in a web application, disabling the iframe
support might improve replay performance. For example, disabling the iframe support might
significantly improve replay performance for web pages with many adds and when testing in a mobile
browser. This option is ignored by Internet Explorer. This option is enabled by default.

i) In the Whitelist for iframe support, specify attributes of iframes and frames that should be
considered during testing.

Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are excluded. Wildcards are allowed, for example the
entry "name:*form" would include <IFRAME name="user-form" src=…>. This option is ignored by
Internet Explorer. If the list is empty, all iframes and frames are considered during testing. Separate
multiple entries with a comma.

11.In the Blacklist for iframe support, specify attributes of iframes and frames that should be excluded
during testing.

Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are considered during testing. Wildcards are allowed, for
example the entry "src:*advertising*" would exclude <IFRAME src=http://my.domain/advertising-
banner.html>. This option is ignored by Internet Explorer. If the list is empty, all iframes and frames are
considered during testing. Separate multiple entries with a comma.

12.Specify recording options for WPF applications.

a) Check the OPT_WPF_PREFILL_ITEMS check box to pre-fill items in a WPFItemsControl, for
example a WPFComboBox or WPFListBox, during recording and playback.

b) Add the names of custom classes that you want to expose during recording and playback to the
Custom WPF class names list.

158 | Designing and Recording Test Cases with the Open Agent

13.Specify whether to use Microsoft UI Automation support instead of the normal Win32 control
recognition.

a) Click the UI Automation tab.
b) Set Enable Microsoft UI Automation Support to True to enable Microsoft UI Automation support

instead of the normal Win32 control recognition.

Note: The UI Automation support overrides the standard technology-domain-specific support.
When you are finished interacting with the controls that require UI Automation support, disable
the UI Automation support again to resume working with standard controls.

c) In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name
to the grid.

Separate attribute names with a comma.
d) In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to
the grid.

Separate attribute values with a comma.

14.Click OK.

Best Practices for Creating Test Scripts
This functionality is supported only if you are using the Open Agent.

The way in which you write your test cases might have a great impact on the performance and stability of
your test set. During recording, Silk Test Classic creates scripts that are as fast and stable as possible.
However, there might be circumstances that require you to manually create or edit test scripts. This topic
provides some general guidelines that might help you create test scripts that are maintainable, reusable,
and lead to stable tests.

• Name your tests consistently and ensure that test names are self-explaining. Try to make the names
correspond with the application under test and the tested functionality. For example, the test names
MyApp_SuccessfulLogin and MyApp_FailingLogin are far easier to understand for other users than
Untitled_42 and Untitled_43.

• Describe your test cases as thoroughly as possible in a comment. Without a good description of the test
case in natural language, someone who needs to change the implementing code might not be able to
comprehend what exactly the test is doing.

• Ensure that your application under test is at the proper state when the test case starts. Return the
application under test to the correct state before executing the actions in a test case.

• Ensure that your application under test is at a proper state when the test case finishes. If additional
tests depend on the outcome of the test, ensure that they can start. Return the application under test to
the correct state when the actions in a test case are executed.

• Whenever possible, ensure that your test cases are not depending on the results of other test cases.
When this is not possible, ensure that the test cases are executed in the right order.

• Add verifications to your tests, to test the correctness of your application under test as well as the
functional flow.

• Use keyword-driven testing to create highly reusable action sets. Bundle commonly used actions into
keywords, combine keywords that are often executed sequentially into keyword sequences, and execute
combinations of keywords and keyword sequences as keyword driven-tests.

• To keep your tests maintainable and reusable, prefer writing multiple simple test cases that are
combinable to writing complex test cases.

• To avoid redundancies in your test set, prefer updating existing test cases to adding new test cases.

Designing and Recording Test Cases with the Open Agent | 159

Specifying Whether to Use Locators or Tags to Resolve
Window Declarations
This functionality is supported only if you are using the Open Agent.

Note: When using the Open Agent to replay tests, you can include locators and tags in the same
window declaration. However, tags are deprecated and can no longer be recorded. Micro Focus
recommends to use only locators with the Open Agent.

1. Click Options > General. The General Options dialog box opens.

2. Specify if you want to use locators or tags to resolve window declarations.

• To use locators to resolve window declarations, check the Prefer Locator check box.
• To use tags to resolve window declarations, uncheck the Prefer Locator check box.

3. Click OK.

Saving a Script File
To save a script file, click File > Save. If it is a new file, Silk Test Classic prompts you for the file name and
location.

If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes if
you want to add the file to the open project, or No if you do not want to add this file to the project.

To save a new version of a script’s object file when the script file is in view-only mode, choose File > Save
Object File.

If you are working within a project, you can add the file to your project. If you add object files (.to, .ino)
to your project, the files will display under the Data node on the Files tab. You cannot modify object files
within the Silk Test Classic editor because object files are binary. To modify an object file, open the source
file (.t or .inc), edit it, and then recompile.

Testing an Application State
Before you run a test case that is associated with an application state, make sure the application state
compiles and runs without error.

1. Make the window active that contains the application state and choose Run > Application State.

2. On the Run Application State dialog box, select the application state you want to run and click Run.

If there are compilation errors, Silk Test Classic displays an error window. Fix the errors and rerun the
application state.

Editing Remote Locations
This functionality is supported only if you are using the Open Agent.

You can use the Remote Locations dialog box to add any browsers and mobile devices on a remote
location to the set of applications that you can test.

1. Click Options > Edit Remote Locations. The Remote Locations dialog box appears.

2. To add an additional remote location, perform the following actions:

a) Click on the arrow to the right of Add Location to specify whether you want to add a remote location
which is using the Silk Test Information Service, Silk Central, or the Mobile Center.

160 | Designing and Recording Test Cases with the Open Agent

Note: You can only configure one Silk Central as a remote location. If you have already
configured the integration with Silk Central, Silk Central is listed in the remote locations list.

b) Click Add Location. The Add Location dialog box appears.
c) Type the URL of the remote location and the port through which Silk Test Classic connects to the

information service on the remote machine into the Host field.

The default port is 22901.
d) If you are trying to add a secure connection through HTTPS to Mobile Center, install the Mobile

Center certificate.

For additional information, see Installing the Certificate for an HTTPS Connection to Mobile Center.
e) If you are trying to add connection to Mobile Center, specify your User name and Password for

Mobile Center.

For information on changing the Mobile Center password, see Changing the Mobile Center
Password.

f) Optional: Edit the name of the remote location in the Name field.
g) Optional: Click Test to verify that the remote connection works.
h) Click OK.

3. To edit an existing remote location, click Edit.

4. To remove a remote location, click Remove.

5. Optional: To reduce the amount of browsers and devices in the Select Application dialog, click Do not
show devices and browsers from this location. The installed browsers and connected devices of the
remote location will no longer be displayed in the Select Application dialog. By default, all installed
browsers and connected devices of all remote locations are displayed in the Select Application dialog.

6. By default, remote locations are saved to %APPDATA%\Silk\SilkTest\conf
\remoteLocations.xml. To change the file in which the remote locations are saved, for example to
share the file with other team members, perform the following actions:

a) Click Sharing Options. The Sharing Options dialog box appears.
b) Click Save to shared file.
c) Click Browse to select the file.

You could also set the full path to the remote locations in a file named
remoteLocationsFileLocation.properties, for example if you want to use a file that is located
in a repository. For example, to use the remote locations that are specified in the file
remoteLocations.xml, under C:\mySources, create a file with the name
remoteLocationsFileLocation.properties in the folder %APPDATA%\Silk\SilkTest\conf
\ and type fileLocation=C\:\\mySources\\remoteLocations.xml into the file.

7. To load a set of already configured remote locations from a shared file, for example to use remote
locations that have been specified by another team member, perform the following actions:

a) Click Sharing Options. The Sharing Options dialog box appears.
b) Click Load from shared file.
c) Click Browse to select the file.

8. Click OK.

When you have added a remote location, the browsers that are installed on the remote location, including
Apple Safari on a Mac, are available in the Web tab of the Select Application dialog box, and the mobile
devices that are connected to the remote location are available in the Mobile tab of the Select Application
dialog box.

Overview of Recording the Stages of a Test Case
A test case includes several stages. The following table illustrates these stages, describing in high-level
terms the steps for each stage of a sample test case that tests whether the Find facility is working.

Designing and Recording Test Cases with the Open Agent | 161

After learning the basics of recording, you can record from within the test plan file, which makes recording
easier by automatically generating the links that connect the test plan to the test case.

Setup and Record

1. Open a new document.
2. Type text into the document.
3. Position the text cursor either before or after the text, depending on the direction of the search.
4. Click Find in the Search menu.
5. In the Find dialog box:

a. Type the text to search for in the Find What text box.
b. Select a direction for the search.
c. Make the search case sensitive or not.
d. Click Find Next to perform the search.

6. Click Cancel to close the Find dialog box.

Verify

Record a 4Test verification statement that checks that the actual search string found, if any, is the expected
search string.

Cleanup

1. Close the document.
2. Click No when prompted to save the file.

Recording the Cleanup Stage and Pasting the
Recording
After performing the verification, continue to interact with your application. This is the cleanup stage. For
example, in the sample test case, cleanup means closing the document window without saving it.

1. When you have finished recording your test case or just want to see what you have recorded, click
Done on the Record Status on Classic Agent window. Silk Test Classic displays the Record Test
Case window again. The Test case code field contains your interactions written as 4Test code.

2. Review the code and take the following actions:

• All the information in the window is complete and what you want, then click Paste to Editor. Silk Test
Classic closes the Record Test Case dialog box and places the new test case in your script file.

• If the test case name is not what you want, then edit the name in the Test case name field.
• If the application state is not the one you want, then delete the code in the Test case code field,

select a new application state from the list box and click Resume Recording to re-record the test
case.

• If the test case is not finished, then click Resume Recording. The Record Status on Classic
Agent window is reopened. You can continue to record your interactions.

Note: When you paste a recorded test case, or other recorded actions, such as when you use
Record Actions, into a script, Silk Test Classic indents the code under a recording statement to
facilitate playback. For more information, see Recording Statement.

3. Click Paste to Editor.

If you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens. Choosing Paste test case only, does not update any .inc files
while it pastes to the script with dynamically instantiated new objects. Update window declarations

162 | Designing and Recording Test Cases with the Open Agent

and test case will create window declarations for new objects and use the new identifiers in the
resulting test case.

Note: If you edit the contents of the Recorder window, then you must allow Silk Test Classic to
update the window declarations. The Paste test case only option will be disabled.

4. Click File > Save to save the script file.

Testing the Ability of the Recovery System to Close the
Dialog Boxes of Your Application
Before you begin to design and record test cases, make sure that the built-in recovery system can close
representative dialog boxes of your application. Although the recovery system is robust enough to be able
to close almost any application window, some applications may have windows that close in an
unconventional fashion.

Here are the three types of dialog boxes you should test:

• A modal dialog box, which is a dialog box that locks you out of the rest of your application until you
dismiss it.

• A non-modal dialog box.
• A non-modal dialog box that causes the display of a confirmation dialog box.

To test the ability of the recovery system to close your the dialog boxes of your application:

1. Start Silk Test Classic.

2. If you have not already done so, record a test frame for your application.

3. Choose Options > Runtime to ensure that your application’s test frame file is listed in the Use Files
field in the Runtime Options dialog box.

4. Start your application and invoke a representative dialog box.

5. In Silk Test Classic, click Run > Application State.

6. On the Run Application State dialog box, select the DefaultBaseState application state and click
Run.

7. Silk Test Classic executes the DefaultBaseState routine, which should close the dialog box and any
open windows, then display a results file.

If the built-in recovery system cannot close one of the three representative dialog boxes, you need to
modify the recovery system so that it understands how to close the dialog box.

Linking to a Script and Test Case by Recording a Test
Case
1. Place the cursor at the end of a test description or a group description.

2. Choose Record > Testcase. Silk Test Classic prompts you to name a script file to contain the test case.
Silk Test Classic does not prompt you for a script file if there is a script defined at a higher level and
inherited by the test case you are recording. If that script exists, Silk Test Classic puts the test case in
that script.

3. If prompted, select an existing script from the list or enter the name of a new script in the File Name text
box, then click OK.

4. On the Record Testcase dialog box, type the name for the test case and optionally select an
application state to be run before the recording starts.

5. Click Start Recording. Silk Test Classic displays the Recording Status dialog box. The dialog box
flashes the word Recording for the duration of the session.

6. When you are finished recording the actions that comprise the test case, click Done in the Recording
Status dialog box.

Designing and Recording Test Cases with the Open Agent | 163

7. On the Record Testcase dialog box, click Paste to Editor. Silk Test Classic closes the Record
Testcase dialog box and inserts the test case into the script file. It also adds the script and test case
statements to the test plan on a new line and indents them appropriately.

If the script file is inherited by the test case you are recording, only the testcase statement is pasted.

Recording Actions
Use the Record Actions dialog box to record the actions you perform to test an application. For example,
you can also use the dialog box to write a syntactically correct 4Test statement based on your manual
interaction with your application. This eliminates the need to search through the documentation for the
correct method and its arguments. Once the statement is recorded, click Paste to Editor to insert the
statement to your script.

This functionality is available only for projects or scripts that use the Classic Agent.

1. Click Record > Actions to open the Record Actions dialog box.

2. Perform the action that you want to record.

The dialog box displays the GUI object name when you point to an object. You can click Pause
Recording to review the object properties that you have recorded. When you click Resume Recording,
the status bar returns.

3. Press Ctrl+Alt to verify the action.

4. Click Paste to Editor and then click Close.

Locator Spy Dialog Box
This functionality is supported only if you are using the Open Agent.

Use the Locator Spy to record a locator keyword or window declarations.

Click Record > Window Locators.

Locator Displays the XPath query string for the object on which the mouse rests when you
press Ctrl+Alt or Ctrl+Shift. After capturing the identifier, you can edit it in this box.

Silk Test Classic does not verify whether the locator string is unique. We recommend
that you ensure that the string is unique. Otherwise additional objects might be found
when you run the test. Furthermore, you might want to exclude some of the attributes
that Silk Test Classic identifies, because the string will work without them.

Stop Recording
Locator

Click to capture the locator that is currently displayed in the Locator field.

Validate Locator Click to highlight the locator in the test application.

Paste Hierarchy
to Editor

Click to paste the window declarations into the open Silk Test Classic file. The
hierarchy that displays in the Locator Details section is copied.

Copy Hierarchy
to Clipboard

Click to copy the window declarations to the clipboard. Use Edit > Paste to insert the
code into a different editing window or to insert it into the current window at the
location of your choice. The hierarchy that displays in the Locator Details section is
copied.

Paste Locator to
Editor

Click to paste the locator into the open Silk Test Classic file. The content of the
currently active text field is copied.

Copy Locator to
Clipboard

Click to copy the locator to the clipboard. Use Edit > Paste to insert the code into a
different editing window or to insert it into the current window at the location of your
choice. The content of the currently active text field is copied.

164 | Designing and Recording Test Cases with the Open Agent

Record Testcase Dialog Box
Use the Record Testcase dialog box to record an entire test case, specifying the application state of your
choice and including verification statements.

To open the dialog box, click Record > Testcase in the Silk Test Classic menu.

Silk Test Classic will compile the currently active script file or test plan, if not already compiled, before
opening the Record Testcase dialog box. If the current window is not a script file or test plan, Silk Test
Classic prompts you to open a script file or create a new script file before opening the dialog box.

Testcase name Specifies the name of the test case you are going to record. Type the name of the test
case or accept the default. The test case name must be less than 128 characters.

Application
state

Specifies an application state on which this test case is based. Select an application
state from the list. The default is the last application state you specified in this field.

Testcase code Once you have completed recording the test case, this area displays the 4Test code
captured during recording.

Start Recording Click to close the dialog box. Silk Test Classic displays a message box indicating that
the base state is being set and displays one of the following:

• If you are using the Classic Agent, Silk Test Classic displays the Record Status for
the Classic Agent window.

• If you are using the Open Agent, Silk Test Classic displays the Recorder window.

Paste to Editor Click to close the dialog box and place the 4Test code, if any, in the associated file.

Set Recovery
System

Displays the Set Recovery System dialog box. This button is only available when
wMainWindow has not been set. For instance, if you have an include file referenced
that does not contain constwMainWindow = MyWin, then the button is available.
Once Silk Test Classic sees that wMainWin = Something, the button is disabled.

Update Files Dialog Box
Use to indicate whether you want to update window declarations on the fly after you have finished
recording.

Click Paste to Editor on the Record dialog boxes if the recorder discovers new windows or child objects.
This dialog box gives you the option of using the generated identifiers or the dynamically instantiated
variables.

Paste testcase/appstate
only

Select this option to paste the dynamically instantiated variables to the test
case or appstate. If you select this option, the Update Window Declaration
Detail area is unavailable. If you have clicked the Set Recovery System
button on the Record Testcase dialog box or the Record Application State
dialog box, this button is disabled. If you have configured your basestate, Silk
Test Classic creates a main window declaration and saves it to a .inc file.
That means that this option is not available to you.

Paste testcase/appstate
and update window
declaration(s)

Select this option paste the variables to the test case or appstate AND to add
the generated identifiers to a new file or an opened file. If you select this
option, the Update Window Declaration Detail area is available.

Update Window
Declaration Detail area

This area may contain one or both of the following messages.

Designing and Recording Test Cases with the Open Agent | 165

Input the file name to
store new window
objects

Indicate the name of the new file or the name of the referenced file (that is, a
file loaded into memory) to contain the window declarations. The file you
specify here is listed in the Use Files field on the Runtime Options dialog
box.

The window
declarations in the
following files will be
updated

If the recorder finds new child objects, Silk Test Classic lists the files that have
changed and updates them after you click OK.

Dynamic Object Recognition
Dynamic object recognition enables you to create test cases that use XPath queries to find and identify
objects. Dynamic object recognition uses a Find or FindAll method to identify an object in a test case.
For example, the following query finds the first top-level Shell with the caption SWT Test Application:

Desktop.find("/Shell[@caption='SWT Test Application']")

To create tests that use dynamic object recognition, you must use the Open Agent.

Examples of the types of test environments where dynamic object recognition works well include:

• In any application environment where the graphical user interface is undergoing changes. For example,
to test the Check Me check box in a dialog box that belongs to a menu where the menu and the dialog
box name are changing, using dynamic object recognition enables you to test the check box without
concern for what the menu and dialog box are called. You can then verify the check box name, dialog
box name, and menu name to ensure that you have tested the correct component.

• In a Web application that includes dynamic tables or text. For example, to test a table that displays only
when the user points to a certain item on the web page, use dynamic object recognition to have the test
case locate the table without regard for which part of the page needs to be clicked in order for the table
to display.

• In an Eclipse environment that uses views. For example, to test an Eclipse environment that includes a
view component, use dynamic object recognition to identify the view without regard to the hierarchy of
objects that need to open prior to the view.

Using dynamic object recognition compared to using hierarchical object recognition

The benefits of using dynamic object recognition rather than hierarchical object recognition include:

• Dynamic object recognition uses a subset of the XPath query language, which is a common XML-based
language defined by the World Wide Web Consortium, W3C. Hierarchical object recognition is based on
the concept of a complete description of the application's object hierarchy and as a result is less flexible
than dynamic object recognition.

• Dynamic object recognition requires a single object rather than an include file that contains window
declarations for the objects in the application that you are testing. Using XPath queries, a test case can
locate an object using a Find command followed by a supported XPath construct. Hierarchical object
recognition uses the include file to identify the objects within the application.

You can create tests for both dynamic and hierarchical object recognition in your test environment. You can
use both recognition methods within a single test case if necessary. Use the method best suited to meet
your test requirements.

Using dynamic object recognition and window declarations

Silk Test Classic provides an alternative to using Find or FindAll functions in scripts that use dynamic
object recognition. By default, when you record a test case with the Open Agent, Silk Test Classic uses
locator keywords in an include (.inc) file to create scripts that use dynamic object recognition and window
declarations. Using locator keywords with dynamic object recognition enables users to combine the
advantages of INC files with the advantages of dynamic object recognition. For example, scripts can use

166 | Designing and Recording Test Cases with the Open Agent

window names in the same manner as traditional, Silk Test Classic tag-based scripts and leverage the
power of XPath queries.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file. You must manually record test cases that use dynamic
object recognition without locator keywords. You can record the XPath query strings to include in test cases
by using the Locator Spy dialog box.

XPath Basic Concepts
Silk Test Classic supports a subset of the XPath query language. For additional information about XPath,
see http://www.w3.org/TR/xpath20/.

XPath expressions rely on the current context, the position of the object in the hierarchy on which the Find
method was invoked. All XPath expressions depend on this position, much like a file system. For example:

• "//Shell" finds all shells in any hierarchy starting from the current context.
• "Shell" finds all shells that are direct children of the current context.

Additionally, some XPath expressions are context sensitive. For example, myWindow.find(xPath) makes
myWindow the current context.

Silk Test Classic provides an alternative to using Find or FindAll functions in scripts that use XPath
queries. You can use locator keywords in an INC file to create scripts that use dynamic object recognition
and window declarations.

Object Type and Search Scope
A locator typically contains the type of object to identify and a search scope. The search scope is one of
the following:

• //
• /

Locators rely on the current object, which is the object for which the locator is specified. The current object
is located in the object hierarchy of the application's UI. All locators depend on the position of the current
object in this hierarchy, much like a file system.

XPath expressions rely on the current context, which is the position of the object in the hierarchy on which
the Find method was invoked. All XPath expressions depend on this position, much like a file system.

Note:

The object type in a locator for an HTML element is either the HTML tag name or the class name that
Silk Test Classic uses for this object. For example, the locators //a and //DomLink, where DomLink
is the name for hyperlinks in Silk Test Classic, are equivalent. For all non-HTML based technologies
only the Silk Test Classic class name can be used.

Example

• //a identifies hyperlink objects in any hierarchy relative to the current object.
• /a identifies hyperlink objects that are direct children of the current object.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Example

The following code sample identifies the first hyperlink in a browser. This example
assumes that a variable with the name browserWindow exists in the script that refers to

Designing and Recording Test Cases with the Open Agent | 167

http://www.w3.org/TR/xpath20

a running browser instance. Here the type is "a" and the current object is
browserWindow.

Using Attributes to Identify an Object
This functionality is supported only if you are using the Open Agent.

To identify an object based on its properties, you can use locator attributes. The locator attributes are
specified in square brackets after the type of the object.

Example

The following sample uses the textContents attribute to identify a hyperlink with the
text Home. If there are multiple hyperlinks with the same text, the locator identifies the
first one.

WINDOW link = WebBrowser.BrowserWindow.Find("//
a[@textContents='Home']")

Locator Syntax
To create tests that use dynamic object recognition, you must use the Open Agent.

Silk Test Classic supports a subset of the XPath query language to locate UI controls.

The following table lists the constructs that Silk Test Classic supports.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Supported Locator Construct Sample Description

// //a Identifies objects that are
descendants of the current object.

The example identifies hyperlinks on
a web page.

/ /a Identifies objects that are direct
children of the current object. Objects
located on lower hierarchy levels are
not recognized.

The example identifies hyperlinks on
a web page that are direct children of
the current object.

Attribute Example 1: //
a[@textContents='Home']

Example 2: //
div[@textContents='Price:
* USD']

Identifies objects by a specific
attribute. You can use the wildcards *
and ?in the attribute value.

Example 1 identifies hyperlinks with
the text Home, Example 2 uses a wild
card to identify a div with a price.

Index Example 1: //a[3]

Example 2: //
a[@textContents='Home']
[2]

Identifies a specific occurrence of an
object if there are multiple ones.
Indices are 1-based in locators.

Example 1 identifies the third
hyperlink and Example 2 identifies

168 | Designing and Recording Test Cases with the Open Agent

Supported Locator Construct Sample Description

the second hyperlink with the text
Home.

Logical Operators:

• and

• or

• not

• =

• !=

Example 1: //
a[@textContents='Remove'
or
@textContents='Delete']

Example 2: //
a[@textContents!
='Remove']

Example 3: //
a[not(@textContents='Dele
te' or @id='lnkDelete')
and @href='*/delete']

Identifies objects by using logical
operators to combine attributes.

Example 1 identifies hyperlinks that
either have the caption Remove or
Delete, Example 2 identifies
hyperlinks with a text that is not
Remove, and Example 3 shows how
to combine different logical operators.

ancestor Example 1: //
input[@id='username']/
ancestor::form

Example 2: //
input[@id='username']/
ancestor::div[@className=
'container']

Identifies ancestors, for example
parent, grandparent, and so on, of an
object.

Example 1 finds the form element
that has a child input element with the
identifier username, Example 2 finds
the div with the class name container
that has a has a child input element
with the identifier username.

.. Example 1: //
input[@id='username']/
ancestor::form

Example 2: //
input[@id='username']/
ancestor::div[@className=
'container']

Identifies the parent of an object.

Example 1 identifies the parent of the
hyperlink with the text Edit and
Example 2 identifies a hyperlink with
the text Delete that has a sibling
hyperlink with the text Edit.

following-sibling Example: //
td[@textContents='John']/
following-sibling::td[2]

Identifies siblings after the current
object.

The example identifies the table cell
which is located two cells to the right
of the table cell with the text John.

preceding-sibling Example: //
td[@textContents='John']/
preceding-sibling::td[2]

Identifies siblings before the current
object.

The example identifies the table cell
which is located two cells to the left of
the table cell with the text John.

* Example 1: //
*[@textContents='Home']

Example 2: /*/a

Identifies objects without considering
their types, like hyperlink, text field, or
button.

Example 1 identifies objects with the
given text content, regardless of their
type, and Example 2 identifies

Designing and Recording Test Cases with the Open Agent | 169

Supported Locator Construct Sample Description

hyperlinks that are second-level
descendants of the current object.

The following table lists the locator constructs that Silk Test Classic does not support.

Unsupported Locator Construct Example

Comparing two attributes with each other. //a[@textContents = @id]

An attribute name on the right side is not supported. An
attribute name must be on the left side.

//a['abc' = @id]

Combining multiple locators with and or or. //a[@id = 'abc'] or ..//Checkbox

More than one set of attribute brackets. //a[@id = 'abc'] [@textContents =
'123']

(use //a [@id = 'abc' and @textContents
= '123'] instead)

More than one set of index brackets. //a[1][2]

Any construct that does not explicitly specify a class or
the class wildcard, such as including a wildcard as part of
a class name.

//[@id = 'abc']

(use //*[@id = 'abc'] instead)

"//*//a[@id='abc']"

XPath Samples
The following table lists sample XPath queries and explains the semantics for each query.

XPath String Description

desktop.Find("/Shell[@caption='SWT
Test Application'] ")

Finds the first top-level Shell with the given caption.

desktop.Find("//
MenuItem[@caption='Control']")

Finds the MenuItem in any hierarchy with the given
caption.

myShell.Find("//MenuItem[@caption!
='Control']")

Finds an MenuItem in any child hierarchy of myShell
that does not have the given caption.

myShell.Find("Menu[@caption='Control']
/MenuItem[@caption!='Control']")

Looks for a specified MenuItem with the specified
Menu as parent that has myShell as parent.

myShell.Find("//
MenuItem[@caption='Control' and
@windowid='20']")

Finds a MenuItem in any child hierarchy of myWindow
with the given caption and windowId.

myShell.Find("//
MenuItem[@caption='Control' or
@windowid='20']")

Finds a MenuItem in any child hierarchy of myWindow
with the given caption or windowId.

desktop.FindAll("/Shell[2]/*/
PushButton")

Finds all PushButtons that have an arbitrary parent that
has the second top-level shell as parent.

desktop.FindAll("/Shell[2]//
PushButton")

Finds all PushButtons that use the second shell as direct
or indirect parent.

170 | Designing and Recording Test Cases with the Open Agent

XPath String Description

myBrowser.Find("//FlexApplication[1]//
FlexButton[@caption='ok']")

Looks up the first FlexButton within the first
FlexApplication within the given browser.

myBrowser.FindAll("//
td[@class='abc*']//a[@class='xyz']")

Finds all link elements with attribute class xyz that are
direct or indirect children of td elements with attribute
class abc*.

Supported Locator Attributes
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. If necessary, you can change the attribute type in one of the following ways:

• Manually typing another attribute type and value.
• Specifying another preference for the default attribute type by changing the custom attributes list values.

To create tests that use locators, you must use the Open Agent.

Using Locators
Within Silk Test Classic, literal references to identified objects are referred to as locators. For convenience,
you can use shortened forms for the locator strings in scripts. Silk Test Classic automatically expands the
syntax to use full locator strings when you playback a script. When you manually code a script, you can
omit the following parts in the following order:

• The search scope, //.
• The object type name. Silk Test Classic defaults to the class name.
• The surrounding square brackets of the attributes, [].

When you manually code a script, we recommend that you use the shortest form available.

Note: When you identify an object, the full locator string is captured by default.

The following locators are equivalent:

• The first example uses the full locator string.

To confirm the full locator string, use the dialog box.
• The second example works when the browser window already exists. Alternatively, you can use the

shortened form.

To find an object that has no real attributes for identification, use the index. For instance, to select the
second hyperlink on a Web page, you can type:

Additionally, to find the first object of its kind, which might be useful if the object has no real attributes, you
can type:

Using Locators to Check if an Object Exists
You can use the Exists method to determine if an object exists in the application under test.

The following code checks if a hyperlink with the text Log out exists on a Web page:

if (browserWindow.Exists("//a[@textContents='Log out']")) {
 // do something
}

Designing and Recording Test Cases with the Open Agent | 171

Using the Find method

You can use the Find method and the FindOptions method to check if an object, which you want to use
later, exists.

The following code searches for a window and closes the window if the window is found:

Window mainWindow = desktop.Find("//Window[@caption='My Window']", new
FindOptions(false))
if (mainWindow != null){
 mainWindow.CloseSynchron()
}

Identifying Multiple Objects with One Locator
You can use the FindAll method to identify all objects that match a locator rather that only identifying the
first object that matches the locator.

Example

The following code example uses the FindAll method to retrieve all hyperlinks of a
Web page:

LIST OF DOMLINK links = browserWindow.FindAll("//a")

Locator Customization
This section describes how you can create stable locators that enable Silk Test Classic to reliably recognize
the controls in your application under test (AUT).

Silk Test Classic relies on the identifiers that the AUT exposes for its UI controls and is very flexible and
powerful in regards to identifying UI controls. Silk Test Classic can use any declared properties for any UI
control class and can also create locators by using the hierarchy of UI controls. From the hierarchy, Silk
Test Classic chooses the most appropriate items and properties to identify each UI control.

Silk Test Classic can exclude dynamic numbers of controls along the UI control hierarchy, which makes the
object recognition in Silk Test Classic very robust against changes in the AUT. Intermediate grouping
controls that change the hierarchy of the UI control tree, like formatting elements in Web pages, can be
excluded from the object recognition.

Some UI controls do not expose meaningful properties, based on which they can be identified uniquely.
Applications which include such controls are described as applications with bad testability. Hierarchies, and
especially dynamic hierarchies, provide a good means to create unique locators for such applications.
Applications with good testability should always provide a simple mechanism to identify UI controls
uniquely.

One of the simplest and most effective practices to make your AUT easier to test is to introduce stable
identifiers for controls and to expose these stable identifiers through the existing interfaces of the
application.

Stable Identifiers
A stable identifier for a UI control is an identifier that does not change between invocations of the control
and between different versions of the application, in which the UI control exists. A stable identifier needs to
be unique in the context of its usage, meaning that no other control with the same identifier is accessible at
the same time. This does not necessarily mean that you need to use GUID-style identifiers that are unique
in a global context. Identifiers for controls should be readable and provide meaningful names. Naming
conventions for these identifiers will make it much easier to associate the identifier to the actual control.

172 | Designing and Recording Test Cases with the Open Agent

Example: Is the caption a good identifier for a control?

Very often test tools are using the caption as the default identifier for UI controls. The
caption is the text in the UI that is associated with the control. However, using the
caption to identify a UI control has the following drawbacks:

• The caption is not stable. Captions can change frequently during the development
process. For example, the UI of the AUT might be reviewed at the end of the
development process. This prevents introducing UI testing early in the development
process because the UI is not stable.

• The caption is not unique. For example, an application might include multiple buttons
with the caption OK.

• Many controls are not exposing a caption, so you need to use another property for
identification.

• Using captions for testing localized applications is cumbersome, as you need to
maintain a caption for a control in each language and you also have to maintain a
complex script logic where you dynamically can assign the appropriate caption for
each language.

Creating Stable Locators

One of the main advantages of Silk Test Classic is the flexible and powerful object-recognition mechanism.
By using XPath notation to locate UI controls, Silk Test Classic can reliably identify UI controls that do not
have any suitable attributes, as long as there are UI elements near the element of interest that have
suitable attributes. The XPath locators in Silk Test Classic can use the entire UI control hierarchy or parts of
it for identifying UI controls. Especially modern AJAX toolkits, which dynamically generate very complex
Document Object Models (DOMs), do not provide suitable control attributes that can be used for locating UI
controls.

In such a case, test tools that do not provide intelligent object-recognition mechanisms often need to use
index-based recognition techniques to identity UI controls. For example, identify the n-th control with icon
Expand. This often results in test scripts that are hard to maintain, as even minor changes in the
application can break the test script.

A good strategy to create stable locators for UI controls that do not provide useful attributes is to look for an
anchor element with a stable locator somewhere in the hierarchy. From that anchor element you can then
work your way to the element for which you want to create the locator.

Silk Test Classic uses this strategy when creating locators, however there might be situations in which you
have to manually create a stable locator for a control.

Example: Locating Siblings of a Control

This functionality is supported only if you are using the Open Agent.

This topic describes how you can locate a control, which does not provide any meaningful attributes that
can be used in locators, when a stable locator for a sibling of the control is available.

Assume that you have already identified the control Item 0.0, which has the following stable locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

If you know that Item 0.0 has a following-sibling of the type a, you can use the following code to build a
stable locator for the sibling:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/following-
sibling::a

You can also use the sibling approach to identify text fields. Text fields often do not provide any meaningful
attributes that can be used in locators. By using the label of a text field, you could create a meaningful
locator for the text field, because the label is the best identifier for the text field from the perspective of a

Designing and Recording Test Cases with the Open Agent | 173

tester. You can easily use the label as a part of the locator for a test field by using the sibling approach. For
example, if the text field is a preceding-sibling of a label with the text User Name, you can use the following
locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='User Name']/preceding-
sibling::input[@type='text']

Example: Locating the Expand Icon in a Dynamic GWT Tree

This functionality is supported only if you are using the Open Agent.

The Google Widget Toolkit (GWT) is a very popular and powerful toolkit, which is hard to test. The dynamic
tree control is a very commonly used UI control in GWT. To expand the tree, we need to identify the
Expand icon element.

You can find a sample dynamic GWT tree at http://samples.gwtproject.org/samples/Showcase/
Showcase.html#!CwTree.

The default locator generated by Silk Test Classic is the following:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-debug-cwTree-dynamicTree-
root-child0']/DIV/DIV[1]//IMG[@border='0']

For the following reasons, this default locator is no reliable locator for identifying the Expand icon for the
control Item 0.0:

• The locator is complex and built on multiple hierarchies. A small change in the DOM structure, which is
dynamic with AJAX, can break the locator.

• The locator contains an index for some of the controls along the hierarchy. Index based locators are
generally weak as they find controls by their occurrence, for example finding the sixth expand icon in a
tree does not define the control well. An exception to that rule would be if the index is used to express
different data sets that you want to identify, for example the sixth data row in a grid.

Often a good strategy for finding better locators is to search for siblings of elements that you need to locate.
If you find siblings with better locators, XPath allows you to construct the locator by identifying those
siblings. In this case, the tree item Item 0.0 provides a better locator than the Expand icon. The locator of
the tree item Item 0.0 is a stable and simple locator as it uses the @textContents property of the control.

By default, Silk Test Classic uses the property @id, but in GWT the @id is often not a stable property,
because it contains a value like ='gwt-uid-<nnn>', where <nnn> changes frequently, even for the same
element between different calls.

You can manually change the locator to use the @textContents property instead of the @id.

Original Locator:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-uid-109']

Alternate Locator:

/BrowserApplication//BrowserWindow//DIV[@textContents='Item 0.0']

Or you can instruct Silk Test Classic to avoid using @id='gwt-uid-<nnn>'. In this case Silk Test Classic
will automatically record the stable locator. You can do this by adding the text pattern that is used in @id
properties to the locator attribute value blacklist. In this case, add gwt-uid* to the blacklist.

When inspecting the hierarchy of elements, you can see that the control Item 0.0 and the Expand icon
control have a joint root node, which is a DomTableRow control.

To build a stable locator for the Expand icon, you first need to locate Item 0.0 with the following locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

Then you need to go up two levels in the element hierarchy to the DomTableRow element. You express this
with XPath by adding /../.. to the locator. Finally you need to search from DomTableRow for the

174 | Designing and Recording Test Cases with the Open Agent

http://samples.gwtproject.org/samples/Showcase/Showcase.html#!CwTree
http://samples.gwtproject.org/samples/Showcase/Showcase.html#!CwTree

Expand icon. This is easy as the Expand icon is the only IMG control in the sub-tree. You express this with
XPath by adding //IMG to the locator. The final stable locator for the Expand icon looks like the following:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/../..//IMG

Or even better, use the XPath ancestor axis to locate the Expand icon:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/
ancestor::tr//IMG

Custom Attributes
This functionality is supported only if you are using the Open Agent.

Add custom attributes to a test application to make a test more stable. You can use custom attributes with
the following technologies:

• Java SWT
• Swing
• WPF
• xBrowser
• Windows Forms
• SAP

For example, in Java SWT, the developer implementing the GUI can define an attribute (for example,
silkTestAutomationId) for a widget that uniquely identifies the widget in the application. A tester using
Silk Test Classic can then add that attribute to the list of custom attributes (in this case,
silkTestAutomationId), and can identify controls by that unique ID. Using a custom attribute is more
reliable than other attributes like caption or index, since a caption will change when you translate the
application into another language, and the index will change whenever another widget is added before the
one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different fields, both fields will return when you call the loginName attribute.

First, enable custom attributes for your application and then create the test.

Recording tests that use dynamic object recognition

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition. For example, If you create a button in the application that you want to test using the
following code:

Button myButton = Button(parent, SWT.NONE);
myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test case, you can use the following query:

Window button = Desktop.Find(".//
PushButton[@SilkTestAutomationId='myButton']")

Custom Attributes for Apache Flex Applications

Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"

Designing and Recording Test Cases with the Open Agent | 175

click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk Test Classic. If the automationName attribute is not specified, Silk Test
Classic maps the property ID to the locator attribute caption.

Java SWT Custom Attributes

You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk Test Classic can then
add that attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can
identify controls by that unique ID. Using a custom attribute is more reliable than other attributes like
caption or index, since a caption will change when you translate the application into another language, and
the index will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Custom Attributes for Web Applications

HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk Test Classic.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk Test Classic allows you to configure the attribute that
you want to use as the default attribute for identification, even if the attribute is a custom attribute of the
control class. To set the custom attribute as the default identification attribute for a specific technology
domain, click Options > Recorder > Custom Attributes and select the technology domain.

176 | Designing and Recording Test Cases with the Open Agent

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk Test Classic uses the custom attribute to
construct a unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

Custom Attributes for Windows Forms Applications

Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk Test Classic automatically will use this property for identification in the locator. Windows Forms
application locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Custom Attributes for WPF Applications

WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk Test Classic automatically uses this property for identification in the locator. WPF application locators
look like the following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Troubleshooting Performance Issues for XPath
When testing applications with a complex object structure, for example complex web applications, you may
encounter performance issues, or issues related to the reliability of your scripts. This topic describes how
you can improve the performance of your scripts by using different locators than the ones that Silk Test
Classic has automatically generated during recording.

Designing and Recording Test Cases with the Open Agent | 177

Note: In general, we do not recommend using complex locators. Using complex locators might lead to
a loss of reliability for your tests. Small changes in the structure of the tested application can break
such a complex locator. Nevertheless, when the performance of your scripts is not satisfying, using
more specific locators might result in tests with better performance.

The following is a sample element tree for the application MyApplication:

Root
 Node id=1
 Leaf id=2
 Leaf id=3
 Leaf id=4
 Leaf id=5
 Node id=6
 Node id=7
 Leaf id=8
 Leaf id=9
 Node id=9
 Leaf id=10

You can use one or more of the following optimizations to improve the performance of your scripts:

• If you want to locate an element in a complex object structure, search for the element in a specific part
of the object structure, not in the entire object structure. For example, to find the element with the
identifier 7 in the sample tree, if you have a query like Root.Find("//Node[@id='7']"), replace it
with a query like Root.Find("/Node[@id='6']/Node[@id='7']"). The first query searches the
element tree for the elements with the identifiers 1 to 7. The second query searches only for the
element first level nodes, which are the node with the identifier 1 and the node with the identifier 6, for
the node with the identifier 6, and then searches in the subtree of the node with the identifier 6 for the
first leaf with the identifier 7.

• When you want to locate multiple items in the same hierarchy, first locate the hierarchy, and then locate
the items based on their common root node. If you have a query like Root.FindAll("/
Node[@id='1']/Leaf"), replace it with a query like the following:

testcase Test() appstate none
 WINDOW commonRootNode = Root.Find("/Node[@id='1']")
 commonRootNode.Find("/Leaf[@id='2']")
 commonRootNode.Find("/Leaf[@id='3']")
 commonRootNode.Find("/Leaf[@id='4']")
 commonRootNode.Find("/Leaf[@id='5']")

Highlighting Objects During Recording
During recording, the active object in the AUT is highlighted by a green rectangle. As soon as a new object
becomes active this new object is highlighted. If the same object remains active for more than 0.5 seconds
a tool-tip will be displayed that displays the class name of the active object and also the current position of
the mouse relative to the active object. This tool-tip will no longer be displayed when a new object becomes
active, the user presses the mouse, or automatically after 2 seconds.

Overview of the Locator Keyword
Traditional Silk Test Classic scripts that use the Classic Agent use hierarchical object recognition. When
you record a script that uses hierarchical object recognition, Silk Test Classic creates an include (.inc) file
that contains window declarations and tags for the GUI objects that you are testing. Essentially, the INC file
serves as a central global, repository of information about the application under test. It contains all the data
structures that support your test cases and test scripts.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations. The locator is the actual

178 | Designing and Recording Test Cases with the Open Agent

name of the object, as opposed to the identifier, which is the logical name. Silk Test Classic uses the
locator to identify objects in the application when executing test cases. Test cases never use the locator to
refer to an object; they always use the identifier.

You can also manually create test cases that use dynamic object recognition without locator keywords.
Dynamic object recognition uses a Find or FindAll function and an XPath query to locate the objects
that you want to test. No include file, window declaration, or tags are required.

The advantages of using locators with an INC file include:

• You combine the advantages of INC files with the advantages of dynamic object recognition. For
example, scripts can use window names in the same manner as traditional, Silk Test Classic tag-based
scripts and leverage the power of XPath queries.

• Enhancing legacy INC files with locators facilitates a smooth transition from using hierarchical object
recognition to new scripts that use dynamic object recognition. You use dynamic object recognition but
your scripts look and feel like traditional, Silk Test Classic tag-based scripts that use hierarchical object
recognition.

• You can use AutoComplete to assist in script creation. AutoComplete requires an INC file.

Syntax

The syntax for the locator keyword is:

[gui-specifier] locator locator-string

where locator-string is an XPath string. The XPath string is the same locator string that is used for the
Find or FindAll functions.

Example

The following example shows a window declaration that uses locators:

[-] window MainWin TestApplication
 [] locator "//MainWin[@caption='Test Application']"
 []
 [] // The working directory of the application when it is
invoked
 [] const sDir = "{SYS_GetEnv("SEGUE_HOME")}"
 []
 [] // The command line used to invoke the application
 [] const sCmdLine =
"""{SYS_GetEnv("SEGUE_HOME")}testapp.exe"""
 []
 [-] Menu Control
 [] locator "//Menu[@caption='Control']"
 [-] MenuItem CheckBox
 [] locator "//MenuItem[@caption='Check box']"
 [-] MenuItem ComboBox
 [] locator "//MenuItem[@caption='Combo box']"
 [-] MenuItem ListBox
 [] locator "//MenuItem[@caption='List box']"
 [-] MenuItem PopupList
 [] locator "//MenuItem[@caption='Popup list']"
 [-] MenuItem PushButton
 [] locator "//MenuItem[@caption='Push button']"
 [-] MenuItem RadioButton
 [] locator "//MenuItem[@caption='Radio button']"
 [-] MenuItem ListView
 [] locator "//MenuItem[@caption='List view']"
 [-] MenuItem PageList
 [] locator "//MenuItem[@caption='Page list']"
 [-] MenuItem UpDown
 [] locator "//MenuItem[@caption='Up-Down']"
 [-] MenuItem TreeView

Designing and Recording Test Cases with the Open Agent | 179

 [] locator "//MenuItem[@caption='Tree view']"
 [-] MenuItem Textfield
 [] locator "//MenuItem[@caption='Textfield']"
 [-] MenuItem StaticText
 [] locator "//MenuItem[@caption='Static text']"
 [-] MenuItem TracKBar
 [] locator "//MenuItem[@caption='Track bar']"
 [-] MenuItem ToolBar
 [] locator "//MenuItem[@caption='Tool bar']"
 [-] MenuItem Scrollbar
 [] locator "//MenuItem[@caption='Scrollbar']"
 []
 [-] DialogBox CheckBox
 [] locator "//DialogBox[@caption='Check Box']"
 [-] CheckBox TheCheckBox
 [] locator "//CheckBox[@caption='The check box']"
 [-] PushButton Exit
 [] locator "//PushButton[@caption='Exit']"

For example, if the script uses a menu item like this:

TestApplication.Control.TreeView.Pick()

Then the menu item is resolved by using dynamic object recognition Find calls using
XPath locator strings.

The above statement is equivalent to:

Desktop.Find(“//MainWin[@caption='Test Application']
 //Menu[@caption='Control']//MenuItem[@caption='Tree
view']”).Pick()

Locator String Syntax

For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic automatically
expands the syntax to use full XPath strings when you run a script. You can omit:

• The hierarchy separator, “.//”. Silk Test Classic defaults to using “//”.
• The class name. Silk Test Classic defaults to the class name of the window that contains the locator.
• The surrounding square brackets of the attributes,"[]".
• The “@caption=’” if the xPath string refers to the caption.

The following locators are equivalent:

Menu Control
 //locator "//Menu[@caption='Control']"
 //locator "Menu[@caption='Control']"
 //locator "[@caption='Control']"
 //locator "@caption='Control'"
 locator "Control"

You can use shortened forms for the XPath locator strings only when you use an INC file. For scripts that
use dynamic object recognition without an INC file, you must use full XPath strings.

Window Hierarchies

You can create window hierarchies without locator strings. In the following example, the “Menu Control”
acts only as a logical hierarchy, used to provide the INC file with more structure. “Menu Control” does not
contribute to finding the elements further down the hierarchy.

[-] window MainWin TestApplication
 [] locator "//MainWin[@caption='Test Application']"
 [-] Menu Control
 [-] MenuItem TreeView
 [] locator "//MenuItem[@caption='Tree view']"

180 | Designing and Recording Test Cases with the Open Agent

In this case, the statement:

TestApplication.Control.TreeView.Pick()

is equivalent to:

Desktop.Find(“.//MainWin[@caption='Test Application']
 //MenuItem[@caption='Tree view']”).Pick()

Window Declarations

A window declaration in Silk Test Classic cannot be executed for both agent types, Classic Agent and Open
Agent, during the execution of a test. The window declaration will only be executed for one of the agent
types.

Expressions

You can use expressions in locators. For example, you can specify:

[-] STRING getSWTVersion()
 [] return SYS_GETENV("SWT_VERSION")
[-] window Shell SwtTestApplication
 [] locator "SWT {getSWTVersion()} Test Application"

Comparing the Locator Keyword to the Tag Keyword

The syntax of locators is identical to the syntax of the tag keyword.

The overall rules for locators are the same as for tags. There can be only one locator per window, except
for different gui-specifiers, in this case there can be only one locator per gui-specifier.

You can use expressions in locators and tags.

The locator keyword requires a script that uses the Open Agent while the tag keyword requires a script that
uses the Classic Agent.

Test Cases
This section describes how you can use automated tests to address single objectives of a test plan.

Overview of Test Cases
A test case is an automated test that addresses one objective of a test plan. A test case:

• Drives the application from the initial state to the state you want to test.
• Verifies that the actual state matches the expected (correct) state. Your QA department might use the

term baseline to refer to this expected state. This stage is the heart of the test case.
• Cleans up the application, in preparation for the next test case, by undoing the steps performed in the

first stage.

In order for a test case to function properly, the application must be in a stable state when the test case
begins to execute. This stable state is called the base state. The recovery system is responsible for
maintaining the base state in the event the application fails or crashes, either during the execution of a test
cases or between test cases.

Each test case is independent and should perform its own setup, driving the application to the state that
you want to test, executing the test case, and then returning the application to the base state. The test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which
the test case is executed should have no bearing on its outcome. If a test case relies on a prior test case to
perform some setup actions, and an error causes the setup to fail or, worse yet, the application to crash, all
subsequent test cases will fail because they cannot achieve the state where the test is designed to begin.

Designing and Recording Test Cases with the Open Agent | 181

A test case has a single purpose: a single test case should verify a single aspect of the application. When
a test case designed in this manner passes or fails, it is easy to determine specifically what aspect of the
target application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The result is an overall lack of confidence in any statistics that might be generated. But
there are techniques you can use to perform more than one verification in a test case.

Types of test cases

Silk Test Classic supports two types of test cases, depending on the type of application that you are
testing. You can create test cases that use:

Hierarchical object
recognition

This is a fast, easy method for creating scripts. This type of testing is supported
for all application types.

Dynamic object
recognition

This is a more robust and easy to maintain method for creating scripts. However,
dynamic object recognition is only supported for applications that use the Open
Agent.

If you are using the Open Agent, you can create tests for both dynamic and hierarchical object recognition
in your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

Anatomy of a Basic Test Case
A test case is comprised of testcase keywords and object-oriented commands. You place a group of test
cases for an application into a file called a script.

Each automated test for an application begins with the testcase keyword, followed by the name of the test
case. The test case name should indicate the type of testing being performed.

The core of the test case is object-oriented 4Test commands that drive, verify, and clean up your
application. For example, consider this command:

TextEditor.File.New.Pick

The first part of the command, TextEditor.File.New, is the name of a GUI object. The last part of the
command, Pick, is the operation to perform on the GUI object. The dot operator (.) delimits each piece of
the command. When this command is executed at runtime, it picks the New menu item from the File menu
of the Text Editor application.

Types of Test Cases
There are two basic types of test cases:

• Level 1 tests, often called smoke tests or object tests, verify that an application’s GUI objects function
properly. For example, they verify that text boxes can accept keystrokes and check boxes can display a
check mark.

• Level 2 tests verify an application feature. For example, they verify that an application’s searching
capability can correctly find different types of search patterns.

You typically run Level 1 tests when you receive a new build of your application, and do not run Level 2
tests until your Level 1 tests achieve a specific pass/fail ratio. The reason for this is that unless your
application’s graphical user interface works, you cannot actually test the application itself.

182 | Designing and Recording Test Cases with the Open Agent

Test Case Design
When defining test requirements, the goal is to vigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

As you design your test cases, you may want to associate data with individual objects, which can then be
referenced inside test cases. You may find this preferable to declaring global variables or passing
parameters to your test cases.

The type of data you decide to define within a window declaration will vary, depending on the type of
testing you are doing. Some examples include:

• The default value that you expect the object to have when it displays.
• The tab sequence for each of a dialog box’s child objects.

The following declaration for the Find dialog contains a list that specifies the tab sequence of the dialog
box children.

window DialogBox Find
 tag "Find"
 parent TextEditor
 LIST OF WINDOW lwTabOrder = {...}
 FindWhat
 CaseSensitive
 Direction
 Cancel

For more information about the syntax to use for lists, see LIST data type.

Before you begin to design and record test cases, make sure that the built-in recovery system can close
representative dialogs from your application window.

Constructing a Test Case
This section explains the methodology you use when you design and record a test case.

A test case has three stages

Each test case that you record should have the following stages:

Stage 1 The test case drives the application from the initial state to the state you want to test.

Stage 2 The test case verifies that the actual state matches the expected (correct) state. Your QA
department might use the term baseline to refer to this expected state. This stage is the heart of
the test case.

Stage 3 The test case cleans up the application, in preparation for the next test case, by undoing the
steps performed in stage 1.

Each test case is independent

Each test case you record should perform its own setup in stage 1, and should undo this setup in stage 3,
so that the test case can be executed independently of every other test case. In other words, the test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which it
is executed should have no bearing on its outcome.

If a test case relies on a prior test case to perform some setup actions, and an error causes the setup to fail
or, worse yet, the application to crash, all subsequent test cases will fail because they cannot achieve the
state where the test is designed to begin.

Designing and Recording Test Cases with the Open Agent | 183

A test case has a single purpose

Each test case you record should verify a single aspect of the application in stage 2. When a test case
designed in this manner passes or fails, it’s easy to determine specifically what aspect of the target
application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The net result is an overall lack of confidence in any statistics that might be generated.

There are techniques you can use to do more than one verification in a test case.

A test case starts from a base state

In order for a test case to be able to function properly, the application must be in a stable state when the
test case begins to execute. This stable state is called the base state. The recovery system is responsible
for maintaining the base state in the event the application fails or crashes, either during a test case’s
execution or between test cases.

DefaultBaseState

To restore the application to the base state, the recovery system contains a routine called
DefaultBaseState that makes sure that:

• The application is running and is not minimized.
• All other windows, for example dialog boxes, are closed.
• The main window of the application is active.

If these conditions are not sufficient for your application, you can customize the recovery system.

Defining test requirements

When defining test requirements, the goal is to rigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

Data in Test Cases

What data does the feature expect

A user can enter three pieces of information in the Find dialog box:

• The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

• The search can be forward or backward, depending on whether the Down or Up option button is
selected.

• The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Create meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

Case
Sensitive

Direction Search String

Yes Down Character

184 | Designing and Recording Test Cases with the Open Agent

Case
Sensitive

Direction Search String

Yes Down Partial word (start)

Yes Down Partial word (end)

Yes Down Word

Yes Down Group of words

Yes Up Character

Yes Up Partial word (start)

Yes Up Partial word (end)

Yes Up Word

Yes Up Group of words

Saving Test Cases
When saving a test case, Silk Test Classic does the following:

• Saves a source file, giving it the .t extension; the source file is an ASCII text file, which you can edit.
• Saves an object file, giving it the .to extension; the object file is a binary file that is executable, but not

readable by you.

For example, if you name a test case (script file) mytests and save it, you will end up with two files: the
source file mytests.t, in the location you specify, and the object file mytests.to.

To save a new version of a script’s object file when the script file is in view-only mode, click File > Save
Object File.

Recording Without Window Declarations
If you record a test case against a GUI object for which there is no declaration or if you want to write a test
case from scratch against such an object, Silk Test Classic requires a special syntax to uniquely identify
the GUI object because there is no identifier.

This special syntax is called a dynamic instantiation and is composed of the class and tag of the object.
The general syntax of this kind of identifier is:

class("tag").class("tag"). ...

Example

If there is not a declaration for the Find dialog box of the Notepad application, the
syntax required to identify the object with the Classic Agent looks like the following:

MainWin("Untitled - Notepad|$C:\Windows
\SysWOW64\notepad.exe").DialogBox("Find")

To create the dynamic tag, the recorder uses the multiple-tag settings that are stored in
the Record Window Declarations dialog box. In the example shown above, the tag for
the Notepad contains its caption as well as its window ID.

For the Open Agent, the syntax for the same example looks like the following:

FindMainWin("/MainWin[@caption='Untitled -
Notepad']").FindDialogBox("Find")

Designing and Recording Test Cases with the Open Agent | 185

Overview of Application States
When testing an application, typically, you have a number of test cases that have identical setup steps.
Rather than record the same steps over and over again, you can record the steps as an application state
and then associate the application state with the relevant test cases.

An application state is the state you want your application to be in after the base state is restored but
before you run one or more test cases. By creating an application state, you are creating reusable code
that saves space and time. Furthermore, if you need to modify the Setup stage, you can change it once, in
the application state routine.

At most, a test case can have one application state associated with it. However, that application state may
itself be based on another previously defined application state. For example, assume that:

• The test case Find is associated with the application state Setup.
• The application state Setup is based on the application state OpenFile.
• The application state OpenFile is based on the built-in application state, DefaultBaseState.
• Silk Test Classic would execute the programs in this order:

1. DefaultBaseState application state.
2. OpenFile application state.
3. Setup application state.
4. Find test case.

If a test case is based on a single application state, that application state must itself be based on
DefaultBaseState in order for the test case to use the recovery system. Similarly, if a test case is based on
a chain of application states, the final link in the chain must be DefaultBaseState. In this way, the built-in
recovery system of Silk Test Classic is still able to restore the application to its base state when necessary.

Behavior of an Application State Based on NONE
If an application state is based on the keyword NONE, Silk Test Classic executes the application state
twice: when the test case with which it is associated is entered and when the test case is exited.

On the other hand, if an application state is based on DefaultBaseState, Silk Test Classic executes the
application state only when the associated test case is entered.

The following example code defines the application state InvokeFind as based on the NONE keyword and
associates that application state with the test case TestFind.

Appstate InvokeFind () basedon none
 xFind.Invoke ()
 print ("hello")

testcase TestFind () appstate InvokeFind
 print ("In TestFind")
 xFind.Exit.Click ()

When you run the test case in Silk Test Classic, in addition to opening the Find dialog box, closing it, and
reopening it, the test case also prints:

hello
In TestFind
hello

The test case prints hello twice because Silk Test Classic executes the application state both as the test
case is entered and as it is exited.

186 | Designing and Recording Test Cases with the Open Agent

Example: A Feature of a Word Processor
For purposes of illustration, this topic develops test requirements for the searching feature of the sample
Text Editor application using the Find dialog box. This topic contains the following:

• Determining what data the feature expects.
• Creating meaningful data combinations.
• Overview of recording the stages of a test case.

When a user enters the criteria for the search and clicks Find Next, the search feature attempts to locate
the string. If the string is found, it is selected (highlighted). Otherwise, an informational message is
displayed.

Determining what data the feature expects

A user can enter three pieces of information in the Find dialog box:

• The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

• The search can be forward or backward, depending on whether the Down or Up option button is
clicked.

• The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Creating meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

Case Sensitive Direction Search String

Yes Down Character

Yes Down Partial word (start)

Yes Down Partial word (end)

Yes Down Word

Yes Down Group of words

Yes Up Character

Yes Up Partial word (start)

Yes Up Partial word (end)

Yes Up Word

Yes Up Group of words

Overview of recording the stages of a test case

A test case performs the included actions in three stages. The following table illustrates these stages,
describing in high-level terms the steps for each stage of a sample test case that tests whether the Find
facility is working.

Setup 1. Open a new document.
2. Type text into the document.

Designing and Recording Test Cases with the Open Agent | 187

3. Position the text cursor either before or after the text, depending on the direction of the
search.

4. Select Find from the Search menu.
5. In the Find dialog box:

• Enter the text to search for in the Find What text box.
• Select a direction for the search.
• Make the search case sensitive or not.
• Click Find Next to do the search.

6. Click Cancel to close the Find dialog box.

Verify Record a 4Test verification statement that checks that the actual search string found, if any, is
the expected search string.

Cleanup 1. Close the document.
2. Click No when prompted to save the file.

After learning the basics of recording, you can record from within a test plan, which makes recording easier
by automatically generating the links that connect the test plan to the test case.

Verification
This section describes how you can verify one or more characteristics, or properties, of an object.

Verifying Object Properties
You will perform most of your verifications using properties. When you verify the properties of an object, a
VerifyProperties method statement is added to your script. The VerifyProperties method verifies
the selected properties of an object and its children.

Each object has many characteristics, or properties. For example, dialog boxes can have the following
verification properties:

• Caption

• Children

• DefaultButton

• Enabled

• Focus

• Rect

• State

Caption is the text that displays in the title bar of the dialog box. Children is a list of all the objects
contained in the dialog box, DefaultButton is the button that is invoked when you press Enter, and so
on. In your test cases, you can verify the state of any of these properties.

You can also, in the same test case, verify properties of children of the selected object. For example, the
child objects in the Find dialog box, such as the text box FindWhat and the check box CaseSensitive,will
also be selected for verification.

By recording verification statements for the values of one or more of an object’s properties, you can
determine whether the state of the application is correct or in error when you run your test cases.

Verifying Object Properties (Open Agent)
This functionality is supported only if you are using the Open Agent.

Record verification statements to verify the properties of an object.

188 | Designing and Recording Test Cases with the Open Agent

1. Record a test case.

For information on recording a test case, see Recording Test Cases With the Open Agent.

2. While recording, hover the cursor over the object, for which you want to verify a property, and click Ctrl
+Alt. The Verify Properties dialog box opens.

3. Select the properties that you want to verify, by checking the check boxes next to the property names.

To verify all or most properties, click Select All and then uncheck individual check boxes.

4. Click OK to close the Verify Properties dialog box.

When you finish recording the test case and paste the recorded test to the editor, all verifications are also
pasted to the test script.

Adding a Verification to a Script while Recording
This functionality is supported only if you are using the Open Agent.

Do the following to add a verification to a script during recording:

1. Begin recording.

2. Move the mouse cursor over the object that you want to verify and press Ctrl+Alt.

When you are recording a mobile Web application, you can also click on the object and click Add
Verification.

Note: For any application that uses Ctrl+Shift as the shortcut key combination, press Ctrl
+Shift.

This option temporarily suspends recording and displays the Verify Properties dialog box.

3. To select the property that you want to verify, check the corresponding check box.

4. Click OK. Silk Test Classic adds the verification to the recorded script and you can continue recording.

Overview of Verifying Bitmaps
A bitmap is a picture of some portion of your application. Verifying a bitmap is usually only useful when the
actual appearance of an object needs to be verified to validate application correctness. For example, if you
are testing a drawing or CAD/CAM package, a test case might produce an illustration in a drawing region
that you want to compare to a baseline. Other possibilities include the verification of fonts, color charts, and
certain custom objects.

When comparing bitmaps, keep the following in mind:

• Bitmaps are not portable between GUIs. The format of a bitmap on a PC platform is .bmp.
• A bitmap comparison will fail if the image being verified does not have the same screen resolution,

color, window frame width, and window position when the test case is run on a different machine than
the one on which the baseline image was captured.

• Make sure that your test case sets the size of the application window to the same size it was when the
baseline bitmap was captured.

• Capture the smallest possible region of the image so that your test is comparing only what is relevant.
• If practical, do not include the window’s frame (border), since this may have different colors and/or fonts

in different environments.

Verifying Appearance Using a Bitmap
When you are using the Classic Agent, use this procedure to compare the actual appearance of an image
against a baseline image. Or, use it to verify fonts, color charts, or custom objects.

Note: To verify a bitmap when you are using the Open Agent, you can add the VerifyBitmap
method to your script. The VerifyBitmap method is supported for both agents.

Designing and Recording Test Cases with the Open Agent | 189

1. Complete the steps in Verifying a Test Case.

2. On the Verify Window dialog box, click the Bitmap tab and then select the region to update: Entire
Window, Client Area of Window (that is, without scroll bar or title bar), or Portion of Window.

3. In the Bitmap File Name text box, type the full path of the bitmap file that will be created.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Click OK. If you selected Entire Window or Client Area of Window, Silk Test Classic captures the
bitmap and returns you to your test application. If you selected Portion of Window, position the cursor
at the desired location to begin capturing a bitmap. While you press and hold the mouse button, drag
the mouse to the screen location where you want to end the capture. Release the mouse button.

A bitmap comparison will fail if the image being verified does not have the same screen resolution,
color, window frame width, and window position as the baseline image.

Capture the smallest possible region of the image so that your test is comparing only what is relevant.

5. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

Overview of Verifying an Objects State
Each class has a set of methods associated with it, including built-in verification methods. You can verify an
object’s state using one of these built-in verification methods or by using other methods in combination with
the built-in Verify function.

A class’s verification methods always begin with Verify. For example, a TextField has the following
verification methods; VerifyPosition, VerifySelRange, VerifySelText, and VerifyValue.

You can use the built-in Verify function to verify that two values are equal and generate an exception if
they are not. Typically, you use the Verify function to test something that does not map directly to a built-
in property or method. Verify has the following syntax:

Verify (aActual, aExpected [, sDesc])

aActual The value to verify. ANYTYPE.

aExpected The expected value. ANYTYPE.

sDesc Optional: A message describing the comparison. STRING.

Usually, the value to verify is obtained by calling a method for the object being verified; you can use any
method that returns a value.

Example: Verify an object

This example describes how you can verify the number of option buttons in the
Direction RadioList in the Replace dialog box of the Text Editor. There is no property
or method you can directly use to verify this. But there is a method for RadioList,
GetItemCount, which returns the number of option buttons. You can use the method
to provide the actual value, then specify the expected value in the script.

When doing the verification, position the mouse pointer over the RadioList and press
Ctrl+Alt. Click the Method tab in the Verify Window dialog box, and select the
GetItemCount method.

Click OK to close the Verify Window dialog box, and complete your test case. Paste it
into a script. You now have the following script:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()

190 | Designing and Recording Test Cases with the Open Agent

Replace.Direction.GetItemCount ()
Replace.Cancel.Click ()

Now use the Verify function to complete the verification statement. Change the line:

Replace.Direction.GetItemCount ()

to

Verify (Replace.Direction.GetItemCount (), 2)

That is, the call to GetItemCount (which returns the number of option buttons)
becomes the first argument to Verify. The expected value, in this case, 2, becomes
the second argument.

Your completed script is:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()
Verify (Replace.Direction.GetItemCount (), 2)
Replace.Cancel.Click ()

Fuzzy Verification
There are situations when Silk Test Classic cannot see the full contents of a control, such as a text box,
because of the way that the application paints the control on the screen. For example, consider a text box
whose contents are wider than the display area. In some situations the application clips the text to fit the
display area before drawing it, meaning that Silk Test Classic only sees the contents that are visible; not the
entire contents.

Consequently, when you later do a VerifyProperties against this text box, it may fail inappropriately.
For example, the true contents of the text box might be 29 Pagoda Street, but only 29 Pagoda
displays. Depending on how exactly the test is created and run, the expected value might be 29 Pagoda
whereas the value seen at runtime might be 29 Pagoda Street, or vice versa. So the test would fail,
even though it should pass.

To work around this problem, you can use fuzzy verification, where the rules for when two strings match
are loosened. Using fuzzy verification, the expected and actual values do not have to exactly match. The
two values are considered to match when one of them is the same as the first or last part of the other one.
Specifically, VerifyProperties with fuzzy verification will pass whenever any of the following functions
would return TRUE, where actual is the actual value and expected is the expected value:

• MatchStr (actual + "*", expected)

• MatchStr ("*" + actual, expected)

• MatchStr (actual, expected + "*")

• MatchStr (actual, "*" + expected)

In string comparisons, * stands for any zero or more characters.

For example, all the following would pass if fuzzy verification is enabled:

Actual Value Expected Value

29 Pagoda 29 Pagoda Street

oda Street 29 Pagoda Street

29 Pagoda
Street

29 Pagoda

29 Pagoda
Street

oda Street

Designing and Recording Test Cases with the Open Agent | 191

Enabling fuzzy verification

You enable fuzzy verification by using an optional second argument to VerifyProperties, which has
this prototype:

VerifyProperties (WINPROPTREE WinPropTree [,FUZZYVERIFY FuzzyVerifyWhich])

where the FUZZYVERIFY data type is defined as:

type FUZZYVERIFY is BOOLEAN, DATACLASS, LIST OF DATACLASS

So, for the optional FuzzyVerifyWhich argument you can either specify TRUE or FALSE, one class
name, or a list of class names.

FuzzyVerifyWhich value

FALSE
(default)

Fuzzy verification is disabled.

One class Fuzzy verification is enabled for all objects of that class.

Example window.VerifyProperties ({…},Table) enables fuzzy verification for all
tables in window (but no other object).

List of
classes

Fuzzy verification is enabled for all objects of each listed class.

Example window.VerifyProperties ({…}, {Table, TextField}) enables fuzzy
verification for all tables and text boxes in window (but no other object).

TRUE Fuzzy verification is enabled only for those objects whose FuzzyVerifyProperties
member is TRUE.

To set the FuzzyVerifyProperties member for an object, add the following line within
the object's declaration:

FUZZYVERIFY FuzzyVerifyProperties = TRUE

Example: If in the application's include file, the DeptDetails table has its
FuzzyVerifyProperties member set to TRUE:

window ChildWin EmpData
. . .
 Table DeptDetails
 FUZZYVERIFY FuzzyVerifyProperties = TRUE

And the test has this line:

EmpData.VerifyProperties ({...}, TRUE)

Then fuzzy verification is enabled for the DeptDetails table (and other objects in
EmpData that have FuzzyVerifyProperties set to TRUE), but no other object.

Fuzzy verification takes more time than standard verification, so only use it when necessary.

For more information, see the VerifyProperties method.

Defining your own verification properties

You can also define your own verification properties.

Verifying that a Window or Control is No Longer
Displayed
1. Click Record > Testcase to begin recording a test case and drive your application to the state you want

to verify. To record a verification statement in an existing test case, click Record > Actions.

192 | Designing and Recording Test Cases with the Open Agent

2. When you are ready to record a verification statement, position the mouse cursor over the object you
want to verify, and press Ctrl+Alt. Silk Test Classic displays the Verify Window dialog box over your
application window.

3. Click the Property tab. Silk Test Classic lists the properties for the selected window or control on the
right.

4. Make sure that only the Exists property is selected for the window or control.

If additional properties are selected, the verification will fail because the actual list of properties will
differ from the expected list.

5. Change the value in the Property Value field from TRUE to FALSE.

6. Click OK to accept the Exists property for the selected window or control. Silk Test Classic closes the
Verify Window dialog box and displays the Record Status window. The test case will verify that the
window or control has the property value of FALSE, verifying that the object is no longer displayed. If
not, Silk Test Classic writes an error to the results file.

Data-Driven Test Cases
Data-driven test cases enable you to invoke the same test case multiple times, once for each data
combination stored in a data source. The data is passed to the test case as a parameter. You can think of a
data-driven test case as a template for a class of test cases. Data-driven test cases offer the following
benefits:

• They reduce redundancy in a test plan.
• Writing a single test case for a group of similar test cases makes it easier to maintain scripts.
• They are reusable; adding new tests only requires adding new data.

Regardless of the technique you use, the basic process for creating a data-driven test case is:

1. Create a standard test case. It will be very helpful to have a good idea of what you are going to test and
how to perform the verification.

2. Identify the data in the test case and the 4Test data types needed to store this data.
3. Modify the test case to use variables instead of hard data.
4. Modify the test case to specify input arguments to be used to pass in the data. Replace the hard coded

data in the test case with variables.
5. Call the test case and pass in the data, using one of four different techniques:

• Use a database and the Data Driven Workflow to run the test case. Micro Focus recommends
using this method for data-driven testing.

• Click Run > Testcase and type the data into the Run Testcase dialog box.
• In a QA Organizer test plan, insert the data as an attribute to a test description.
• If the data exists in an external file, write a function to read the file and use a main() function to run

the test case.

Data-Driven Workflow
You can use the Data Driven Workflow to create data-driven test cases that use data stored in databases.
The Data Driven Workflow generates much of the necessary code and guides you through the process of
creating a data-driven test case.

Before you can create and run data-driven test cases, you need to perform the following actions:

1. Record a standard test case.
2. Set up or identify the existing data source with the information you want to use to run the test.
3. Configure your Data Source Name (DSN), if you are not using the default, which is Silk DDA Excel.

Designing and Recording Test Cases with the Open Agent | 193

Note: When you use the Data Driven Workflow, Silk Test Classic uses a well-defined record format.
To run data-driven test cases that were not created through the Data Driven Workflow, you need to
convert your recordings to the new record format. To run data-driven test cases that do not follow the
record format, run the tests outside of the Data Driven Workflow.

To enable or disable the Data Driven Workflow, click Workflows > Data Driven.

To create and execute a data-driven test case, sequentially click each icon in the workflow bar to perform
the corresponding procedure.

Action Description

Data Drive
Testcase

Select a test case to data drive. Silk Test Classic copies the selected test case and creates a
new data-driven test case by adding a "DD_" prefix to the original name of the test case. Silk
Test Classic also writes other data-driven information to the new or existing data driven script file
(.g.t file).

Find/Replace
Values

Find and replace values in the new test case with links to the data source.

Run Testcase Run the data-driven test case, optionally selecting the rows and tables in the data source that
you want to use.

Explore Results View test results.

Working with Data-Driven Test Cases
Consider the following when you are working with data-driven test cases:

• The 4Test Editor contains additional menu selections and toolbars for you to use.
• Silk Test Classic can data drive only one test case at a time.
• You cannot duplicate test case names. Data-driven test cases in the same script must have unique

names.
• The Classic 4Test editor is not available with data-driven test cases in .g.t files.
• You cannot create data-driven test cases from test cases in .inc files; you can only create data-driven

test cases from test cases in .t or .g.t files. However, you can open a project, add the *.inc, select
the test case from the test case folder of the project, and then select data drive.

• When you data drive a [use '<script>.t'] is added to the data-driven test case. This is the link to
the .t file where the test case originated. If you add a test case from another script file then another
use line pointing to that file is added. If the script file is in the same directory as the <script.g.t>,
then no path is given, otherwise, the absolute path is added to the use line. If this path changes, it is up
to you to correct the path; Silk Test Classic will not automatically update the path.

• When you open a .g.t file using File > Open, Silk Test Classic automatically loads the data source
information for that file. If you are in a .g.t file and that file’s data source is edited, click Edit > Data
Driven > Reload Database to refresh the information from the data source.

• If you add a new data-driven test case to an existing .g.t file that is fully collapsed, Silk Test Classic
expands the previous test case, but does not edit it.

Code Automatically Generated by Silk Test Classic
When you create a data-driven test case, Silk Test Classic verifies that the DSN configuration is correct by
connecting to the database, generates the 4Test code describing the DSN, and writes that information into
the data-driven script.

194 | Designing and Recording Test Cases with the Open Agent

Do not delete or change the information created by Silk Test Classic. If you do, you may not be able to run
your data-driven test case.

When you click OK on the Specify Data Driven Testcase dialog box, Silk Test Classic automatically writes
the following information to the top of your data driven script file.

The information is delivered "rolled up" (collapsed); in order to see the details you need to click on the plus
sign to expand the code:

[+] // *** DATA DRIVEN ASSISTANT Section (!! DO NOT REMOVE !!) ***

The .inc files used by the original test cases, and the .t file indicating where the test case just came from, in
this case from Usability.t:

[] use "datadrivetc.inc"
[] use "Usability.t"

A reference to the DSN, specifying the connect string, including username and password, for example:

[] // *** DSN ***
[] STRING gsDSNConnect = "DSN=SILK DDA Excel;DBQ=C:\ddatesting
\TestExcel.xls;UID=;PWD=;"

Each data-driven test case takes as a single argument a record consisting of a record for each table that is
used in the test case. The record definition is automatically generated as shown here:

[+] // testcase VerifyProductDetails (REC_DATALIST_VerifyProductDetails rdVpd)
[] // Name: REC_<Testcase name>. Fields Types: Table record types. Field
Names: Table record
type with 'REC_' replaced by 'rec'
[-] type REC_DATALIST_VerifyProductDetails is record
 [] REC_Products recProducts
 [] REC_Customers recCustomers
 [] REC_CreditCards recCreditCards

Each table record contains the column names in the same order as in the database. Spaces in table and
column names are removed. Special characters such as $ are replaced by underscores.

[] // *** Global record for each Table ***
[]
[-] type REC_Products_ is record
 [] STRING Item //Item,
 [] REAL Index //Index,
 [] STRING Name //Name,
 [] REAL ItemNum //ItemNum,
 [] STRING Price //Price,
 [] STRING Desc //Desc,
 [] STRING Blurb //Blurb,
 [] REAL NumInStock //NumInStock,
 [] INTEGER QtyToOrder //QtyToOrder,
 [] INTEGER OnSale //OnSale,

Silk Test Classic writes a sample record for each table. This is the data used if you opt to use sample data
on the Run Testcase dialog box. A value from the original test case is inserted into the sample record,
even if there are syntax errors when that column is first used to replace a value.

[] // *** Global record containing sample data for each table ***
[] // *** Used when running a testcase with 'Use Sample Data from Script'
checked ***
[]
[-] REC_Products_ grTest_Products_ = {...}
 [] NULL // Item
 [] NULL // Index
 [] NULL // Name
 [] NULL // ItemNum
 [] NULL // Price
 [] NULL // Desc

Designing and Recording Test Cases with the Open Agent | 195

 [] NULL // Blurb
 [] NULL // NumInStock
 [] 2 // QtyToOrder
 [] NULL // OnSale
[]
[] // *** End of DATA DRIVEN ASSISTANT Section ***

Tips And Tricks for Data-Driven Test Cases
There are several things to know about working with data sources while you are creating data-driven test
cases.

• You must have an existing data source with tables and columns defined before you data drive a test
case. However, the data source does not need to contain rows of data. You cannot use the Data Driven
Workflow to create data sources or databases.

• If you have a table in your data source that has a long name (greater than 25 characters), all of the
name may not be visible in the Find and Replace menu bar in the 4Test Editor. You may find it helpful
to change the size of the menu bar to display more of your table name.

• You cannot change to a different data source once you have started to find and replace values in a
script. If you do, you will have problems with prior replacements. If you want to change your data source,
you should create a new data-driven script file.

• If you are working with a data source that requires a user name and password, you can add the
username and password to the connect string in the .g.t file. The first example below shows how SQL
Server requires a userid and password. [] STRING gsDSNConnect =
"DSN=USER.SQL.DSN;UID=SA;PWD=sesame;" where UID=<your user ID> ("SA" in the example
above) and where PWD=<your password> ("sesame" in the example above). On the other hand, the
example below shows how the Connect string for a MS Excel DSN does not require user IDs or
passwords: [] STRING gsDSNConnect = "DSN=Silk DDA Excel;DBQ=C:
\TestExcel.xls;UID=;PWD="

• You can choose to run with a sample record if the table is empty; however, this record is not inserted
into the database. The sample record is created by Silk Test Classic when it replaces values from the
test case by the table and columns in your database.

• Real numbers should be stored as valid 4Test Real numbers with format: [-]ddd.ddd[e[-]ddd],
even though databases such as MS Excel allow a wider range of formats – for example, currencies and
fractions.

• There are no restrictions on how you name your tables and columns within your data source. Silk Test
Classic automatically removes spaces, and converts dollar signs and other special characters to
underscores when it creates the sample record and writes other code to your data-driven test case. Silk
Test Classic handles MS Excel and MS Access table names without putting quotation marks around
them. This means that your table and column names will look familiar when you go to find and replace
values.

• If you encounter the error "ODBC Excel Driver numeric field overflow" while running a test case, check
the Excel workbook that you are using as your data source. You may have some columns that are
defined as STRING columns but contain numeric values in some of the rows. If you have a column that
you want to treat as numeric strings rather than as numbers, either format the column as 'Text' or begin
the number strings with a single-quote character. For example: '1003 instead of: 1003

• If modifying data sources in an existing Excel data sheet, use the remove column option to delete any
data to be removed, as simply deleting from the cell, using clear contents, or copy/pasting content will
not register correctly with the DDS file in Silk Test Classic and may lead to a data source mismatch
error: *** Error: Incompatible types -- Number of list elements exceeds number
of fields.

Formatting MS Excel worksheets for use as a data source

Use the 'General' format for the columns of your worksheets. Here are specific suggestions for column
formats based on the intended data type of the column:

196 | Designing and Recording Test Cases with the Open Agent

Intended Data
Type of
Column

Excel Column Format

STRING If the column contains only text, no numbers, dates or booleans, then apply the 'General' format. If
the column contains text and numbers, then you can still apply the 'General' format if you begin the
number strings with a single-quote character. For example: '1003 instead of: 1003. Otherwise,
apply the 'Text' format.

INTEGER or
REAL

‘General' or 'Number' format.

BOOLEAN ‘General' format. Use only the values TRUE and FALSE.

DATETIME ‘Custom' format: yyyy-mm-dd hh:mm:ss. That agrees with the ISO format used by Silk Test Classic
DATETIME values.

Testing an Application with Invalid Data
This topic assumes that you are familiar with data driving test cases.

To thoroughly test an application feature, you need to test the feature with invalid as well as valid data.

For example, the sample Text Editor application displays a message box if a user specifies a search string
in the Find dialog box that doesn’t exist in the document. To account for this, you can create a data-driven
test case, like the following, that verifies that the message box displays and has the correct message:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match
 STRING sMessage // The expected message in message box

testcase FindInvalidData (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()

 MessageBox.Message.VerifyValue (Data.sMessage)
 MessageBox.OK.Click ()

 Find.Cancel.Click ()
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

The VerifyValue method call in this test case verifies that the message box contains the correct string.
For example, the message should be Cannot find Ca if the user enters Ca into the Find dialog box and
the document editing area does not contain this string.

Enabling and Disabling Workflow Bars
Only one workflow bar can be enabled at a time.

To enable or disable a workflow bar, click Workflows and then select the workflow bar that you want to turn
on or off. For example, click Workflows > Basic.

Designing and Recording Test Cases with the Open Agent | 197

You can select one of the following workflows:

Workflow Description

Basic workflow Guides you through the process of creating a test case.

Data Driven workflow Guides you through the process of creating a data-driven test case.

Data Source for Data-Driven Test Cases
When you install Silk Test Classic, the SILK DDA EXCEL DSN is copied to your installation computer. This
is the default DSN that Silk Test Classic uses. This DSN uses a MS Excel 8.0 driver and does not have a
particular workbook (.xls file) associated with it.

The Select Data Source dialog box allows you to choose the data source:

• For new data-driven test cases, choose Silk DDA Excel.
• For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference

Segue DDA Excel to continue to run.

You do not have to use the default DSN. For additional information when using a different DSN, see
Configuring Your DSN.

You may use any of the following types of data sources:

• Text files and comma separated value files (*.txt and *.csv files)
• Microsoft Excel
• Microsoft SQL Server
• Microsoft Access
• Oracle
• Sybase SQL Anywhere

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Configuring Your DSN
The default DSN for data-driven test cases, Silk DDA Excel, is created during the installation of Silk Test
Classic. To use the default DSN you do not need to configure your DSN.

The Select Data Source dialog box allows you to choose the data source:

• For new data-driven test cases, choose Silk DDA Excel.
• For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference

Segue DDA Excel to continue to run.

The following instructions show how to configure a machine to use a different DSN than the Silk DDA Excel
default.

1. Click Start > Control Panel > System and Security > Administrative Tools > Data Sources (ODBC).

2. On the ODBC Data Source Administrator, click either the System DSN tab or the User DSN tab,
depending on whether you want to configure this DSN for one user or for every user on this machine.

3. Click Add.

4. On the Create New Data Source dialog box, select the driver for the data source and click Finish.

To restore the default DSN for Silk Test Classic, select the driver for Microsoft Excel Driver (*.xls).

5. On the setup dialog box of the data source, enter a name for the data source.

To restore the default for Silk Test Classic, enter Silk DDA Excel. For additional information about
the dialog box, refer to the database documentation or contact your database administrator.

6. Click OK.

198 | Designing and Recording Test Cases with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Setting Up a Data Source
Before you can run a data-driven test case you must set up a file that contains the tables, which are called
worksheets in Microsoft Excel (Excel), and the columns that you want to use. The tables do not have to be
populated with data, but it might help to have at least one complete record filled out.

1. Open one of the data sources for data-driven test cases, for example Excel.

2. Name at least one table, or worksheet if you are using Excel, and create column names for the table.

3. Save the data source.

Example

The Excel file TestExcel.xls can be used as a data source for a data-driven test
case and includes the three worksheets Products, Customers, and CreditCards. The
Customers worksheet includes the columns Customer, Name, Address, and so on.

Using an Oracle DSN to Data Drive a Test Case
To use an Oracle DSN to data drive a test case, select the test case to data drive, let Silk Test Classic
generate code into the new test case file, and then make the following manual modifications to the DSN:

1. Find out which columns are included in the table of your schema.

Different schemas may contain tables with the same name. The table lists for the Find/Replace Values
dialog box, the re-sizable menu bar, and the Specify Rows dialog box will list the same table name
once for each schema without indicating the schema. For each of those list items the column list will
contain the names of the columns in all of the tables with that name.

2. After finding and replacing values, split each table record into separate records according to the
schema. Do that for the sample record as well.

The record names should have the form: <Record prefix><schema>_<table>. For example, if the
schema is STUser and the table is Customers, the name of the table record type will be
REC_STUser_Customers and the declaration for the field in the test case record for the table will be
REC_STUser_Customers recSTUser_Customers // Customers.

3. Run the test case from a test plan, unless you are running all rows for all tables. Use the Specify Rows
dialog box to build the ddatestdata value, then modify that value to include the schema name in the
query.

Designing and Recording Test Cases with the Open Agent | 199

Note: Specify a query for every table, even if you want to run all rows for a table. To run all rows,
leave the where clause blank.

Creating the Data-Driven Test Case
This section describes how you can create a data-driven test case.

Selecting a Test Case to Data Drive
For information on the steps that you need to complete before you can select a test case to data drive, see
Data-Driven Workflow.

While you are in a script, choose one of the following to select a test case for data driving:

• Click Tools > Data Drive Testcase.
• Right-click into the script and select Data Drive Testcase.

When you select a test case, Silk Test Classic copies the selected test case and creates a new data-driven
test case by adding a DD_ prefix to the original name of the test case. Silk Test Classic also writes other
data-driven information to the new or existing data-driven script file script.g.t.

Finding and Replacing Values
For information on the steps that you need to complete before you can find and replace values in a test
case, see Data-Driven Workflow.

You can use the Find/Replace Values dialog box to find and replace values in a data-driven test case with
links to values in tables and columns. Values are text strings, numbers, and booleans that exist in your
original test cases. One of the steps in creating a data-driven test case is to find these values and replace
them with references to columns in your data source.

Silk Test Classic checks to make sure that each value you select is appropriate for replacement by the
column in your test case. You can turn off this validation by clicking Edit > Data Driven > Validate
Replacements while you are in a .g.t file. This means that the Find aspect of Find and Replace works
as usual, but that the values that you replace are not validated. By turning off this checking, you suppress
the error messages that Silk Test Classic would have otherwise displayed. Any 4Test identifier or fragment
of a string is considered an invalid value for replacement unless Validate Replacements is turned off. If
you are new to creating data-driven test cases, we recommend that you keep this validation turned on.

Note: You can also use the Find and Replace menu bar in the 4Test Editor to find and replace
values in a data-driven test case.

When you are using Find and Replace, sometimes a method requires a data type that does not match the
column that you want to replace. For example, SetText requires a string, but you may want to set a
number instead, or perhaps the database does not store data in the 4Test type that you would like to use.
Silk Test Classic can handle these kinds of conversions, with a few exceptions.

1. Open the Find/Replace Values dialog box.

• Right-click into a test case in a .t file and select Data Driven Testcase. Specify the data source,
the data-driven script, and the data-driven test case. When you complete the Specify Data Driven
Testcase dialog box and the data-driven script opens in the 4Test Editor, the Find/Replace Values
dialog box opens automatically.

• Highlight a value in a .g.t file and choose Edit > Data Driven > Find/Replace Values.
• Right-click a value in a .g.t file and select Find > Replace Values.

2. Check the Text, Number, and True/False check boxes to specify what type of values you want to find
or replace.

By default all check boxes are checked, indicating that Silk Test Classic will look for text (string),
number, and true/false (boolean) values in the test case.

200 | Designing and Recording Test Cases with the Open Agent

3. Select Up or Down to define the direction in which Silk Test Classic searches in the file for the value.
The default is Down.

4. Select the name of the table that contains the values that you want to link to from the Table list.

5. Select the name of the column that contains the values that you want to link to from the Column list.

6. Click Find Next to start searching for the values within the test case. Silk Test Classic finds and
highlights various values.

7. Click Replace to replace the found value with a link to the values in the data source.

8. When you have finished replacing values, click Cancel.

Check the Don't show me this again check box if you want to use the re-sizable menu bars instead of the
Find/Replace Values dialog box to find and replace values. You can re-display the dialog box by clicking
Edit > Data Driven > Find/Replace Values or by right-clicking into a data-driven test case and un-
checking Validate Replacements.

Rules and Tips for Finding and Replacing Values in the Data-Driven
Workflow

Rules for finding and replacing

The following table shows how Silk Test Classic works when it finds and replaces values in your scripts.

Value Found in Script Database Column Type Replaced by Tip

STRING STRING Column

INTEGER Str(Column) 5

REAL Str(Column,NULL,2) 1, 3, 4, 5

BOOLEAN Str(Column) 8

DATETIME [STRING]Column 7

INTEGER STRING Val(Column)

INTEGER Column

REAL Column 1, 6

BOOLEAN (not allowed)

DATETIME (not allowed)

REAL STRING Val(Column)

INTEGER Column 6

REAL Column

BOOLEAN (not allowed)

DATETIME (not allowed)

BOOLEAN STRING (not allowed)

INTEGER Column 2, 6

REAL (not allowed)

BOOLEAN Column

DATETIME (not allowed)

Designing and Recording Test Cases with the Open Agent | 201

Value Found in Script Database Column Type Replaced by Tip

DATETIME 7

Tips for finding and replacing values

When you are creating a data-driven test case, there are several points to note about the find and replace
process. These notes are referenced by the Rules for finding and replacing table, shown above.

• MS Excel stores integers as REALs. This means that you may see a 1 in an MS Excel cell, but the
number that is stored is actually 1.000. Whenever you replace an integer in a test case with a column
designated as REAL, Silk Test Classic displays a question similar to the following: To ensure that Silk
Test Classic handles your data properly, additional information is needed: Will column QtyToOrder
contain only INTEGER (no decimal point) values? Click Yes to treat that column's values as INTEGER;
click No to continue to treat that column's values as REAL.

• Some databases (such as MS Excel) store booleans as INTEGERs. This means that you may see a
TRUE in an Excel cell, but the value that is stored is actually 1. Whenever you replace a boolean in a
test case with a column designated as INTEGER , Silk Test Classic displays a question similar to the
following: To ensure that Silk Test Classic handles your data properly, additional information is needed:
Will column OnSale contain only BOOLEAN (TRUE/FALSE) values? Click Yes to treat that column's
values as BOOLEAN; click No to continue to treat that column's values as INTEGER.

• If you have a currency string, we recommend that you split it into two strings separated by a plus sign.
The first string should contain just the financial symbol (for example, the dollar sign or USD acronym)
and the second string should contain just the number value. When you do a find and replace, this lets
you replace only the number value, not the financial symbol or acronym. For example, do not use
$123.45, instead use $ + 123.45

• When a STRING literal is replaced by a column containing REAL values, the real number is rounded to
two decimal places. To change the number of decimal places that are displayed, change the value of
iDecimal in Str (table.column, NULL, iDecimal). For example, to display 7.1234 instead of 7.12, change:

Str (table.column, NULL, 2)

to:

Str (table.column, NULL,4)

• You can replace any STRING value with a REAL or INTEGER column. However, in order to have a
working sample record, the value that is first replaced by that column should be a STRING
representation of a REAL or INTEGER constant.

• In certain cases, 4Test implicitly converts one data type to another. In that case, Silk Test Classic does
not insert a conversion expression when replacing the value by the DB column reference..

• To represent a DATETIME value, in other words a 4Test DATETIME constant, you must create a
STRING that specifies the date and time in the standard 4Test DATETIME (ISO) format - YYYY-MM-DD
HH:MM:SS.MSMSMS. You can truncate the string at any point, as long as the last field is complete. If
you use a different format, you will cause a runtime error. Because DATETIME values found in a script
are actually STRING values, the replacement rules are the rules for STRING values.

• The conversion from STRING to BOOLEAN will cause a runtime error. The expression must be
changed manually from 'Str(Column)' to: [STRING]Column.

• A fraction is considered an INTEGER division expression, so the value inserted into the sample record
is truncated to the next lowest integer.

• If Silk Test Classic does not insert any of the expected conversion expressions, then the Validate
Replacements setting is probably unchecked. Click Edit > Data Driven > Validate Replacements to
see how Validate Replacements is set.

• When you do a Find/Replace, Silk Test Classic skips values contained in variable definitions. To find
those values, click Edit > Data Driven > Validate Replacements to turn off Validate Replacements.
We recommend that you initialize variables after you define them; be sure to separate the variable
definition and assignment on two different lines.

202 | Designing and Recording Test Cases with the Open Agent

Running a Data-Driven Test Case
Once you have selected a test case to data drive, and found and replaced values, choose one of the
following ways to run the test case:

• Click Run > Run while in a .g.t file. This command runs main(), or if there is no main(), the
command runs all test cases. For each test case, this command runs all rows for all tables used by the
test case.

• Click Run > Testcase and select the data-driven test case from the list of test cases on the Run
Testcase dialog box, for all tables used by the test case.

• Click Run > Testcase > Run to run the test case for all rows for all tables used by the test case.

Running a Test Case Using a Sample Record for Each Table Used by
the Data-Driven Test Case
This is useful if you want to do a quick test or are not connected to your data source. The sample record is
created as you replace values in the test case. When you first use a column to replace a test case value,
that value is inserted into the table record in the field for that column.

1. On the Run Testcase dialog box, click Use Sample Data from Script.

By default, Silk Test Classic runs every combination of rows in your tables. The number of test cases
that runs is:

of rows selected for Table 1 X the # of rows selected for
Table 2 X the number of rows for Table 3
... and so on

For example, if your test case uses 3 tables with 5 rows each, Silk Test Classic will run 125 test cases.

2. To select the rows you want to run on a table-by-table basis, click Specify Rows on the Run Testcase
dialog box to use the Specify Rows dialog box to create a query.

3. Specify arguments, if necessary, in the Arguments text box. Remember to separate multiple arguments
with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the Silk TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

Designing and Recording Test Cases with the Open Agent | 203

Passing Data to a Test Case
Once you have defined your data-driven test case, you pass data to it, as follows:

• If you are not using the test plan editor, you pass data from a script's main function.
• If you are using the test plan editor, you embed the data in the test plan and the test plan editor passes

the data when you run the test plan.

Example Setup for Forward Case-Sensitive Search
Here is a sample application state that performs the setup for all forward case-sensitive searches in the
Find dialog box:

appstate Setup () basedon DefaultBaseState
TextEditor.File.New.Pick ()
DocumentWindow.Document.TypeKeys ("Test Case<Home>")
TextEditor.Search.Find.Pick ()
Find.CaseSensitive.Check ()
Find.Direction.Select ("Down")

Building Queries
Before you define a query to access certain data in a data-driven test case, there are several steps you
need to complete. for additional information, see Using the Data Driven Workflow for more information.

Respond to the prompts on the Specify Rows dialog box to create a query for a table. The following are
examples of simple queries:

• To find and run the records of customers whose customer ID number is 1001: (CUSTID = 1001)
• To find and run the records of customers whose names begin with the letters "F" or "G": (CUST_NAME

LIKE ‘F%’) OR (CUSTNAME LIKE ‘G%’).

See the description of the enter values area in the Specify Rows dialog box to see examples of more
complex queries.

Adding a Data-Driven Test Case to a Test Plan
You can run a data-driven test case from a test plan as either a data-driven test case or as a regular test
case. To distinguish between the two cases, there are two keywords for you to use:

• ddatestcase specifies the name of a test case that runs as a data-driven test case.
• ddatestdata specifies the list of rows that will be run with the data-driven test case.

If the test case is specified with the keyword ddatestcase, it is run as a data-driven test case. Use this
keyword only with data-driven test cases.

To specify a data-driven test case in a test plan

• Add keyword ddatestcase in front of the test case name.
• Add the keyword ddatestdata as a list of queries that specify the particular rows you want the test case

to run with. The list of queries is represented as a single LIST OF STRING parameter.

Rules for using data-driven keywords

• The ddatestdata keyword requires simple select queries. To specify the row you want to run a test case
with, use the ddatestdata keyword with the format: select * from <table> where

• The keyword ddatestcase cannot be a level above the script file and still work. The script file has to be
at the same level or above it.

• A test plan needs to specify a test case using either the keyword testcase or the keyword ddatestcase.
Using both causes a compiler error.

204 | Designing and Recording Test Cases with the Open Agent

• If the ddatestdata keyword is present, then the ddatestcase is run using the ddatestdata value as the
rows to run.

• The default is to run all rows for all tables. The value for ddatestdata for this is
ALL_ROWS_FOR_ALL_TABLES.

• Using the keyword testdata in a test item with keyword ddatestcase will cause a compiler error.
• If the test case is specified with the keyword testcase, then the test case is run as a regular test case

and the testdata keyword or symbols must be present to specify the value that will be passed as the
regular argument. This value must be a record of the type defined for the ddatestcase, in other words of
type REC_DATALIST_<Testcase name>.

You can add a data-driven test case to a test plan by using the Testplan Detail dialog box or by editing the
test plan directly. However, if you edit the test plan directly, then the keywords are not automatically
validated and it is your responsibility to make sure that the keywords, which are testcase versus
ddatestcase and testdata versus ddatestdata, are appropriate for the intended execution of the test case.

Whenever you use the Test Detail dialog box, be sure to click the Testcases button and select the test
case from the list. That will ensure that the proper keywords are inserted into the test plan.

Using sample records data within test plans

To run a test case with the sample record within a test plan, you must manually input the test data, in the
format ddatestdata: {"USE_SAMPLE_RECORD_<tablename>"}

For example:

script: example.t
ddatestcase: sampletc
ddatestdata: {"USE_SAMPLE_RECORD_SpaceTable$"}

You must put the USE_SAMPLE_RECORD_ prefix in front of each table name that you want to run against. If
you are using two tables, you need to input the prefix twice, as shown below with two tables named
"Table1" and "Table2":

ddatestdata: {"USE_SAMPLE_RECORD_Table1","USE_SAMPLE_RECORD_Table2"}

Using a main Function in the Script
Although most of the script files you create contain only test cases, in some instances you need to add a
function named main to your script. You can use the main function to pass data to test cases as well as
control the order in which the test cases in the script are executed.

When you run a script file by clicking Run > Run:

• If the script file contains a main function, the main function is executed, then execution stops. Only test
cases and functions called by main will be executed, in the order in which they are specified in main.

• If the script does not contain a main function, the test cases are executed from top to bottom.

Example

The following template shows the structure of a script that contains a main function that passes data to a
data-driven test case:

main ()
// 1. Declare a variable to hold current record
// 2. Store all data for test case in a list of records
// 3. Call the test case once for each record in the list

Using this structure, the following example shows how to create a script that defines data records and then
calls the sample test case once for each record in the list:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for

Designing and Recording Test Cases with the Open Agent | 205

 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match

main ()
 SEARCHINFO Data
 list of SEARCHINFO lsData = {...}
 {"Test Case", "<END>", "C", TRUE, "Up", "C"}
 {"Test Case", "<END>", "Ca", TRUE, "Up", "Ca"}
 // additional data records can be added here
 for each Data in lsData
 FindTest (Data)

testcase FindTest (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()
 Find.Cancel.Click ()
 DocumentWindow.Document.VerifySelText ({Data.sExpected})
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

When you click Run > Run, the main function is called and the FindTest test case will be executed once
for every instance of Data in lsData (the list of SEARCHINFO records). In the script shown above, the test
case will be run twice. Here is the results file that is produced:

Script findtest.t - Passed
Passed: 2 tests (100%)
Failed: 0 tests (0%)
Totals: 2 tests, 0 errors, 0 warnings

Testcase FindTest ({"Test Case", "<END>", "C", TRUE, "Up", "C"}) - Passed
Testcase FindTest ({"Test Case", "<END>", "Ca", TRUE, "Up", "Ca"}) - Passed

Note: With data-driven test cases, Silk Test Classic records the parameters that are passed in, in the
results file.

In this sample data-driven test case, the test case data is stored in a list within the script itself. It is also
possible to store the data externally and read records into a list using the FileReadValue function.

Using do...except to Handle an Exception
The VerifyValue method, like all 4Test verification methods, raises an exception if the actual value does
not match the expected (baseline) value. When this happens, Silk Test Classic halts the execution of the
test case and transfers control to the recovery system. The recovery system then returns the application to
the base state.

However, suppose you don’t want Silk Test Classic to transfer control to the recovery system, but instead
want to trap the exception and handle it yourself. For example, you might want to log the error and continue
executing the test case. To do this, you can use the 4Test do...except statement and related
statements, which allow you to handle the exception yourself.

Select Data Source Dialog Box
The Select Data Source dialog box displays when you are creating a new data-driven file, which is a .g.t
file, or opening an existing data-driven file that does not contain a data source connection string. This
dialog box identifies the data source you will use to replace values in the data-driven test case. After you fill
out this dialog box, Silk Test Classic loads the table and column information from your data source so it is

206 | Designing and Recording Test Cases with the Open Agent

available for you to use when you find and replace values in a test case. A data-driven script can use only
one data source.

Select Data
Source

Defaults to the previously specified DSN or to Silk DDA Excel. Select another data
source by clicking the down arrow.

The Select Data Source dialog box allows you to choose either the Silk DDA Excel or
the Segue DDA Excel data source. For new data-driven test cases, choose the Silk
DDA Excel data source. Choose the Segue DDA Excel data source for backward
compatibility. This allows existing g.t files that reference Segue DDA Excel to continue
to run.

Select
Workbook/
Connection
String area

Select Workbook displays when you have selected the default data source, Segue
DDA Excel. Connection String displays when you choose a data source other than the
default. If you are working with Silk DDA Excel you must select a workbook. Click
Browse to navigate to the workbook you will use.

OK Saves the connection string so that it can be inserted into the data-driven script. The
connection string is also saved to partner.ini so that this data source will be the
new default selection for the list. If you are using the Silk DDA Excel data source, this
button is only available after you select a workbook.

Customize Displays when you select a data source other than the default. Click to display the
Setup Data Driven Script DSN dialog box.

Setup Data Driven Script DSN Dialog Box
Use to create or modify the connection string for the DSN you select. Once you fill out this dialog, Silk Test
Classic verifies that the DSN configuration is correct by connecting to the database, generating the 4Test
code describing the DSN, and writing information into the data driven script.

Click Customize on the Select Data Source dialog box.

Source
Provider

Select Microsoft OLE DB Provider for ODBC, since Silk Test Classic uses ODBC to
connect to data sources.

Microsoft OLE
DB Provider
for ODBC

Select Connect Using Data Source Name (DSN).

Connection
Information

DSN Select the data source that you selected on the Select
Data Source dialog box.

The rest of the connection information displays
information that the DSN requires before it can
successfully make a connection. This information varies
depending on the DSN you select. For more information
about how to respond to the fields on this dialog, consult
your database documentation or contact your database
administrator.

More> Click to display the connection string.

If you choose an MS Excel DSN and use the Database field to specify a workbook, then the Connection
String will incorrectly contain Database=<.xls file>. To correct this problem, cut the .xls file path out
of the Database field and paste it into the Additional Connection String Parameters field, preceded by
DBQ=. For example, DBQ=C:\TestExcel.xls.

Designing and Recording Test Cases with the Open Agent | 207

Specify Data Driven Script Dialog Box
You can use the Specify Data Driven Script dialog box to perform one ore more of the following actions:

• To create a new data-driven script.
• To overwrite an existing data-driven script.
• To open an existing data-driven script and to append a test case to the script.

To open the Specify Data Driven Script dialog box, click Tools > Data Drive Testcase in the Silk Test
Classic menu, and select a test case from the Select Testcase dialog box.

Note: The dialog box is available only when a script is open in the editor.

The dialog box includes the following elements:

Create a new file/
Overwrite an
existing file

Click to create a new file or to overwrite the existing file that is specified in the
Filename field. Silk Test Classic automatically adds the .g.t extension to the file
name. You cannot overwrite existing files which are open in the editor.

Open an existing file Click to open the existing file that is specified in the Filename field.

Filename Type the name of the new file you want to create or the existing file you want to
open or overwrite.

Browse Click to navigate to the existing file you want to open or overwrite.

Save as format You can select one of the following file formats:

• ANSI
• Unicode
• UTF-8

Specify Data Driven Testcase Dialog Box
Use this dialog box to add a new data-driven test case or to overwrite existing test case(s).

Specify a data driven script file and, if prompted, a data source.

Add new Data
Driven testcase

Click to create a new data driven test case. This new test case is appended to the end
of the file and given the "DD_" prefix.

Overwrite
existing Data
Driven testcase

Click to overwrite an existing data driven test case.

Name Defaults to DD_<name of original testcase> when you are adding a new data
driven test case. If you opt to overwrite an existing data-driven test case, this field
turns into a list of data-driven test cases that already exist in the active file.

Test case names can have a maximum of 127 characters. When you create a data-
driven test case, Silk Test Classic truncates any test case name that is greater than
124 characters.

Specify Rows Dialog Box
Use to select rows to run the test case against. You use this dialog box to build queries that run against
your data-driven test case.

Click Specify Rows on the Run Testcase dialog box or the Testplan Detail dialog box.

208 | Designing and Recording Test Cases with the Open Agent

You cannot run using the sample record for individual tables. In order to run using the sample records for
each table used by the test case, for example to do a quick test or if you are not connected to the database,
click Use Sample Data from Script on the Run Testcase dialog box.

Table-by-table basis

When you select rows on a table-by-table basis, you use 'AND' and 'OR' actions. These may be used only
to specify multiple conditions for a single table. You cannot include more than one table in a single 'where'
clause. Conditions on separate tables must be specified independently, by selecting each table in the
'Table' list separately. The number of test cases that runs is:

of rows selected for Table 1 X the # of rows selected for Table 2 X the # of
rows for Table 3

Table Lists the tables used by the test case to be run. For tables that are Microsoft Office Excel
worksheets, the record names end in a dollar sign. Select a table in order to specify its where
clause.

Run Runs the selected test case using the queries you have specified.

Debug Opens the file in which the test case resides, enters debugging mode and places a breakpoint at
the first line of the test case. Debugging mode makes available all the debugging commands on
the Breakpoint, Debug and View menus.

Query
for this
table
area

Guides you to enter the where clause for the selected table. If you leave this area blank and
simply click Run, the default query selects all rows for the table.

The where clause of a query has the form:

(<Column> <relational
 operator> <value>) [and|or] (<Column> <relational
 operator> <value>)...

select * from <tablename> where the first list contains a list of columns from the table
selected above.

where (the second list) lists the following relational operators that apply to all column types:

To indicate Select

Equals =

Not equal to <>

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Designing and Recording Test Cases with the Open Agent | 209

To indicate Select

Like (typically used with STRING
columns)

like

There are three additional relational operators that you can type into the Editable query area –
but they do not appear in the where dropdown.

To Indicate Type

Between two values (value1 <= value <=
value2)

between <value1> and <value2>

In a set of discrete values in (<value>, <value>, <value>)

Not in a set of discrete values not in (<value>, <value>, <value>)

Enter
values
area

All string values must be enclosed in single quotation marks, for example, 'value'. For string
columns, you can match a pattern by using like ‘pattern’. The pattern can contain the single
character (_) wildcard or the 0 or more characters (%) wildcard.

If a column allows NULL values, then you can use the following query to return only those rows
for which the column contains a value:

select * from table_name where column_name <> NULL

Similarly, the following query would return only those rows for which the column is empty:

select * from table_name where column_name = NULL

Action Select Done to indicate you have finished entering where clauses or select AND or
OR to indicate the relationship to another where clause. After you selected the
appropriate action, the where clause that you have created appears in the bottom
box on this dialog. You can add additional where clauses or click Done.

Editable query
area

The where clauses that you create appear here after you click DONE, AND, or OR.
You can add additional where clauses in this area by clicking and typing them in.

Sample queries

The following table shows several sample queries and their corresponding "where" clause.

To find Use this WHERE clause

adults whose first names begin
with 'B'

(FirstName like 'B%') and (Age >= 18)

bananas, cherries, apples, or
any type of berry

(Fruit in ('banana', 'cherry', 'apple')) or (Fruit
like '%berry')

people born in the 1960's with
3-letter last names

(YearOfBirth between 1960 and 1969) and (LastName like
'___')

Go to Testcase Dialog Box
When a data-driven test script file, which is a file with the ending .g.t, is open in the editor, the Go to
Testcase dialog box lists all the test cases that are available in the active script. Any listed data-driven test
cases are prefixed with DD_.

To open the dialog box, click with the right mouse button into a .g.t file and select Go to Testcase.

210 | Designing and Recording Test Cases with the Open Agent

Select the test case and then click OK to display the 4Test Editor with the cursor at the beginning of the
test case that you have selected.

Select Testcase Dialog Box
When creating a data-driven test case out of an existing test case, the Select Testcase dialog box lists the
non-data-driven test cases in the active script.

To open the dialog box, click Tools > Data Driven Testcase. You can also right click in a .t file and then
click Data Driven Testcase.

Select the test case that you want to data-drive and then click OK to display the Specify Data Driven
Script File dialog box.

Characters Excluded from Recording and Replaying
The following characters are ignored by Silk Test during recording and replay:

Characters Control

... MenuItem

tab MenuItem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

Designing and Recording Test Cases with the Open Agent | 211

Testing in Your Environment with the Open
Agent

This section describes how you can test applications in your environment with the Open Agent.

Distributed Testing with the Open Agent
This section describes how you can run tests with the Open Agent on multiple machines.

Remote Testing with the Open Agent
You can install Silk Test Classic on a remote machine and test an application on this remote location from
the Silk Test Classic that is installed on your local machine.

Note: If you want to test mobile applications on a mobile device that is connected to a remote
machine or on an Emulator or Simulator on a remote machine, or web applications on Apple Safari or
on a remote Microsoft Edge, you have to use a remote Silk Test information service instead of a
remote Open Agent.

Testing with a Remote Open Agent
This functionality is supported only if you are using the Open Agent.

To replay tests against an application on a remote machine with Silk Test Classic, perform the following
actions:

1. Create a test against the application on the local machine.

2. Install the Open Agent on the remote machine.

For additional information, refer to the Silk Test Installation Guide.

3. Start the Open Agent on the remote machine.

4. Connect to the Open Agent on the remote machine.

• Click Options > Runtime and specify the IP address of the remote machine in the Agent name
field.

• Add the Connect function to your test script.

For example, to connect to the Open Agent on the remote machine with the network name
agentmachine, type the following into the test script:

 [] HANDLE hOpenAgent
 [] hOpenAgent = Connect("agentmachine", OPEN_AGENT)

To execute a command in the test script on the remote machine, add the handle to the command. For
example, if the command in the local test script was SomeAgentFunction, change the command to
the following:

[] hOpenAgent->SomeAgentFunction()

For additional information, see Connect Function.

Connecting to a Remote Open Agent
This functionality is supported only if you are using the Open Agent.

212 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-installguide-en.pdf

You can only use TCP/IP to connect Silk Test Classic on the local machine with an Open Agent on a
remote machine. Silk Test Classic on Microsoft Windows can use any TCP/IP software package that
supports the Windows Sockets Interface Standard, Version 1.1, (WINSOCK), and supplies WINSOCK.DLL.

Networking Protocols Used by the Open Agent
The Open Agent uses exclusively the TCP/IP protocol.

Single Remote Applications
In a single-application test environment, if the application is remote, specify the agent name in the
Runtime Options dialog box. This causes Silk Test Classic to automatically connect to that machine and
to direct all agent commands to that machine. This contrasts with the multi-application case, in which you
explicitly connect to the target machines and explicitly specify which machines are to receive which
sections of code.

Multiple Remote Applications
When you enable networking by selecting the networking type in the Runtime Options dialog box on the
host, do not set the Agent Name text box to an agent name if you have multiple remote agents. This field
only accepts a single agent name and using it prevents you from handling all your client machines the
same way.

If you specify one agent name from your set of agents, then you cannot issue a Connect call to that agent
and thus do not receive the machine handle that the Connect function returns. Since you have to issue
some Connect calls, be consistent and avoid writing exception code to handle a machine that is
automatically connected.

For projects or scripts that use the Classic Agent, you can specify multiple agents from within your script
file by adding the following command line to the agent:

agent –p portNumber

Configuring a Network of Computers
To configure a network of computers so that they can run Silk Test Classic and the Silk Test Classic agents,
perform the following steps:

1. Install, or have already running, networking protocols supported by Silk Test Classic.

2. Install Silk Test Classic on the host machine and the agent software on all target machines.

3. Establish connectability between host and agents.

This may be automatic or may require some setup, depending on the circumstances.

4. Enable networking on any target machines.

Use the Agent window, as described in Enabling Networking and Assigning the Classic Agent Name
and Port.

5. Enable networking on the host machine.

Use the Runtime Options dialog box. Details may vary, depending on your configuration.

6. Gather the information that your test scripts need when making explicit connections.

For example, you can edit the agent names into a list definition and have your test plan pass the list
variable name as an argument for test cases controlled by that plan. The test cases then pass each
agent name to a Connect or SetUpMachine function and that function makes the explicit host-to-
agent connection.

Configuration details are specific to the different protocols and operating systems you are using. In general,
set up your Agents and make all adjustments to the partner.ini file or environment variables before
enabling networking on the host machine.

Testing in Your Environment with the Open Agent | 213

Enabling Networking on a Remote Host
Once the protocol has been picked for any PC agents and the port settings are consistent, you can enable
networking on the host.

Do this by choosing Options > Runtime and setting the port number and/or agent name. You can skip this
step if you do not have to change the default port number and you are not specifying an agent name for a
single-remote-application configuration.

Configuring the Connections Between the Silk Test Classic
Components
To enable connecting to a remote machine through a firewall or to enable connecting to a remote machine
securely by using HTTPS, you can configure the ports through which Silk Test Classic communicates with
the information service and the Open Agent.

When the Open Agent starts, a random available port is assigned to Silk Test Classic and to the application
that you are testing. The port numbers are registered on the Silk Test information service (information
service).

The information service provides the following information to Silk Test Classic:

• The number of the port Silk Test Classic can use to connect to the Open Agent. Communication runs
directly between Silk Test Classic and the agent. You might need to configure this port for remote agent
scenarios, for example to avoid firewall conflicts.

• The browsers that are available on the machine on which the information service is installed.
• The mobile devices that are connected to the machine on which the information service is installed.
• The emulators that are available on the machine on which the information service is installed.
• The mobile browsers that are available on the previously mentioned mobile devices and emulators.

By default, the Open Agent communicates with the information service on HTTPS port 48561. You can
configure additional ports for the information service as alternate ports that work when the default port is
not available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you want to test on a remote
machine and there is a port number conflict or an issue with a firewall between the machine on which Silk
Test Classic is installed and the test machine, you can configure the port number for the communication
between Silk Test Classic and the Open Agent on the remote machine or the port number for the
communication between Silk Test Classic and the information service on the remote machine. If you have
multiple remote machines on which you want to test, you can use different port numbers for each remote
machine or you can use the same available port numbers for all remote machines.

214 | Testing in Your Environment with the Open Agent

Configuring the Port to Connect to the Information Service

Before you begin this task, stop the Silk Test Open Agent.

This functionality is supported only if you are using the Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

By default, the port that is used to connect Silk Test Classic with the information service over a secure
HTTPS connection is port 48561. When you can use the default port, you can type hostname without the
port number for ease of use. If you do specify a port number, ensure that it matches the value for the
default port of the information service or one of the additional information service ports. Otherwise,
communication will fail.

Testing in Your Environment with the Open Agent | 215

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

• In a Microsoft Windows system, this file is located in C:\ProgramData\Silk\Silk Test\conf,
where “C:\ProgramData” is equivalent to the content of the ALLUSERSPROFILE environment
variable, which is set by default on Windows systems.

• On macOS, this file is located in /Users/<user>/.silk/silktest/conf.

This file contains commented text and sample alternate port settings.

2. Specify whether Silk Test Classic should communicate with the information service over a secure
connection through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

3. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk Test Classic should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

4. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk Test Classic should communicate with
the information service as the infoservice.default.port.

The default port is 22901.

5. Save the file as infoservice.properties.

6. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Port to Connect to the Open Agent

Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

If necessary, change the port number that the Silk Test client or the application that you want to test uses to
connect to the Open Agent.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:\Users
\<user name>\AppData\Silk\SilkTest\conf where <user name> equals the current user
name.

2. Change the value for the appropriate port.

Typically, you configure port settings to resolve a port conflict.

Note: Each port number must be unique. Ensure that the port numbers for the Agent differ from
the information service port settings.

Port numbers can be any number from 1 to 65535.

Port settings include:

• agent.vtadapter.port – Controls communication between Silk Test Workbench and the Open
Agent when running tests.

216 | Testing in Your Environment with the Open Agent

• agent.xpmodule.port – Controls communication between Silk Test Classic and the Agent when
running tests.

• agent.autcommunication.port – Controls communication between the Open Agent and the
application that you are testing.

• agent.rmi.port – Controls communication with the Open Agent and Silk4J.
• agent.ntfadapter.port – Controls communication with the Open Agent and Silk4NET.
• agent.heartbeat.port – Required to test with an Open Agent that is installed on a remote

machine.

Note: The ports for Apache Flex testing are not controlled by this configuration file. The assigned
port for Flex application testing is 6000 and increases by 1 for each Flex application that is tested.
You cannot configure the starting port for Flex testing.

3. Save the file as agent.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Editing the Properties of the Silk Test Information Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk Test Classic should communicate with the information service over a secure
connection through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk Test Classic should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk Test Classic should communicate with
the information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Testing in Your Environment with the Open Agent | 217

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

When using a secure connection through HTTPS between Silk Test Classic and the information service,
the following self-signed certificate files are used:

• The keystore certificate file is used for the information service HTTPS server.
• The following certificate files are used for the machine on which the Silk Test Classic client is running:

• cacerts

• cacerts.p12

• cacerts.pem

You can use OpenSSL and the Java keytool executable to replace these files with your own certificate files.

1. Ensure that OpenSSL and a JDK are installed on your machine.

2. Start the Java keytool executable from the bin folder of your JDK installation folder.

3. Create a private and public key pair in your private keystore file on the information service HTTPS
server:

keytool -genkey -alias jetty -keyalg RSA -keypass Borland -storepass
Borland -keystore keystore -validity 1095

4. When prompted to type a first and last name, type * as a wildcard for the host.

5. Export the information from your private keystore to a temporary certificate file named server.cer:

keytool -export -alias jetty -storepass Borland -file server.cer -keystore
keystore

This temporary certificate file is required to generate the certificate files for the machine on which the
Silk Test Classic client is running.

6. Create a certificate file named cacerts from the server.cer file.

keytool -import -v -trustcacerts -alias jetty -file server.cer -keystore
cacerts -keypass Borland -storepass Borland

7. Import the information from the cacerts file into the temporary certificate file cacerts.p12.

keytool -importkeystore -srckeystore cacerts -destkeystore cacerts.p12 -
srcstoretype JKS -deststoretype PKCS12 -srcstorepass Borland -deststorepass
Borland

8. Create the public keystore file cacerts.pem in the PKCS12 keystore format from the temporary
certificate file cacerts.p12

openssl pkcs12 -in cacerts.p12 -out cacerts.pem -cacerts -nokeys

9. Deploy the files keystore, cacerts, cacerts.p12, and cacerts.pem to the configuration folder:

• On a Windows machine, deploy the files to %PROGRAMDATA%\Silk\SilkTest\conf, for example
C:\ProgramData\Silk\SilkTest\conf.

• On macOS, deploy the files to ~/.silk/silktest/conf/.

Client/Server Testing Configurations
The processes that participate in a client/server testing scenario are logically associated with three
different computers:

218 | Testing in Your Environment with the Open Agent

1. System A runs Silk Test Classic, which processes test scripts and sends application commands to the
agent.

2. System B runs the client application and the agent, which submits the application commands to the
client application.

3. System C runs the server software, which reacts to requests submitted by the client application.

The following sections describe different hardware/software configurations that can support Silk Test
Classic testing.

Configuration 1

Machine 1 shows the software configuration you would have when testing a stand-alone application.
Machine 2 shows Silk Test Classic and a client/server application with all of your software running on one
machine. This configuration allows you to do all types of functional testing other than testing the behavior of
the connection between a client and a remote server.

During your initial test development phase, you can reduce your hardware needs by making two (and
possibly all) of these systems the same. If you write tests for an application running on the same system as
Silk Test Classic, you can implement the tests without consideration of any of the issues of remote testing.
You can then expand your testing program incrementally to take your testing into each new phase.

Configuration 2

A testing configuration in which the client application runs on the same machine as Silk Test Classic and
the server application runs on a separate machine.

Note: In this configuration, as with Machine 2 in Configuration 1, there is no communication between
Silk Test Classic and the server. This means that you must manage the work of starting and initializing
the server database manually. For some kinds of testing this is appropriate.

Testing in Your Environment with the Open Agent | 219

This configuration lets you test the remote client-to-server connection and is appropriate for many stress
tests. It allows you to do volume load testing from the point of view of the client application, but not the
server.

Configuration 3

Multiple copies of the client application running on separate machines, with Silk Test Classic driving the
client application by means of the agent process on each client machine, and the client application driving
the server application. This is just the multi-client version of the previous configuration. You could run a
fourth instance of the client application on the Silk Test Classic machine. The actual number of client
machines used is your choice.

220 | Testing in Your Environment with the Open Agent

This configuration is appropriate for load testing and configuration testing if you have no need to
automatically manipulate the server. You must have at least two clients to test concurrency and mutual-
exclusion functionality.

Configuration 4

Once you are running Silk Test Classic, it makes sense to have your script initialize your server
automatically. Configuration 4 uses the same hardware configuration as Configuration 3, but Silk Test
Classic is also driving the server directly. This figure shows Silk Test Classic using an agent on the server
machine to drive the server’s GUI (the lower connecting arrow); this approach can be used to start the
server’s database and sometimes can be used to initialize it to a base state. The upper arrow shows Silk
Test Classic using SQL commands to directly manipulate the server database; use this approach when
using the agent is not sufficient. After starting the database with the agent, use SQL commands to initialize
it to a base state. The SQL commands are submitted by means of Silk Test Classic’s database functions,
which do not require the services of the agent.

Testing in Your Environment with the Open Agent | 221

Configuration 4 is the most complete testing configuration. It requires the database tester. You can use it
for all types of Silk Test Classic testing, including volume load testing of the server, peak load testing, and
performance testing.

The special features that allow Silk Test Classic to provide rigorous testing for client/ server applications
are the following:

• Automatic control of multiple applications.
• Multithreading for automatic control of concurrent applications.
• Reporting results by thread ID.
• Testing across networks using a variety of protocols.

The added value that the database tester provides for the client/server environment is direct database
access from the test script.

Running Test Cases in Parallel
A concurrent, or multithreaded, script is one in which multiple statements can execute in parallel.
Concurrency allows you to more effectively test distributed systems, by permitting multiple client
applications to submit requests to a server simultaneously.

The 4Test language fully supports the development of concurrent scripts which enables a script to:

• Create and coordinate multiple concurrent threads.
• Protect access to variables, which are global to all threads.
• Synchronize threads with semaphores.
• Protect critical sections of code for atomic operations.
• Recover from errors in the event of script deadlock.

Concurrency
For Silk Test Classic, concurrent processing means that agents on a specified set of machines drive the
associated applications simultaneously. To accomplish this, the host machine interleaves execution of the
sets of code assigned to each machine. This means that when you are executing identical tests on several

222 | Testing in Your Environment with the Open Agent

machines, each machine can be in the process of executing the same operation. For example, select the
Edit.FindChange menu item.

At the end of a set of concurrent operations, you will frequently want to synchronize the machines so that
you know that all are ready and waiting before you submit the next operation. You can do this easily with
4Test.

There are several reasons for executing test cases concurrently:

• You want to save testing time by running your functional tests for all the different platforms at the same
time and by logging the results centrally, on the host machine.

• You are testing cross-network operations.
• You need to place a multi-user load on the server.
• You are testing the application’s handling of concurrent access to the same database record on the

server.

To accomplish testing concurrent database accesses, you simply set all the machines to be ready to make
the access and then you synchronize. When all the machines are ready, you execute the operation that
commits the access operation—for example, clicking OK. Consider the following example:

// [A] Execute 6 operations on all machines concurrently
for each sMachine in lsMachine
 spawn
 SixOpsFunction (sMachine)
rendezvous // Synchronize

// [B] Do one operation on each machine
for each sMachine in lsMachine
 spawn
 [sMachine]MessageBox.OK.Click () // One operation
rendezvous // Synchronize

In code fragment [A], the six operations defined by the function SixOpsFunction are executed
simultaneously on all machines in a previously defined list of agent names. After the parallel operation, the
script waits for all the machines to complete; on completion, they will present a message box, unless the
application fails. In code fragment [B], the message box is dismissed. By putting the message dismissal
operation into its own parallel statement block instead of adding it to the SixOpsFunction, you are able
to synchronize and all machines click at almost the same instant.

In order to specify that a set of machines should execute concurrently, you use a 4Test command that
starts concurrent threads. In the fragments above, the spawn statement starts a thread for each machine.

Global Variables
Suppose the code for each machine is counting instances of some event. You want a single count for the
whole test and so each machine adds its count to a global variable. When you are executing the code for
all your machines in parallel, two instances of the statement iGlobal = iGlobal + iCount could be executing
in parallel. Since the instructions that implement this statement would then be interleaved, you could get
erroneous results. To prevent this problem, you can declare a variable shareable. When you do so, you can
use the access statement to gain exclusive access to the shared variable for the duration of the block of
code following the access statement. Make variables shareable whenever the potential for conflict exists.

Recovering Multiple Tests
There are three major categories of operations that an Agent executes on a target machine:

• Setup operations that bring the application to the state from which the next test will start.
• Testing operations that exercise a portion of the application and verify that it executed correctly.
• Cleanup operations that handle the normal completion of a test plus the case where the test failed and

the application is left in an indeterminate state. In either case, the cleanup operations return the
application to a known base state.

Testing in Your Environment with the Open Agent | 223

When there are multiple machines being tested and more than one application, the Agent on each machine
must execute the correct operations to establish the appropriate state, regardless of the current state of the
application.

Remote Recording
Once you establish a connection to a target machine, any action you initiate on the host machine, which is
the machine running Silk Test Classic, is executed on the target machine.

With the Classic Agent, one Agent process can run locally on the host machine, but in a networked
environment, the host machine can connect to any number of remote Agents simultaneously or
sequentially. You can record and replay tests remotely using the Classic Agent. If you initiate a Record/
Testcase command on the host machine, you record the interactions of the user manipulating the
application under test on the target machine. In order to use the Record menu’s remote recording
operations, you must place the target machine’s name into the Runtime Options dialog box. Choose
Options > Runtime.

With the Open Agent, one Agent process can run locally on the host machine. In a networked environment,
any number of Agents can replay tests on remote machines. However, you can record only on a local
machine.

Threads and Concurrent Programming
Silk Test Classic can run test cases in parallel on more than one machine. To run test cases in parallel, you
can use parallel threads within main() or in a function called by main(). If you attempt to run test cases in
parallel on the same machine, you will generate a runtime error.

A more elegant alternative to parallel threads is to use a multitestcase function, which provides a robust
multi-machine recovery system. For additional information on multitestcase code templates, see Using the
Client/Server Template and Using the Parallel Template.

In the 4Test environment, a thread is a mechanism for interleaving the execution of blocks of client code
assigned to different Agents so that one script can drive multiple client applications simultaneously. A
thread is part of the script that starts it, not a separate script. Each thread has its own call stack and data
stack. However, all the threads that a script spawns share access to the same global variables, function
arguments, and data types. A file that one thread opens is accessible to any thread in that script.

While the creation of a thread carries no requirement that you use it to submit operations to a client
application, the typical reason for creating a multithread script is so that each thread can drive test
functions for one client, which allows multiple client application operations to execute in parallel.

When a script connects to a machine, any thread in that script is also connected to the machine. Therefore,
you must direct the testing operations in a thread to a particular Agent machine. Threads interleave at the
machine instruction level; therefore, no single 4Test statement is atomic with respect to a statement in
another thread.

Driving Multiple Machines
When you want to run tests on multiple machines simultaneously, you connect to all the machines and then
you direct specific test operations to particular machines. This enables you to drive different applications
concurrently. For example, you can test the intercommunication capabilities of two different applications or
you can drive both a client application and its server.

To do this, at the beginning of a test script you issue for each machine an explicit connection command.
This can be either Connect(agent_name) or SetMachine(agent_name). This connection lasts for the
duration of the script unless you issue a Disconnect(agent_name) command. In the body of the script
you can specify that a particular portion of code is to be executed on a particular machine. The
SetMachine(agent_name) command specifies that the following statements are directed to that Agent.
You can specify that just one statement is directed to a particular Agent by using the bracket form of the
machine handle operator. For example ["Client_A"]SYS_SetDir ("c:\mydir").

224 | Testing in Your Environment with the Open Agent

Since 4Test allows you to pass variables to these functions, you can write a block of code that sends the
same operations to a particular set of target machines and you can pass the SetMachine function in that
block of code a variable initialized from a list that specifies the machines in that set. Thus, specifying which
machines receive which operations is very simple.

Protecting Access to Global Variables
When a new thread is spawned, 4Test creates a new copy of all local variables and function arguments for
it to use. However, all threads have equal access to global variables. To avoid a situation in which multiple
threads modify a variable simultaneously, you must declare the variable as shareable. A shareable variable
is available to only one thread at a time.

Instances where threads modify variables simultaneously generate unpredictable results. Errors of this kind
are difficult to detect. Make variables shareable wherever the potential for conflict exists.

A declaration for a shareable variable has the following form:

[scope] share data-type name [= expr] {, name [= expr]}

• scope can be either public or private. If omitted, the default is public.
• data-type is a standard or user-defined data type.
• name is the identifier that refers to the shareable variable.
• expr is an expression that evaluates to the initial value you want to give the variable. The value must

have the same type you gave the variable. If you try to use a variable before its value is set, 4Test raises
an exception.

At any point in the execution of a script, a shared variable can only be accessed from within the block of
code that has explicitly been granted access to it. You request access to shareable variables by using the
access statement.

An access statement has the following form:

access name1, name2, ...
 statement

where name1, name2, ... is a list of identifiers of optional length, each of which refers to a shareable
variable and statement is the statement to be executed when access to the variables can be granted.

If no other thread currently has access to any of the shareable variables listed, 4Test executes the specified
statement. Otherwise, 4Test blocks the thread where the access statement occurs until access can be
granted to all the shareable variables listed. At that point, 4Test blocks competing threads and executes the
blocked thread.

Example

share INTEGER iTestNum = 0
public share STRING asWeekDay [7]
share ANYTYPE aWhoKnows

void IncrementTestNum ()
 access iTestNum
 iTestNum = iTestNum + 1

Synchronizing Threads with Semaphores
Use semaphores to mutually exclude competing threads or control access to a resource. A semaphore is a
built-in 4Test data type that can only be assigned a value once. The value must be an integer greater than
zero. Once it is set, your code can get the semaphore's value, but cannot set it.

Testing in Your Environment with the Open Agent | 225

Example

The following code example shows legal and illegal manipulations of a variable of type
SEMAPHORE:

SEMAPHORE semA = 10 // Legal
semA = 20 // Illegal -
existing semaphore
 // cannot be
reinitialized
if (semA == [SEMAPHORE]2)... // Legal - note the
typecast
Print ("SemA has {semA} resources left.") // Legal
SEMAPHORE semB = 0 // Illegal - must be
greater than 0

To compare an integer to a semaphore variable, you must typecast from integer to semaphore using
[SEMAPHORE].

Note: You cannot cast a semaphore to an integer.

To use a semaphore, you first declare and initialize a variable of type SEMAPHORE. Thereafter, 4Test
controls the value of the semaphore variable. You can acquire the semaphore if it has a value greater than
zero. When you have completed your semaphore-protected work, you release the semaphore. The
Acquire function decrements the value of the semaphore by one and the Release function increments it
by one. Thus, if you initialize the semaphore to 5, five threads can simultaneously execute semaphore-
protected operations while a sixth thread has to wait until one of the five invokes the Release function for
that semaphore.

The Acquire function either blocks the calling thread because the specified semaphore is zero, or
"acquires" the semaphore by decrementing its value by one. Release checks for any threads blocked by
the specified semaphore and unblocks the first blocked thread in the list. If no thread is blocked, Release
"releases" the semaphore by incrementing its value by one so that the next invocation of Acquire
succeeds, which means it does not block.

A call to Acquire has the following form:

void Acquire(SEMAPHORE semA)

Where semA s the semaphore variable to acquire.

A call to Release has the following form:

void Release(SEMAPHORE semA)

Where semA s the semaphore variable to release.

If more than one thread was suspended by a call to Acquire, the threads are released in the order in
which they were suspended.

A semaphore that is assigned an initial value of 1 is called a binary semaphore, because it can only take
on the values 0 or 1. A semaphore that is assigned an initial value of greater than one is called a counting
semaphore because it is used to count a number of protected resources.

Example: Application only supports three simultaneous users

Suppose you are running a distributed test on eight machines using eight 4Test threads.
Assume that the application you are testing accesses a database, but can support only
three simultaneous users. The following code uses a semaphore to handle this
situation:

SEMAPHORE DBUsers = 3
...

226 | Testing in Your Environment with the Open Agent

Acquire (DBUsers)
 access database
Release (DBUsers)

The declaration of the semaphore is global; each thread contains the code to acquire
and release the semaphore. The initial value of three ensures that no more than three
threads will ever be executing the database access code simultaneously.

Testing In Parallel but Not Synchronously
This topic illustrates a method for running test functions in parallel on multiple clients, but with different
tests running on each client. This provides a realistic multi-user load as opposed to a load in which all
clients perform the same operations at roughly the same time.

Example

This example suggests a method by which each client, operating in a separate thread,
executes a test that is assigned by a random number. The RandSeed function is called
first so that the random number sequence is the same for each iteration of this multi-
user test scenario. This enables you to subsequently repeat the test with the same
conditions.

The example reads a list of client machines from a file, clients.txt, and receives the
test count as in input argument. These external variables make the example scalable as
to the number of machines being tested and the number of tests to be run on each. The
number of different testcases is twelve in this example, but could be changed by
modifying the SelectTest function and adding further test functions. For each
machine in the client machine list, the example spawns a thread in which the specified
client executes a randomly selected test, repeating for the specified number of tests.

Note: You can execute this test as it is written because it sets
its own application states. However, when you use multi-
application support, this is automatic. And if you want to use
this approach to drive different applications or to initialize a
server before starting the testing, you must add multi-
application support.

testcase ParallelRandomLoadTest (INTEGER iTestCount)
 LIST OF STRING lsClients
 RandSeed (3)

 // list of client names
 ListRead (lsClients, "clients.txt")

 STRING sClientName

 for each sClientName in lsClients
 spawn
 // Connect to client, which becomes current machine
 Connect (sClientName)
 SetAppState ("MyAppState") // Initialize
application
 TestClient (iTestCount)
 Disconnect (sClientName)
 rendezvous

 TestClient (INTEGER iTestCount)
 for i = 1 to iTestCount
 SelectTest ()

 SelectTest ()

Testing in Your Environment with the Open Agent | 227

 INTEGER i = RandInt (1, 12)

 // This syntax invokes Test1 to Test12, based on i
 @("Test{i}") ()

 // Define the actual test functions
 Test1 ()
 // Do the test . . .

 Test2 ()
 // Do the test . . .
 . . .
 Test12 ()
 // Do the test . . .

Statement Types
This section describes the statement types that are available for managing distributed tests.

Parallel Processing Statements

You create and manage multiple threads using combinations of the 4Test statements parallel, spawn,
rendezvous, and critical.

In 4Test, all running threads, which are those not blocked, have the same priority with respect to one
another. 4Test executes one instruction for a thread, then passes control to the next thread. The first thread
called is the first run, and so on.

All threads run to completion unless they are deadlocked. 4Test detects script deadlock and raises an
exception.

Note: The 4Test exit statement terminates all threads immediately when it is executed by one thread.

Using Parallel Statements

A parallel statement spawns a statement for each machine specified and blocks the calling thread until the
threads it spawns have all completed. It condenses the actions of spawn and rendezvous and can make
code more readable.

The parallel statement executes a single statement for each thread. Thus if you want to run complete tests
in parallel threads, use the invocation of a test function, which may execute many statements, with the
parallel statement, or use a block of statements with spawn and rendezvous.

To use the parallel statement, you must specify the machines for which threads are to be started. You can
follow the parallel keyword with a list of statements, each of which specifies a different Agent name. For
example:

parallel
 DoSomething ("Client1")
 DoSomething ("Client2")

The DoSomething function then typically issues a SetMachine(sMachine) call to direct its machine
operations to the proper Agent.

Using a Spawn Statement

A spawn statement begins execution of the specified statement or block of statements in a new thread.
Since the purpose of spawn is to initiate concurrent test operations on multiple machines, the structure of a
block of spawned code is typically:

• A SetMachine command, which directs subsequent machine operations to the specified agent.

228 | Testing in Your Environment with the Open Agent

• A set of machine operations to drive the application.
• A verification of the results of the machine operations.

You can use spawn to start a single thread for one machine, and then use successive spawn statements to
start threads for other machines being tested. Silk Test Classic scans for all spawn statements preceding a
rendezvous statement and starts all the threads at the same time. However, the typical use of spawn is in a
loop, like the following:

for each sMachine in lsMachine
 spawn // start thread for each sMachine
 SetMachine (sMachine)
 DoSomething ()
 rendezvous

The preceding example achieves the same result when written as follows:

for each sMachine in lsMachine
 spawn
 [sMachine]DoSomething ()
 rendezvous

To use a spawn statement in tests that use TrueLog, use the OPT_PAUSE_TRUELOG option to disable
TrueLog. Otherwise, issuing a spawn statement when TrueLog is enabled causes Silk Test Classic to hang
or crash.

Using Templates
This section describes how you can use templates for distributed testing.

Using the Parallel Template

This template is stored as parallel.t in the Examples subdirectory of the Silk Test Classic installation
directory. The code tests a single application that runs on an externally defined set of machines.

This multi-test-case template accepts a list of machine names. The application whose main window is
MyMainWin is invoked on each machine. The same operations are then performed on each machine in
parallel. If any test case fails, the multi-test-case will be marked as having failed; however, a failed test case
within a thread does not abort the thread.

You can use this template by doing three edits:

• Include the file that contains your window declarations.
• Substitute the MainWin name of your application, which is defined in your MainWin window declaration,

with the Mainwin name of the template, MyMainWin.
• Insert the calls to one or more tests, or to the main function, where indicated.

Use myframe.inc.

use "myframe.inc"
multitestcase MyParallelTest (LIST of STRING lsMachines)

 STRING sMachine

 // Connect to all machines in parallel:
 for each sMachine in lsMachines
 spawn
 SetUpMachine (sMachine, MyMainWin)
 rendezvous

 // Set app state of each machine, invoking if necessary:
 SetMultiAppStates()

 // Run testcases in parallel
 for each sMachine in lsMachines
 spawn

Testing in Your Environment with the Open Agent | 229

 SetMachine (sMachine)
 // Call testcase(s) or call main()
 rendezvous

Client/Server Template

This template is stored as multi_cs.t in the Examples subdirectory of the Silk Test Classic installation
directory. This test case invokes the server application and any number of client applications, based on the
list of machines passed to it, and runs the same function on all clients concurrently, after which the server
will perform end-of-session processing.

You can use this template by doing the following edits:

• Include the files that contain your window declarations for both the client application and the server
application.

• Substitute the MainWin name of your server application, which is defined in your MainWin window
declaration, with the MainWin name of the template, MyServerApp.

• Substitute the MainWin name of your client application, which is defined in your MainWin window
declaration, with the Mainwin name of the template, MyClientApp.

• Replace the call to PerformClientActivity with a function that you have written to perform client
operations and tests.

• Replace the call to DoServerAdministration with a function that you have written to perform server
administrative processing and/or cleanup.

use "myframe.inc"
multitestcase MyClientServerTest (STRING sServer, LIST of STRING lsClients)
 STRING sClient

 // Connect to server machine:
 SetUpMachine (sServer, MyServerApp)

 // Connect to all client machines in parallel:
 for each sClient in lsClients
 spawn
 SetUpMachine (sClient, MyClientApp)
 rendezvous

 // Set app state of each machine, invoking if necessary:
 SetMultiAppStates()

 // Run functions in parallel on each client:
 for each sClient in lsClients
 spawn
 // Make client do some work:
 [sClient] PerformClientActivity()
 rendezvous

 // Perform end-of-session processing on server application:
 [sServer] DoServerAdministration()

Testing Multiple Machines
This section describes strategies for testing multiple machines.

Running Tests on One Remote Target
Use one of the following methods to specify that you want a script, suite, or test plan to run on a remote
target instead of the host:

• Enter the name of the target Agent in the Runtime Options dialog box of the host. You also need to
select a network protocol in the dialog box. If you have been testing a script by running Silk Test Classic

230 | Testing in Your Environment with the Open Agent

and the Agent on the same system, you can then test the script on a remote system without editing your
script by using this method.

• Specify the target Agent’s name by enclosing it within brackets before the script or suite name. For
example [Ohio]myscript.t.

• You can select (none) in the Runtime Options dialog box of the host and then specify the name of the
target Agent in a call to the Connect function in your script. For example, to connect to a machine
named Ontario:

testcase MyTestcase ()
 Connect ("Ontario")
 // Call first testcase
 DoTest1 ()
 // Call second testcase
 DoTest2 ()
 Disconnect ("Ontario"

When you are driving only one remote target, there is no need to specify the current machine; all test case
code is automatically directed to the only connected machine.

When you use the multi-application support functions, you do not have to make explicit calls to Connect;
the support functions issue these calls for you.

Running Tests Serially on Multiple Targets
To run your scripts or suites serially on multiple target machines, specify the name of the target Agent
within the suite file. For example, the following code runs a suite of three scripts serially on two target
machines named Ohio and Montana:

[Ohio] script1.t
[Ohio] script2.t
[Ohio] script3.t
[Montana] script1.t
[Montana] script2.t
[Montana] script3.t

Any spaces between the name of the target Agent and the script name are not significant.

Alternatively, to run test cases serially on multiple target machines, switch among the target machines from
within the script, by using the Connect and Disconnect functions of 4Test. For example, the following
script contains a function named DoSomeTesting that is called once for each machine in a list of target
machines, with the name of the target Agent as an argument:

testcase TestSerially ()
 STRING sMachine
 // Define list of agent names
 LIST OF STRING lsMachines = {...}
 "Ohio"
 "Montana"

 // Invoke test function for each name in list
 for each sMachine in lsMachines
 DoSomeTesting (sMachine)

 // Define the test function
 DoSomeTesting (STRING sMachine)
 Connect (sMachine)
 Print ("Target machine: {sMachine}")
 // do some testing...
 Disconnect (sMachine)

You will rarely need to run one test serially on multiple machines. Consider this example a step on the way
to understanding parallel testing.

Testing in Your Environment with the Open Agent | 231

Specifying the Target Machine Driven By a Thread
While the typical purpose for a thread is to direct test operations to a particular test machine, you have total
flexibility as to which machine is being driven by a particular thread at any point in time. For example, in the
code below, the spawn statement starts a thread for each machine in a predefined list of test machines.
The SetMachine command directs the code in that thread to the Agent on the specified machine. But the
["server"] machine handle operator directs the code in the doThis function to the machine named
server. The code following the doThis invocation continues to be sent to the sMachine specified in the
SetMachine command.

for each smachine in lsMachine
 spawn // start thread for each sMachine
 SetMachine (sMachine)
 // ... code executed on sMachine
 ["server"]doThis() // code executed on "server"
 // ...continue with code for sMachine
rendezvous

While the machine handle operator takes only a machine handle, 4Test implicitly casts the string form of
the Agent machine’s name as a machine handle and so in the preceding example the machine name is
effectively the same as a machine handle.

Specifying the Target Machine For a Single Command
To specify the target machine for a single command, use the machine handle operator on the command.
For example, to execute the SYS_SetDir function on the target machine specified by the sMachine1
variable, type sMachine1->SYS_SetDir (sDir).

To allow you to conveniently perform system related functions (SYS_) on the host, you can preface the
function call with the machine handle operator, specifying the globally defined constant hHost as the
argument to the operator. For example, to set the working directory on the host machine to c:\mydir,
type hHost->SYS_SetDir ("c:\mydir").

You can use this syntax with a method call, for example sMachine->
TextEditor.Search.Find.Pick, but when invoking a method, this form of the machine handle must
be the first token in the statement.

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares like hMyMachineHandle== hHost. This will
never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is used
as an argument, it will refer to the "(local)" host not the target host.

Example

The following example shows valid and invalid syntax:

// Valid machine handle operator use
for each sMachine in lsMachine
 sMachine-> TextEditor.Search.Find.Pick

// Invalid machine handle operator use with method
if (sMachine->ProjX.DuplicateAlert.Exists())
 Print ("Duplicate warning on {sMachine} recipient.")

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

232 | Testing in Your Environment with the Open Agent

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares, like hMyMachineHandle== hHost. This
will never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is
used as an argument, it will refer to the local host, not the target host.

Reporting Distributed Results
You can view test results in each of several formats, depending on the kind of information you need from
the report. Each format sorts the results data differently, as follows:

Elapsed
time

Sorts results for all threads and all machines in event order. This enables you to see the
complete set of results for a time period and may give you a sense of the load on the
server during that time period or may indicate a performance problem.

Machine Sorts results for all threads running on one machine and presents the results in time-sorted
order for that machine before reporting on the next machine.

Thread Sorts results for all tests run under one thread and presents the results in time-sorted order
for that thread before reporting on the next thread.

Alternative Machine Handle Operator
An alternative syntax for the machine handle operator is the bracket form, like the following example shows.

[hMachine] Any4TestFunctionCall ()

Example

To execute the SYS_SetDir function on the target machine specified by the string
sMachineA, you do this:

[sMachineA] SYS_SetDir (sDir)

The correct form of the invalid syntax shown above is:

// Invalid machine handle operator use
if ([sMachine]ProjX.DuplicateAlert.Exists())
 Print ("Duplicate warning on {sMachine} recipient.")

To execute the SYS_SetDir function on the host machine, you can do the following:

[hHost] SYS_SetDir (sDir)

You can also use this form of the machine handle operator with a function that is not being used to return a
value or with a method.

Example

for each sMachine in lsMachine
 [sMachine] FormatTest7 ()

Example

for each sMachine in lsMachine
 [sMachine] TextEditor.Search.Find.Pick

Testing Clients Concurrently
In concurrent testing, Silk Test Classic executes one function on two or more clients at the same time. This
topic demonstrates one way to perform the same tests concurrently on multiple clients.

Testing in Your Environment with the Open Agent | 233

For example, suppose you want to initiate two concurrent database transactions on the same record, and
then test how well the server performs. To accomplish this, you need to change the script presented in
Testing Clients Plus Server Serially to look like this:

testcase TestConcurrently ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")
 DoSomeSetup ("server") // initialize server first
 Disconnect ("server") // testcase is thru with server

 spawn // start thread for client1
 UpdateDatabase ("client1")
 spawn // start thread for client2
 UpdateDatabase ("client2")

 rendezvous // synchronize
 Disconnect ("client1")
 Disconnect ("client2")

 DoSomeSetup (STRING sMachine) // define server setup
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

 UpdateDatabase (STRING sMachine) // define update test
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

An alternative but equivalent approach is to use the parallel statement in place of the spawn and
rendezvous:

testcase TestConcurrently2 ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")

 DoSomeSetup ("server")
 Disconnect ("server")

 parallel // automatic synchronization
 UpdateDatabase ("client1") // thread for client1
 UpdateDatabase ("client2") // thread for client2

 Disconnect ("client1")
 Disconnect ("client2")

 DoSomeSetup (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here

234 | Testing in Your Environment with the Open Agent

 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

 UpdateDatabase (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

If you use variables to specify different database records for each client’s database transactions, you can
use the above techniques to guarantee parallel execution without concurrent database accesses.

Testing Clients Plus Server Serially
In a client/server application, the server and its clients typically run on different target machines. This topic
explains how to build tests that test the server and its clients in a serial fashion. In this scenario, the
SetMachine function switches among the target machines on which the server and its clients are running.
The following script fragment tests a client/server database application in the following steps:

1. Connect to three target machines, which are server, client1, and client2.
2. Call the DoSomeSetup function, which calls SetMachine to make "server" the current target machine,

and then perform some setup.
3. Call the UpdateDatabase function once for each client machine. The function sets the target machine

to the specified client, then does a database update. It creates a timer to time the operation on this
client.

4. Disconnect from all target machines.

Example

This example shows how you direct sets of test case statements to particular machines.
If you were doing functional testing of one application, you might want to drive the
server first and then the application. However, this example is not realistic because it
does not show the support necessary to bring the different machines to their different
application states and to recover from a failure on any machine.

testcase TestClient_Server ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")
 DoSomeSetup ("server")
 UpdateDatabase ("client1")
 UpdateDatabase ("client2")
 DisconnectAll ()

DoSomeSetup (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

UpdateDatabase (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()

Testing in Your Environment with the Open Agent | 235

 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

Testing Databases
You may be testing a distributed application that accesses a database or you may be directly testing
database software. In either of these cases, you might want to manipulate the database directly from Silk
Test Classic for several purposes:

• To exercise certain database functions that are present in a GUI that runs directly on the server
machine and is not a client application. For example, administrative functions used for setting up the
database.

• To set the server database to a known state.
• To verify an application’s database results without using the application.
• To read information from the database to use as input to a test case.

Silk Test Classic can drive a server application’s GUI by means of the Silk Test Classic Agent exactly as it
drives a client application. In addition, the database tester provides direct access, using SQL, from a test
script to any database supported by ODBC drivers. These database functions enable you to read and write
database records without using the client application. Thus, you can verify client test results without
assuming the ability of the client to do that verification.

In addition to using the SQL functions in your tests, you can also use these functions to help manage your
testing process as follows:

• Maintain a bug database, updating it with the results of your testing.
• Manage your test data in a database instead of in a text file.

The database functions, among other things, allow you to connect to a database, submit an SQL
statement, read data from the selected record(s) if the SQL statement was SELECT, and subsequently
disconnect from the database. About a dozen of these functions allow you to access your database’s
catalog tables.

The functions that support these operations begin with the letters "DB_".

Testing Multiple Applications
This section describes testing multiple applications.

Overview of Multi-Application Testing
Silk Test Classic can easily drive multiple different applications simultaneously. Thus you can bring a
server’s database to a known state at the same time you are bringing multiple instances of the client
application to their base state window. Likewise, you can drive a server database with several different
client applications at the same time.

The essential difference between single-application and multi-application testing is clearly the difference
between "one" and "many." When the following entities in a test case are greater than one, they need
special consideration and support functions found in Silk Test Classic:

• Agent names.
• Application main window names.
• Sets of application states associated with each main window name.

Multi-machine testing requires that you map both the name of an application and all application states for
that application to the machine on which it will be tested. This makes it possible for you to direct test

236 | Testing in Your Environment with the Open Agent

operations to the right machines, and it enables Silk Test Classic to automatically set the machines to the
proper application state before a test is run, and to clean up after a test has failed.

Test Case Structure in a Multi-Application Environment
This topic describes Silk Test Classic components that enable concurrent testing of more than one
application. For example, there are functions that make it possible to drive both the client application and
the client’s server from Silk Test Classic, to set each to its base state, and to recover each if it fails.
Compare with the test case structure of a single-application environment.

The multi-application environment uses the same defaults.inc file as does the single-application
environment. However, when you define a function as a multitestcase, 4Test uses functions defined in the
cs.inc file to invoke functions in defaults.inc. Thus, it can pass the appropriate application states or
base states to these functions, depending on the requirements of a particular test machine.

Instead of preceding the test case function declaration with the keyword testcase, you must use the
keyword multitestcase to give your test case the multi-application recovery system.

cs.inc is an automatically included file that contains functions used only in the multi-application
environment. For additional information about this file and the functions that it contains, see cs.inc. You
may need to include other files also.

Invoking a Test Case in a Multi-Application Environment
The keyword for a test case declaration is different when you are performing distributed testing. In the
single-application environment, you invoke a test case with no arguments or you may specify an application
state function. However, in a multi-application environment, instead of preceding the test case function
declaration with the keyword testcase, you must use the keyword multitestcase to give your test case the
multi-application recovery system.

Declaring a function as a multitestcase gives that function the ability to invoke functions declared with the
keyword testcase. A multitestcase thus can be viewed as a wrapper for stand-alone test cases; it provides
a means of assigning tests to particular machines and lets you invoke previously written test cases from
the multi-test case file by simply adding a use statement to the file to include the test case definitions.

When you are using multi-application environment support, you can pass the test case the names of the
machines to be tested during that execution of the test case, but not the application state function. In a
multi-application environment, one test case can use multiple application states; you specify these in the
required code at the beginning of the test case.

Test Case Structure in a Single-Application Environment
The code that implements a test case for a single application is similar to that of a test case for applications
on multiple separate machines in a client/server environment.

This topic summarizes the structure of the single-application version and some Silk Test Classic
components used to implement it. You can compare the structure with the support code needed for running
multiple applications.

The include file defaults.inc implements the recovery system for a single application test. For
information about the DefaulBaseState function and the functions that are contained within
defaults.inc, see defaults.inc.

Your test case needs certain definitions that other test cases in your testing program will also need. These
include:

• Window declarations
• Application states
• Utility functions

Testing in Your Environment with the Open Agent | 237

Placing these general purpose definitions in an include file, or several smaller files, saves repetitive coding.
When you use Silk Test Classic to record window declarations and application states, Silk Test Classic
names the generated file frame.inc.

Window Declarations for Multi-Application Testing
In the client/server environment, unlike the stand-alone environment, you can test two or more different
applications at the same time. For example, you could run the functional tests for application "A" on
multiple machines at the same time that you are running the functional tests for application "B" on the same
machines. The include files that you must generate may therefore have to take into consideration different
platforms and/or different applications.

When you are driving two or more applications from Silk Test Classic, you need separate window
declarations for each different application. You must be certain that your main window declaration for each
separate application is unique. If the same application is running on different platforms concurrently, you
may need to use GUI specifiers to specialize the window declarations. 4Test will identify a window
declaration statement, that is preceded by a GUI specifier, as being true only on the specified GUI.

In addition, you may find that the operations needed to establish a particular application state are slightly
different between platforms. In this case, you just record application states for each platform and give them
names that identify the state and the GUI for your convenience.

Recording window declarations on a client machine that is not the host machine, requires that you operate
both Silk Test Classic on the host machine and the application on its machine at the same time. You record
window declarations and application states in much the same way for a remote machine as for an
application running in the Silk Test Classic host machine. The primary difference is that you start the
recording operation by selecting Test Frame in Silk Test Classic on the host system and you do the actual
recording of application operations on the remote system.

If you have two or more applications being tested in parallel, you need to have two or more sets of window
declarations. You must have window declarations, and application states, if needed, for each different
application. When recording window declarations and application states on a remote machine, you will find
it convenient to have the machine physically near to your host system.

Remote Recording

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Concurrency Test Example Code
The concurrency test example is designed to allow any number of test machines to attempt to access a
server database at the same time. This tests for problems with concurrency, such as deadlock or out-of-
sequence writes.

This example uses only one application. However, it is coded in the style required by the multi-application
environment because you will probably want to use an Agent to start and initialize the server during this
type of test. There is no requirement in the client/server environment that you use the single-application
style of test case just because you are driving only one application. For consistency of coding style, you will
probably find it convenient to always use the multi-application files and functions.

For detailed information on the code example, see Concurrency Test Explained.

const ACCEPT_TIMEOUT = 15
multitestcase MyTest (LIST OF STRING lsMachine)
 STRING sMachine
 INTEGER iSucceed
 STRING sError

 for each sMachine in lsMachine
 SetUpMachine (sMachine, Personnel)
 SetMultiAppStates ()

238 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

 /*** HAVE EACH MACHINE EDIT THE SAME EMPLOYEE ***/
 for each sMachine in lsMachine
 spawn

 /*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
 SetMachine (sMachine)

 /*** EDIT THE EMPLOYEE RECORD "John Doe" ***/
 Personnel.EmployeeList.Select ("John Doe")
 Personnel.Employee.Edit.Pick ()

 /*** CHANGE THE SALARY TO A RANDOM NUMBER BETWEEN
 50000 AND 70000 ***/
 Employee.Salary.SetText ([STRING] RandInt (50000, 70000))
 rendezvous

 /*** ATTEMPT TO HAVE EACH MACHINE SAVE THE EMPLOYEE RECORD ***/
 for each sMachine in lsMachine
 spawn

 /*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
 SetMachine (sMachine)

 /*** SELECT THE OK BUTTON ***/
 Employee.OK.Click ()

 /*** CHECK IF THERE IS A MESSAGE BOX ***/
 if (MessageBox.Exists (ACCEPT_TIMEOUT))
 SetMachineData (NULL, "sMessage",
 MessageBox.Message.GetText ())
 MessageBox.OK.Click ()
 Employee.Cancel.Click ()
 else if (Employee.Exists ())
 AppError ("Employee dialog not
 dismissed after {ACCEPT_TIMEOUT} seconds")
 rendezvous

 /*** VERIFY THE OF NUMBER OF MACHINES WHICH SUCCEEDED ***/
 iSucceed = 0
 for each sMachine in lsMachine
 sError = GetMachineData (sMachine, "sMessage")
 if (sMessage == NULL)
 iSucceed += 1
 else
 Print ("Machine {sMachine} got message '{sMessage}'")

 Verify (iSucceed, 1, "number of machines that succeeded")

Concurrency Test Explained
Before you record and/or code your concurrency test, you record window declarations that describe the
elements of the application’s GUI. These are placed in a file named frame.inc, which is automatically
included with your test case when you compile. Use Silk Test Classic to generate this file because Silk Test
Classic does most of the work.

The following code sample gives just those window declarations that are used in the Concurrency Test
Example:

window MainWin Personnel
 tag "Personnel"
 PopupList EmployeeList
 Menu Employee
 tag "Employee"

Testing in Your Environment with the Open Agent | 239

 MenuItem Edit
 tag "Edit"
 // ...

window DialogBox Employee
 tag "Employee"
 parent Personnel
 TextField Salary
 tag "Salary"
 PushButton OK
 tag "OK"
 // ...

The following explanation of the Concurrency Test Example gives the testing paradigm for a simple
concurrency test and provides explanations of many of the code constructs. This should enable you to read
the example without referring to the Help. There you will find more detailed explanations of these language
constructs, plus explanations of the constructs not explained here. The explanation of each piece of code
follows that code.

const ACCEPT_TIMEOUT = 15

The first line of the testcase file defines the timeout value (in seconds) to be used while waiting for a
window to display.

multitestcase MyTest (LIST OF STRING lsMachine)

The test case function declaration starts with the multitestcase keyword. It specifies a LIST OF STRING
argument that contains the machine names for the set of client machines to be tested. You can implement
and maintain this list in your test plan, by using the test plan editor. The machine names you use in this list
are the names of the Agents of your target machines.

for each sMachine in lsMachine
 SetUpMachine (sMachine, Personnel)

To prepare your client machines for testing, you must connect Silk Test Classic to each Agent and, by
means of the Agent, bring up the application on each machine. In this example, all Agents are running the
same software and so all have the same MainWin declaration and therefore just one test frame file. This
means you can initialize all your machines the same way; for each machine being tested, you pass to
SetUpMachine the main window name you specified in your test frame file. The SetUpMachine function
issues a Connect call for each machine. It associates the main window name you specified (Personnel)
with each machine so that the DefaultBaseState function can subsequently retrieve it.

SetMultiAppStates ()

The SetMultiAppStates function reads the information associated with each machine to determine whether
the machine needs to be set to an application state. In this case no application state was specified (it would
have been a third argument for SetUpMachine). Therefore, SetMultiAppStates calls the DefaultBaseState
function for each machine. In this example, DefaultBaseState drives the Agent for each machine to open
the main window of the Personnel application. This application is then active on the client machine and
4Test can send test case statements to the Agent to drive application operations.

 for each sMachine in lsMachine
 spawn
 // The code to be executed in parallel by
 // all machines... (described below)
rendezvous

Because this is a concurrency test, you want all client applications to execute the test at exactly the same
time. The spawn statement starts an execution thread in which each statement in the indented code block
runs in parallel with all currently running threads. In this example, a thread is started for each machine in
the list of machines being tested. 4Test sends the statements in the indented code block to the Agents on
each machine and then waits at the rendezvous statement until all Agents report that all the code
statements have been executed.

240 | Testing in Your Environment with the Open Agent

The following is the code defined for the spawn statement:

// The code to be executed in parallel by
// all machines:
SetMachine (sMachine)
Personnel.EmployeeList.Select ("John Doe")
Personnel.Employee.Edit.Pick ()
Employee.Salary.SetText
[STRING] RandInt (50000, 70000))

Each thread executes operations that prepare for an attempt to perform concurrent writes to the same
database record. The SetMachine function establishes the Agent that is to execute the code in this thread.
The next two statements drive the application’s user interface to select John Doe’s record from the
employee list box and then to pick the Edit option from the Employee menu. This opens the Employee
dialog box and displays John Doe’s employee record. The last thread operation sets the salary field in this
dialog box to a random number. At this point the client is prepared to attempt a write to John Doe’s
employee record. When this point has been reached by all clients, the rendezvous statement is satisfied,
and 4Test can continue with the next script statement.

for each sMachine in lsMachine
 spawn
 SetMachine (sMachine)
 Employee.OK.Click ()
 if (MessageBox.Exists (ACCEPT_TIMEOUT))
 SetMachineData (NULL, "sMessage",
 MessageBox.Message.GetText ())
 MessageBox.OK.Click ()
 Employee.Cancel.Click ()
 else if (Employee.Exists ())
 AppError ("Employee dialog not dismissed
 after {ACCEPT_TIMEOUT} seconds")
rendezvous

Now that all the clients are ready to write to the database, the script creates a thread for each client, in
which each attempts to save the same employee record at the same time. There is only one operation for
each Agent to execute: Employee.OK.Click, which clicks the OK button to commit the edit performed in
the previous thread.

The test expects the application to report the concurrency conflict with message boxes for all but one client
and for that client to close its dialog box within 15 seconds. The if-else construct saves the text of the
message in the error message box by means of the SetMachineData function. It then closes the message
box and the Employee window so that the recovery system will not report that it had to close windows.
This is good practice because it means fewer messages to interpret in the results file.

The "else if" section of the if-else checks to see whether the Employee window remains open, presumably
because it is held by a deadlock condition; this is a test case failure. In this case, the AppError function
places the string "***ERROR:" in front of the descriptive error message and raises an exception; all Agents
terminate their threads and the test case exits.

iSucceed = 0
for each sMachine in lsMachine
 sMessage = GetMachineData (sMachine, "sMessage")
 if (sMessage == NULL)
 iSucceed += 1
 else
 Print ("Machine {sMachine} got message '{sMessage}'")
Verify (iSucceed, 1, "number of machines that succeeded")

The last section of code evaluates the results of the concurrency test in the event that all threads
completed. If more than one client successfully wrote to the database, the test actually failed.

GetMachineData retrieves the message box message (if any) associated with each machine. If there was
no message, iSucceed is incremented; it holds the count of "successes." The Print function writes the text
of the message box to the results file for each machine that had a message box. You can read the results

Testing in Your Environment with the Open Agent | 241

file to verify that the correct message was reported. Alternatively, you could modify the test to automatically
verify the message text.

The Verify function verifies that one and only one machine succeeded. If the comparison in the Verify
function fails, Verify raises an exception. All exceptions are listed in the results file.

Code for template.t
This fragment of an example test case shows the required code with which you start a multi-application test
case. It connects Silk Test Classic to all the machines being tested and brings each to its first screen. This
is just a template; you must tailor your code to fit your actual needs. For information on the significance of
each line of code, see Template.t Explained.

multitestcase MyTest (STRING sMach1, STRING sMach2)
 SetUpMachine (sMach1, MyFirstApp, "MyFirstAppState")
 SetUpMachine (sMach2, MySecondApp, "MySecondAppState")
 SetMultiAppStates ()
 spawn
 SetMachine (sMach1)
 // Here is placed code that drives test operations

 spawn
 SetMachine (sMach2)
 // Here is placed code that drives test operations

 rendezvous
 // "..."

template.t Explained
The following line of code in Code for template.t is the first required line in a multi-application test case file.
It is the test case declaration.

Note: The code does not pass an application state as in the stand-alone environment.

multitestcase MyTest (STRING sMach1, STRING sMach2)

In the multi-application environment the arguments to your test case are names of the machines to be
tested; you specify application states inside the test case. You can code the machine names arguments as
you like. For example, you can pass a file name as the only argument, and then, in the test case, read the
names of the machines from that file. Or you can define a LIST OF HMACHINE data structure in your test
plan, if you are using the test plan editor, to specify the required machines and pass the name of the list,
when you invoke the test case from the test plan. This template assumes that you are using a test plan and
that it passes the Agent names when it invokes the test case. For this example, the test plan might specify
the following:

Mytest ("Client1", "Client2")

The next two code lines are the first required lines in the test case:

SetUpMachine (sMach1, MyFirstApp, "MyFirstAppState")
SetUpMachine (sMach2, My2ndApp, "My2ndAppState")

You must execute the SetUpMachine function for every client machine that will be tested. For each
SetUpMachine call, you specify the application to be tested, by passing the name of the main window,
and the state to which you want the application to be set, by passing the name of the application state if
you have defined one.

The SetUpMachine function issues a Connect call for a machine you want to test and then configures
either the base state or a specified application state.

It does this as follows:

242 | Testing in Your Environment with the Open Agent

• It associates the client application’s main window name with the specified machine so that the
DefaultBaseState function can subsequently retrieve it to set the base state.

• It associates the name of the application’s base state, if one is specified, with the specified machine so
that the SetMultiAppStates function can subsequently retrieve it and set the application to that state
at the start of the test case.

The first argument for SetUpMachine is the machine name of one of your client machines. The second
argument is the name you supply in your main window declaration in your test frame file, frame.inc. For
this example, the frame.inc file specifies the following:

window MainWin MyFirstApp

Because this template specifies two different applications, it requires two different test frame files.

The third argument is the name you provide for your application state function in your appstate declaration
for this test. For this example, the appstate declaration is the following:

appstate MyFirstAppState () based on MyFirstBaseState

The appstate declaration could also be of the form:

appstate MyFirstBaseState ()

Although the DefaultBaseState function is designed to handle most types of GUI-based applications,
you may find that you need to define your own base state. It would be the application state that all your
tests for this application use. In this case, you would still pass this application state to SetUpMachine so
that your application would always be brought to this state at the start of each test case.

This template specifies two application states for generality. You would not use an application state if you
wanted to start from the main window each time. If you have a number of tests that require you to bring the
application to the same state, it saves test-case code to record the application state once, and pass its
name to SetUpMachine. You will probably place your application state declarations in your test frame file.

SetMultiAppStates ()

The SetMultiAppStates function must always be called, even if the test case specifies no application
state, because SetMultiAppStates calls the DefaultBaseState function in the absence of an
appstate declaration. SetMultiAppStates uses the information that SetUpMachine associated with
each connected machine to set potentially different application states or base states for each machine.

 spawn
 SetMachine (sMach1)
 // Here is placed code that drives test operations

The spawn statement starts an execution thread, in which each statement in the indented code block below
it runs in parallel with all currently running threads. There is no requirement that your test case should drive
all your test machines at the same time, however, this is usually the case. The SetMachine function
directs 4Test to execute this thread’s code by means of the Agent on the specified machine. This thread
can then go on to drive a portion, or all, of the test operations for this machine.

 spawn
 SetMachine (sMach2)
 // Here is placed code that drives test operations
rendezvous
// "..."

The second spawn statement starts the thread for the second machine in this template. The rendezvous
statement blocks the execution of the calling thread until all threads spawned have completed. You can use
the rendezvous statement to synchronize machines as necessary before continuing with the test case.

defaults.inc
The defaults.inc file is provided by Silk Test Classic and implements the recovery system for a single
application test. That is, it contains the DefaultBaseState function that performs any cleanup needed
after an operation under test fails and returns the application to its base state.

Testing in Your Environment with the Open Agent | 243

You can define a base state function to replace the DefaultBaseState function by defining an
application state without using the basedon keyword. This creates an application state that 4Test executes
instead of the DefaultBaseState function.

The defaults.inc file contains six other functions that 4Test automatically executes unless you define
functions that replace them:

DefaultScriptEnter A null function, allows you to define a ScriptEnter function, as discussed
below.

DefaultScriptExit
(BOOLEAN bException)

Logs an exception to the results file when a script exits because of an
exception.

DefaultTestcaseEnter Executes the SetAppState function. If you have specified an application
state for this test case, the SetAppState function brings your test
application to that state. If you have no application state defined,
SetAppState brings the application to the base state (if necessary).

DefaultTestcaseExit
(BOOLEAN bException)

Logs an exception to the results file when a test case exits because of an
exception. The function then executes the SetBaseState function, which
calls a base state function that you have defined or the
DefaultBaseState function.

DefaultTestPlanEnter A null function, allows you to define TestPlanEnter, as discussed below,
to allow logging of results.

DefaultTestPlanExit
(BOOLEAN bException)

A null function, allows you to define TestPlanExit, as discussed below,
to allow logging of results.

The word "Default" in each of the above function names signifies that you can define alternative functions
to replace these. If, for example, you define a function called TestcaseEnter, 4Test will invoke your function
before executing any of the code in your test case and will not invoke DefaultTestcaseEnter.

TestPlanEnter() is not called until the first test case in the plan is run. Or the first marked test case, if
you are only running marked test cases. Similarly, TestPlanExit() is called at the completion of the last
marked test case. TestPlanExit() is only called if the last marked test description contains an executable
test case, which means not a manual test case or a commented out test case specifier.

cs.inc
cs.inc is an automatically included file that contains functions used only in the multi-application
environment. The following functions provide a recovery system for managing automated testing of client/
server applications:

SetMultiAppStates Sets an application state for each connected machine, if the "AppState"
machine data lists one; if not, it calls the DefaultBaseState function,
which sets the application to its main window.

SetMultiBaseStates Sets the application to the lowest state in the application state hierarchy for
each connected machine, if the "AppState" machine data lists an
application state. The lowest application state is one in which the appstate
declaration did not use the basedon keyword. If there is no "AppState"
information associated with this machine, SetMultiBaseStates calls the
DefaultBaseState function, which sets the application to its main
window, invoking it beforehand if necessary.

SetUpMachine Connects Silk Test Classic to an agent on the specified machine. It provides
a way to associate a main window declaration and an application state
function with a machine name. These parameters are stored as data
accessible by means of the GetMachineData function. Both of these

244 | Testing in Your Environment with the Open Agent

names (the second and third arguments to the function) are optional;
however, if you omit both arguments, you will have no recovery system.

DefaultMultiTestCaseEnter Executes at the beginning of a multi-test case. It invokes a
DisconnectAll function. The invocation of the SetAppState function is
performed by the SetMultiAppStates function because the
DefaultTestCaseEnter function is not executed for a multi-test case.

DefaultMultiTestCaseExit Executes just before a multi-test case terminates. It logs any pending
exception, then invokes SetMultiBaseStates and DisconnectAll.

Include File Size
The maximum size of an include file is approximately 65536 lines. If your include file is very large, split it
into two files and continue with your testing.

Troubleshooting Distributed Testing
This section provides troubleshooting information for testing on multiple machines.

Handling Limited Licenses
By default, Silk Test Classic starts up an unplanned Agent on the local workstation. If you do not want to
use the local workstation as a test machine, set the Agent Name field in the Runtime Options dialog box
to (none) instead of (local). This will free up one license for a remote Agent.

Testing Apache Flex Applications
Silk Test provides built-in support for testing Apache Flex applications. Silk Test also provides several
sample Apache Flex applications. You can access the sample applications at http://demo.borland.com/flex/
SilkTest20.0/index.html.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before you can test your own Apache Flex application, your Apache Flex developers must perform the
following steps:

• Enabling your Apache Flex application for testing
• Creating testable Apache Flex applications
• Coding Apache Flex containers
• Implementing automation support for custom controls

To test your own Apache Flex application, follow these steps:

• Configuring security settings for your local Flash Player
• Recording a test
• Playing back a test
• Customizing Apache Flex scripts
• Testing a custom Apache Flex control

Note: Loading an Apache Flex application and initializing the Flex automation framework may take
some time depending on the machine on which you are testing and the complexity of your Apache
Flex application. Set the Window timeout value to a higher value to enable your application to fully
load.

Testing in Your Environment with the Open Agent | 245

http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Overview of Apache Flex Support
Silk Test Classic provides built-in support for testing Apache Flex (Flex) applications using Internet Explorer
or the Standalone Flash Player, and Adobe AIR applications built with Flex 4 or later.

Silk Test Classic also supports multiple application domains in Flex 3.x and 4.x applications, which enables
you to test sub-applications. Silk Test Classic recognizes each sub-application in the locator hierarchy tree
as an application tree with the relevant application domain context. At the root level in the locator attribute
table, Flex 4.x sub-applications use the SparkApplication class. Flex 3.x sub-applications use the
FlexApplication class.

For information on the supported versions and potential known issues, refer to the Release Notes.

Sample Applications

To access the Silk Test Classic sample Flex applications, go to http://demo.borland.com/flex/SilkTest20.0/
index.html.

Object Recognition

Flex applications support hierarchical object recognition and dynamic object recognition. You can create
tests for both dynamic and hierarchical object recognition in your test environment. You can use both
recognition methods within a single test case if necessary. Use the method best suited to meet your test
requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing Flex test cases that use hierarchical object recognition or dynamic object recognition without
locator keywords in an INC file are supported. You can replay these tests, but you cannot record new tests
with hierarchical object recognition or dynamic object recognition without locator keywords in an INC file.
However, you can manually create tests as needed. Then, replay the tests at your convenience. For
instance, any test cases that you recorded with Silk Test 2008 use hierarchical object recognition. You can
replay these tests in Silk Test Classic.

Supported Controls

For a complete list of the record and replay controls available for Flex testing, refer to the Flex Class
Reference in the 4Test Language section of the Help.

The Silk Test Classic Flex Automation SDK is based on the Automation API for Flex. The Silk Test Classic
Automation SDK supports the same components in the same manner that the Automation API for Flex
supports them. For instance, the typekey statement in the Flex Automation API does not support all keys.
You can use the input text statement to resolve this issue. For more information about using the Flex
Automation API, refer to the Apache Flex Release Notes.

Agent Support

When you create a Silk Test Classic Flex project, the Open Agent is assigned as the default Agent.

Configuring Security Settings for Your Local Flash
Player
Before you launch an Apache Flex application, that runs as a local application, for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

246 | Testing in Your Environment with the Open Agent

http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html

1. Open the Flex Security Settings Page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest20.0/index.html.

2. Click Always allow.

3. In the Edit Locations menu, click Add Location.

4. Click Browse for folder and navigate to the folder where your local application is installed.

5. Click Confirm and then close the browser.

Configuring Flex Applications to Run in Adobe Flash
Player
To run an Apache Flex application in Flash Player, one or both of the following must be true:

• The developer who creates the Flex application must compile the application as an EXE file. When a
user launches the application, it will open in Flash Player. Install Windows Flash Player from http://
www.adobe.com/support/flashplayer/downloads.html.

• The user must have Windows Flash Player Projector installed. When a user opens a Flex .SWF file, he
can configure it to open in Flash Player. Windows Flash Projector is not installed when Flash Player is
installed unless you install the Apache Flex developer suite. Install Windows Flash Projector from http://
www.adobe.com/support/flashplayer/downloads.html.

1. For Microsoft Windows 7 and Microsoft Windows Server 2008 R2, configure Flash Player to run as
administrator. Perform the following steps:

a) Right-click the Adobe Flash Player program shortcut or the FlashPlayer.exe file, then click
Properties.

b) In the Properties dialog box, click the Compatibility tab.
c) Check the Run this program as an administrator check box and then click OK.

2. Start the .SWF file in Flash Player from the command prompt (cmd.exe) by typing:
"<Application_Install_Directory>\ApplicationName.swf"

By default, the <SilkTest_Install_Directory> is located at Program Files\Silk\Silk Test.

Configuring Flex Applications for Adobe Flash Player
Security Restrictions
The security model in Adobe Flash Player 10 has changed from earlier versions. When you record tests
that use Flash Player, recording works as expected. However, when you play back tests, unexpected
results occur when high-level clicks are used in certain situations. For instance, a File Reference dialog
box cannot be opened programmatically and when you attempt to play back this scenario, the test fails
because of security restrictions.

To work around the security restrictions, you can perform a low-level click on the button that opens the
dialog box. To create a low-level click, add a parameter to the Click method.

For example, instead of using SparkButton::Click(), use
SparkButton::Click(MouseButton.Left). A Click() without parameters is a high-level click and
a click with parameters (such as the button) is replayed as a low-level click.

1. Record the steps that use Flash Player.

2. Navigate to the Click method and add a parameter.
For example, to open the Open File dialog box, specify:

SparkButton("@caption='Open File Dialog…'").Click(MouseButton.Left)

When you play back the test, it works as expected.

Testing in Your Environment with the Open Agent | 247

http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications using the Verification wizard.
Or, you can insert verifications manually using the Verify function on Flex object properties.

To customize Adobe Flex scripts:

1. Record a testcase for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

For example, the following code adds a verification call to your script:

Desktop.Find("//BrowserApplication").Find("//BrowserWindow")
.Find("//FlexApplication[@caption='explorer']").Find("//
FlexButton[@caption='OK']")
.VerifyProperties({...})

Each Flex object has a list of properties that you can verify. For a list of the properties available for
verification, review the Flex.inc file. To access the file, navigate to the <SilkTest directory>
\extend\Flex directory. By default, this file is located in C:\Program Files\Silk\SilkTest
\extend\Flex\Flex.inc.

Styles in Apache Flex Applications
For applications developed in Apache Flex 3.x, Silk Test Classic does not distinguish between styles and
properties. As a result, styles are exposed as properties. However, with Apache Flex 4.x, all new Flex
controls, which are prefixed with Spark, such as SparkButton, do not expose styles as properties. As a
result, the GetProperty() and GetPropertyList() methods for Flex 4.x controls do not return styles,
such as color or fontSize, but only properties, such as text and name.

The GetStyle(string styleName) method returns values of styles as a string. To find out which styles
exist, refer to the Adobe Help located at http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/package-detail.html.

If the style is not set, a StyleNotSetException occurs during playback.

For the Flex 3.x controls, such as FlexTree, you can use GetProperty() to retrieve styles. Or, you can
use GetStyle(). Both the GetProperty() and GetStyle() methods work with Flex 3.x controls.

Calculating the Color Style

In Flex, the color is represented as a number. It can be calculated using the following formula:

red*65536 + green*256 + blue

Example

In this example, the GetProperty() and GetStyle() methods are used to retrieve
styles:

Window myTree = Application.Find("//
FlexTree[@caption='myTree']")
COLOR c = {170, 179, 179}
Verify(myTree.DisabledColor, c)
Verify(myTree.GetProperty("disabledColor"), {170, 179, 179})
Verify(myTree.GetStyle("disabledColor"), "11187123")

The number 11187123 for the color calculates as 170*65536 + 179*256 + 179.

248 | Testing in Your Environment with the Open Agent

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

Locator Attributes for Apache Flex Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for Apache Flex (Flex) controls:

automationName The name of the application.

caption Similar to automationName.

automationClassName For example FlexButton.

className The fully qualified name of the implementation class, for example
mx.controls.Button.

automationIndex The index of the control in the view of the FlexAutomation, for example
index:1.

index Similar to automationIndex but without the prefix, for example 1.

id The identifier of the control.

windowId Similar to id.

label The label of the control.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Apache Flex Methods
You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

Note: Most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods that the Flex API defines.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

Testing in Your Environment with the Open Agent | 249

All built-in Silk Test Classic
types

Silk Test Classic types includes primitive types, such as boolean, int,
and string, lists, and other types, such as Point.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Testing Multiple Flex Applications on the Same Web
Page
When multiple Flex applications exist on the same web page, Silk Test Classic uses the Flex application ID
or the application size property to determine which application to test. If multiple applications exist on the
same page, but they are different sizes, Silk Test Classic uses the size property to determine on which
application to perform any actions. Silk Test Classic uses JavaScript to find the Flex application ID to
determine on which application to perform any actions if:

• multiple Flex applications exist on a single web page.
• those applications are the same size.

In this situation, if JavaScript is not enabled on the browser machine, an error occurs when a script runs.

To test multiple Flex applications that are different sizes on a single web page , follow the steps in Testing
Apache Flex Applications.

To test multiple Flex applications that are the same size on a single web page, perform the following steps:

1. Enable JavaScript.

• In Internet Explorer:

1. Click Tools > Internet Options.
2. Click the Security tab.
3. Click Custom level.
4. In the Scripting section, under Active Scripting, click Enable and click OK.

• In Mozilla Firefox:

1. Choose Tools > Options.
2. Click Content and then check the Enable JavaScript check box.
3. Click OK.

2. Follow the steps in Testing Apache Flex Applications.

Note: If a frame exists on the web page and the applications are the same size, this method will not
work.

Silk Test Classic provides sample applications that demonstrate multiple applications on a single web page.
You can access the sample applications at http://demo.borland.com/flex/SilkTest20.0/index.html.

250 | Testing in Your Environment with the Open Agent

http://demo.borland.com/flex/SilkTest20.0/index.html

Adobe AIR Support
Silk Test Classic supports testing with Adobe AIR for applications that are compiled with the Flex 4
compiler. For details about supported versions, check the Release Notes for the latest information.

Silk Test provides a sample Adobe AIR application. You can access the sample application at http://
demo.borland.com/flex/SilkTest20.0/index.html and then click the Adobe AIR application that you want to
use. You can select the application with or without automation. In order to execute the AIR application, you
must install the Adobe AIR Runtime.

Apache Flex Exception Values
Exception values are generated under given error conditions. Flex support defines the following set of
exception values:

E_FLEX_REPLAY A generic exception, which is thrown when no other
known exception occurs in Flex.

E_FLEX_REPLAY_EVENT An error occurred when replaying the Flex event.

E_FLEX_REPLAY_METHOD An error occurred when replaying the Flex method.

E_FLEX_REPLAY_READ_PROPERTY An error occurred when reading a property.

E_FLEX_REPLAY_WRITE_PROPERTY An error occurred when writing a property.

E_FLEX_REPLAY_STYLE_NOT_SET The style is not set to a Flex object.

E_FLEX_REPLAY_SUPPORTS_TABLUAR The property used is meant for use with tabular
data. However, the specified class does not support
tabular data.

E_FLEX_REPLAY_INVALID_FLEX_SDK_VERSION If you replay a Flex 3.x event, method, or property in
a Flex 2.0 environment, this error occurs.

E_VO_PROPERTY_NOT_FOUND When reading or writing a property, if the property is
not defined for the object, this exception occurs.

The E_VO_PROPERTY_NOT_FOUND exception can also be thrown when you test Flex, but it is not limited to
the Flex environment.

Overview of the Flex Select Method Using Name or
Index
You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test Classic records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexAdvancedDataGrid

• FlexOLAPDataGrid

• FlexComboBox

The default setting is ItemBasedSelection (Select event), which uses the name control. To use the index,
you must adapt the AutomationEnvironment to use the IndexBasedSelection (SelectIndex event). To

Testing in Your Environment with the Open Agent | 251

http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html

change the behavior for one of these classes, you must modify the FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml file using the following code. Those XML files are located in
the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_< version>\config
\automationEnvironment folder. Make the following adaptations in the corresponding xml file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.
Setting the EnableIndexBasedSelection= to false in the code or removing the Boolean returns
recording to using the name (FlexList::Select events).

Note: You must re-start your application, which automatically re-starts the Silk Test Agent, in order for
these changes to become active.

Selecting an Item in the FlexDataGrid Control
You can select an item in the FlexDataGrid control using the following procedures.

If you know the index value of the FlexDataGrid item, use the SelectIndex method.

For example, type FlexDataGrid.SelectIndex(1)

1. If you know the content value of the FlexDataGrid item, use the Select method.

2. Identify the row that you want to select with the required formatted string. Items must be separated by a
pipe (“ | ”). At least one Item must be enclosed by two stars (“*”). This identifies the item where the click
will be performed.

The syntax is: FlexDataGrid.Select(“*Item1* | Item2 | Item3”)

The following example selects an item using the Select method (randomly).

[] LIST OF LIST OF STRING allVisibleItems
[] window dataGrid =
AdobeFlashPlayer9.FlexApplication0.Index0.Index1.SwfLoader.ControlsSimpleDataG
ridSwf.DataGridControlExample.Dg
[]
[] // lets get all currently visible items
[] allVisibleItems = dataGrid.GetValues(dataGrid.firstVisibleRow,
dataGrid.lastVisibleRow)
[]
[] // pick a random element that we want to select
[] integer randomRow = RandInt(dataGrid.firstVisibleRow,
dataGrid.lastVisibleRow)
[] LIST OF STRING randomRowItems = allVisibleItems[randomRow]
[] print("This is the row we want to select: {randomRow}")
[]
[] // now lets construct the string we need for the select method
[] STRING selectString
[] STRING itemText
[] INTEGER col = 0
[-] for each itemText in randomRowItems
[-] if col == 0
[] selectString = "*{itemText}*"
[-] else
[] selectString = selectString + " | {itemText}"
[] col++
[]

252 | Testing in Your Environment with the Open Agent

[] // now lets select the item
[] print("We will select {selectString}")
[] dataGrid.Select(selectString)

Enabling Your Flex Application for Testing
To enable your Flex application for testing, your Apache Flex developers must include the following
components in the Flex application:

• Apache Flex Automation Package
• Silk Test Automation Package

Apache Flex Automation Package

The Flex automation package provides developers with the ability to create Flex applications that use the
Automation API. You can download the Flex automation package from Adobe's website, http://
www.adobe.com. The package includes:

• Automation libraries – the automation.swc and automation_agent.swc libraries are the implementations
of the delegates for the Flex framework components. The automation_agent.swc file and its associated
resource bundle are the generic agent mechanism. An agent, such as the Silk Test Agent, builds on top
of these libraries.

• Samples

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, the typekey statement in the Flex Automation API does not
support all keys. You can use the input text statement to resolve this issue. For more information
about using the Flex Automation API, see the Apache Flex Release Notes.

Silk Test Automation Package

Silk Test's Open Agent uses the Apache Flex automation agent libraries. The FlexTechDomain.swc file
contains the Silk Test specific implementation.

You can enable your application for testing using either of the following methods:

• Linking automation packages to your Flex application
• Run-time loading

Linking Automation Packages to Your Flex Application
You must precompile Flex applications that you plan to test. The functional testing classes are embedded
in the application at compile time, and the application has no external dependencies for automated testing
at run time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing
and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you precompile the Flex application for testing, in the include-libraries compiler option, reference the
following files:

• automation.swc
• automation_agent.swc
• FlexTechDomain.swc
• automation_charts.swc (include only if your application uses charts and Flex 2.0)
• automation_dmv.swc (include if your application uses charts and Flex > 3.x)

Testing in Your Environment with the Open Agent | 253

http://www.adobe.com
http://www.adobe.com

• automation_flasflexkit.swc (include if your application uses embedded flash content)
• automation_spark.swc (include if your application uses the new Flex 4.x controls)
• automation_air.swc (include if your application is an AIR application)
• automation_airspark.swc (include if your application is an AIR application and uses new Flex 4.x

controls)

When you create the final release version of your Flex application, you recompile the application without
the references to these SWC files. For more information about using the automation SWC files, see the
Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Apache Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires
additional configuration information. Add the additional configuration information by modifying the
compiler's configuration file or using a command-line option.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache FlexRelease Notes.

Precompiling the Flex Application for Testing
You can enable your application for testing by precompiling your application for testing or by using run-time
loading.

1. Include the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries in the compiler’s
configuration file by adding the following code to the configuration file:

<include-libraries>

...

<library>/libs/automation.swc</library>

<library>/libs/automation_agent.swc</library>

<library>pathinfo/FlexTechDomain.swc</library>

</include-libraries>

Note: If your application uses charts, you must also add the automation_charts.swc file.

2. Specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the include-libraries compiler option with the command-line compiler.

The configuration files are located at:

Apache Flex 2 SDK – <flex_installation_directory>/frameworks/flex-config.xml

Apache Flex Data Services – <flex_installation_directory>/flex/WEB-INF/flex/flex-config.xml

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

254 | Testing in Your Environment with the Open Agent

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc files
using the include-libraries option on the command line, ensure that you use the += operator. This
appends rather than overwrites the existing libraries that are included.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround
is to not compile the application SWF files that Explorer loads with automation libraries. For
example, compile only the Explorer main application with automation libraries. Another alternative
is to use the module loader instead of swfloader. For more information about using the Flex
Automation API, see the Apache FlexRelease Notes.

Loading at Run-Time
1. Copy the content of the Silk\Silk Test\ng\AutomationSDK\Flex\<version>

\FlexAutomationLauncher directory into the directory of the Flex application that you are testing.

2. Open FlexAutomationLauncher.html in Windows Explorer and add the following parameter as a
suffix to the file path:

?automationurl=YourApplication.swf

where YourApplication.swf is the name of the SWF file for your Flex application.

3. Add file:/// as a prefix to the file path.
For example, if your file URL includes a parameter, such as: ?automationurl=explorer.swf,
type: .

file:///C:/Program%20Files/Silk/Silk Test/ng/sampleapplications/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher.html?automationurl=explorer.swf

Run-Time Loading

You can load Flex automation support at run time using the Silk Test Flex Automation Launcher. This
application is compiled with the automation libraries and loads your application with the SWFLoader class.
This automatically enables your application for testing without compiling automation libraries into your SWF
file. The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations

• The Flex Automation Launcher Application automatically becomes the root application. If your
application must be the root application, you cannot load automation support with the Silk Test Flex
Automation Launcher.

• Testing applications that load external libraries – Applications that load other SWF file libraries require a
special setting for automated testing. A library that is loaded at run time (including run-time shared
libraries (RSLs) must be loaded into the ApplicationDomain of the loading application. If the SWF file
used in the application is loaded in a different application domain, automated testing record and
playback will not function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;

import flash.net.URLRequest;

import flash.system.ApplicationDomain;

import flash.system.LoaderContext;

Testing in Your Environment with the Open Agent | 255

var ldr:Loader = new Loader();

var urlReq:URLRequest = new URLRequest("RuntimeClasses.swf");

var context:LoaderContext = new LoaderContext();

context.applicationDomain = ApplicationDomain.currentDomain;

loader.load(request, context);

Using the Command Line to Add Configuration Information
To specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the command-line compiler, use the include-libraries compiler option.

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather than appends, the
existing libraries. If you add the automation.swc and automation_agent.swc files using the include-
libraries option on the command line, ensure that you use the += operator. This appends rather than
overwrites the existing libraries that are included.

To add automated testing support to a Flex Builder project, you must also add the automation.swc and
automation_agent.swc files to the include-libraries compiler option.

Passing Parameters into a Flex Application
You can pass parameters into a Flex application using the following procedures.

Passing Parameters into a Flex Application Before Runtime

You can pass parameters into a Flex application before runtime using automation libraries.

1. Compile your application with the appropriate automation libraries.

2. Use the standard Flex mechanism for the parameter as you typically would.

Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

Before you begin this task, prepare your application for run-time loading.

1. Open the FlexAutomationLauncher.html file or create a file using
FlexAutomationLauncher.html as an example.

2. Navigate to the following section:

<script language="JavaScript" type="text/javascript">

 AC_FL_RunContent(eef

 "src", "FlexAutomationLauncher",

 "width", "100%",

 "height", "100%",

256 | Testing in Your Environment with the Open Agent

 "align", "middle",

 "id", "FlexAutomationLauncher",

 "quality", "high",

 "bgcolor", "white",

 "name", "FlexAutomationLauncher",

 "allowScriptAccess","sameDomain",

 "type", "application/x-shockwave-flash",

 "pluginspage", "http://www.adobe.com/go/getflashplayer",

 "flashvars", "yourParameter=yourParameterValue"+
"&automationurl=YourApplication.swf"

);

 </script>

Note: Do not change the "FlexAutomationLauncher" value for "src", "id", or "name."

3. Add your own parameter to "yourParameter=yourParameterValue".

4. Pass the name of the Flex application that you want to test as value for the "&
automationurl=YourApplication.swf" value.

5. Save the file.

Creating Testable Flex Applications
As a Flex developer, you can employ techniques to make Flex applications as "test friendly" as possible.
These include:

• Providing Meaningful Identification of Objects
• Avoiding Duplication of Objects

Providing Meaningful Identification of Objects

To create "test friendly" applications, ensure that objects are identifiable in scripts. You can set the value of
the ID property for all controls that are tested, and ensure that you use a meaningful string for that ID
property.

To provide meaningful identification of objects:

• Give all testable MXML components an ID to ensure that the test script has a unique identifier to use
when referring to that Flex control.

• Make these identifiers as human-readable as possible to make it easier for the user to identify that
object in the testing script. For example, set the id property of a Panel container inside a TabNavigator
to submit_panel rather than panel1 or p1.

When working with Silk Test Classic, an object is automatically given a name depending on certain tags,
for instance, id, childIndex. If there is no value for the id property, Silk Test Classic uses other properties,
such as the childIndex property. Assigning a value to the id property makes the testing scripts easier to
read.

Testing in Your Environment with the Open Agent | 257

Avoiding Duplication of Objects

Automation agents rely on the fact that some properties of object instances will not be changed during run
time. If you change the Flex component property that is used by Silk Test Classic as the object name at run
time, unexpected results can occur. For example, if you create a Button control without an
automationName property, and you do not initially set the value of its label property, and then later set the
value of the label property, problems might occur. In this case, Silk Test Classic uses the value of the
label property of Button controls to identify an object if the automationName property is not set. If you later
set the value of the label property, or change the value of an existing label, Silk Test Classic identifies the
object as a new object and does not reference the existing object.

To avoid duplicating objects:

• Understand what properties are used to identify objects in the agent and avoid changing those
properties at run time.

• Set unique, human-readable id or automationName properties for all objects that are included in the
recorded script.

Flex AutomationName and AutomationIndex Properties

The Flex Automation API introduces the automationName and automationIndex properties. If you
provide the automationName, Silk Test Classic uses this value for the recorded window declaration's
name. Providing a meaningful name makes it easier for Silk Test Classic to identify that object. As a best
practice, set the value of the automationName property for all objects that are part of the application's
test.

Use the automationIndex property to assign a unique index value to an object. For instance, if two
objects share the same name, assign an index value to distinguish between the two objects.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache Flex Release Notes.

Setting the Flex automationName Property

The automationName property defines the name of a component as it appears in tests. The default value
of this property varies depending on the type of component. For example, the automationName for a
Button control is the label of the Button control. Sometimes, the automationName is the same as the id
property for the control, but this is not always the case.

For some components, Flex sets the value of the automationName property to a recognizable attribute of
that component. This helps testers recognize the component in their tests. Because testers typically do not
have access to the underlying source code of the application, having a control's visible property define that
control can be useful. For example, a Button labeled "Process Form Now" appears in the test as
FlexButton("Process Form Now").

If you implement a new component, or derive from an existing component, you might want to override the
default value of the automationName property. For example, UIComponent sets the value of the
automationName to the component's id property by default. However, some components use their own
methods for setting the value. For example, in the Flex Store sample application, containers are used to
create the product thumbnails. A container's default automationName would not be very useful because it
is the same as the container's id property. So, in Flex Store, the custom component that generates a
product thumbnail explicitly sets the automationName to the product name to make testing the
application easier.

258 | Testing in Your Environment with the Open Agent

Example

The following example from the CatalogPanel.mxml custom component sets the value
of the automationName property to the name of the item as it appears in the catalog.
This is more recognizable than the default automation name.

thumbs[i].automationName = catalog[i].name;

Example

The following example sets the automationName property of the ComboBox control to
"Credit Card List"; rather than using the id property, the testing tool typically uses
"Credit Card List" to identify the ComboBox in its scripts:

<?xml version="1.0"?>
<!-- at/SimpleComboBox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 [Bindable]
 public var cards: Array = [
 {label:"Visa", data:1},
 {label:"MasterCard", data:2},
 {label:"American Express", data:3}
];

 [Bindable]
 public var selectedItem:Object;
]
]>
 </mx:Script>
 <mx:Panel title="ComboBox Control Example">
 <mx:ComboBox id="cb1" dataProvider="{cards}"
 width="150"
 close="selectedItem=ComboBox(event.target).selectedItem"
 automationName="Credit Card List"
 />
 <mx:VBox width="250">
 <mx:Text width="200" color="blue" text="Select a type of
credit card." />
 <mx:Label text="You selected: {selectedItem.label}"/>
 <mx:Label text="Data: {selectedItem.data}"/>
 </mx:VBox>
 </mx:Panel>
</mx:Application>

Setting the value of the automationName property ensures that the object name will
not change at run time. This helps to eliminate unexpected results.

If you set the value of the automationName property, tests use that value rather than
the default value. For example, by default, Silk Test Classic uses a Button control's label
property as the name of the Button in the script. If the label changes, the script can
break. You can prevent this from happening by explicitly setting the value of the
automationName property.

Buttons that have no label, but have an icon, are recorded by their index number. In this
case, ensure that you set the automationName property to something meaningful so
that the tester can recognize the Button in the script. After the value of the
automationName property is set, do not change the value during the component's life
cycle. For item renderers, use the automationValue property rather than the
automationName property. To use the automationValue property, override the

Testing in Your Environment with the Open Agent | 259

createAutomationIDPart() method and return a new value that you assign to the
automationName property, as the following example shows:

<mx:List xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 import mx.automation.IAutomationObject;
 override public function
 createAutomationIDPart(item:IAutomationObject):Object {
 var id:Object = super.createAutomationIDPart(item);
 id["automationName"] = id["automationIndex"];
 return id;
 }
]]>
 </mx:Script>
</mx:List>

Use this technique to add index values to the children of any container or list-like
control. There is no method for a child to specify an index for itself.

Setting the Flex Select Method to Use Name or Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

1. Determine which class you want to modify to use the Index.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexOLAPDataGrid

• FlexComboBox

• FlexAdvancedDataGrid

2. Determine which XML file is related to the class that you want to modify.

The XML files related to the preceding controls include: FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml.

3. Navigate to the XML files that are related to the class that you want to modify.

The XML files are located in the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

4. Make the following adaptations in the corresponding XML file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

For instance, you might use "FlexList" as the " FlexControlName" and modify the
FlexCommonControls.xml file.

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.

260 | Testing in Your Environment with the Open Agent

Note: Setting the EnableIndexBasedSelection= to false in the code or removing the
boolean returns recording to using the name (FlexList::Select events).

5. Re-start your Flex application and the Open Agent in order for these changes to become active.

Coding Flex Containers
Containers differ from other kinds of controls because they are used both to record user interactions (such
as when a user moves to the next pane in an Accordion container) and to provide unique locations for
controls in the testing scripts.

Adding and Removing Containers from the Automation Hierarchy

In general, the automated testing feature reduces the amount of detail about nested containers in its
scripts. It removes containers that have no impact on the results of the test or on the identification of the
controls from the script. This applies to containers that are used exclusively for layout, such as the HBox,
VBox, and Canvas containers, except when they are being used in multiple-view navigator containers, such
as the ViewStack, TabNavigator, or Accordion containers. In these cases, they are added to the automation
hierarchy to provide navigation.

Many composite components use containers, such as Canvas or VBox, to organize their children. These
containers do not have any visible impact on the application. As a result, you typically exclude these
containers from testing because there is no user interaction and no visual need for their operations to be
recordable. By excluding a container from testing, the related test script is less cluttered and easier to read.

To exclude a container from being recorded (but not exclude its children), set the container's
showInAutomationHierarchy property to false. This property is defined by the UIComponent class,
so all containers that are a subclass of UIComponent have this property. Children of containers that are
not visible in the hierarchy appear as children of the next highest visible parent.

The default value of the showInAutomationHierarchy property depends on the type of container. For
containers such as Panel, Accordion, Application, DividedBox, and Form, the default value is true; for
other containers, such as Canvas, HBox, VBox, and FormItem, the default value is false.

The following example forces the VBox containers to be included in the test script's hierarchy:

<?xml version="1.0"?>
<!-- at/NestedButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="ComboBox Control Example">
<mx:HBox id="hb">
<mx:VBox id="vb1" showInAutomationHierarchy="true">
<mx:Canvas id="c1">
<mx:Button id="b1" automationName="Nested Button 1" label="Click Me" />
</mx:Canvas>
</mx:VBox>
<mx:VBox id="vb2" showInAutomationHierarchy="true">
<mx:Canvas id="c2">
<mx:Button id="b2" automationName="Nested Button 2" label="Click Me 2" />
</mx:Canvas>
</mx:VBox>
</mx:HBox>
</mx:Panel>
</mx:Application>

Multiview Containers

Avoid using the same label on multiple tabs in multiview containers, such as the TabNavigator and
Accordion containers. Although it is possible to use the same labels, this is generally not an acceptable UI
design practice and can cause problems with control identification in your testing environment.

Testing in Your Environment with the Open Agent | 261

Flex Automation Testing Workflow
The Silk Test Classic workflow for testing Flex applications includes:

• Automated Testing Initialization
• Automated Testing Recording
• Automated Testing Playback

Flex Automated Testing Initialization

When the user launches the Flex application, the following initialization events occur:

1. The automation initialization code associates component delegate classes with component classes.
2. The component delegate classes implement the IAutomationObject interface.
3. An instance for the AutomationManager is created in the mixin init() method. (The

AutomationManager is a mixin.)
4. The SystemManager initializes the application. Component instances and their corresponding delegate

instances are created. Delegate instances add event listeners for events of interest.
5. The Silk Test Classic FlexTechDomain is a mixin. In the FlexTechDomain init() method, the

FlexTechDomain registers for the SystemManager.APPLICATION_COMPLETE event. When the event
is received, it creates a FlexTechDomain instance.

6. The FlexTechDomain instance connects via a TCP/IP socket to the Silk Test Agent on the same
machine that registers for record/playback functionality.

7. The FlexTechDomain requests information about the automation environment. This information is stored
in XML files and is forwarded from the Silk Test Agent to the FlexTechDomain.

Flex Automated Testing Recording

When the user records a new test in Silk Test Classic for a Flex application, the following events occur:

1. Silk Test Classic calls the Silk Test Agent to start recording. The Agent forwards this command to the
FlexTechDomain instance.

2. FlexTechDomain notifies AutomationManager to start recording by calling beginRecording(). The
AutomationManager adds a listener for the AutomationRecordEvent.RECORD event from the
SystemManager.

3. The user interacts with the application. For example, suppose the user clicks a Button control.
4. The ButtonDelegate.clickEventHandler() method dispatches an AutomationRecordEvent

event with the click event and Button instance as properties.
5. The AutomationManager record event handler determines which properties of the click event to store

based on the XML environment information. It converts the values into proper type or format. It
dispatches the record event.

6. The FlexTechDomain event handler receives the event. It calls the
AutomationManager.createID() method to create the AutomationID object of the button. This
object provides a structure for object identification. The AutomationID structure is an array of
AutomationIDParts. An AutomationIDPart is created by using IAutomationObject. (The UIComponent.id,
automationName, automationValue, childIndex, and label properties of the Button control are read and
stored in the object. The label property is used because the XML information specifies that this property
can be used for identification for the Button.)

7. FlexTechDomain uses the AutomationManager.getParent() method to get the logical parent of
Button. The AutomationIDPart objects of parent controls are collected at each level up to the application
level.

8. All the AutomationIDParts are included as part of the AutomationID object.
9. The FlexTechDomain sends the information in a call to Silk Test Classic.
10.When the user stops recording, the FlexTechDomain.endRecording() method is called.

262 | Testing in Your Environment with the Open Agent

Flex Automated Testing Playback

When the user clicks the Playback button in Silk Test Classic, the following events occur:

1. For each script call, Silk Test Classic contacts the Silk Test Agent and sends the information for the
script call to be executed. This information includes the complete window declaration, the event name,
and parameters.

2. The Silk Test Agent forwards that information to the FlexTechDomain.
3. The FlexTechDomain uses AutomaionManager.resolveIDToSingleObject with the window

declaration information. The AutomationManager returns the resolved object based on the descriptive
information (automationName, automationIndex, id, and so on).

4. Once the Flex control is resolved, FlexTechDomain calls
AutomationManager.replayAutomatableEvent() to replay the event.

5. The AutomationManager.replayAutomatableEvent() method invokes the
IAutomationObject.replayAutomatableEvent() method on the delegate class. The delegate
uses the IAutomationObjectHelper.replayMouseEvent() method (or one of the other replay
methods, such as replayKeyboardEvent()) to play back the event.

6. If there are verifications in your script, FlexTechDomain invokes
AutomationManager.getProperties() to access the values that must be verified.

Testing the Component Explorer
Silk Test provides a sample Apache Flex test application called the Component Explorer. You can access
the Component Explorer at http://demo.borland.com/flex/SilkTest20.5/3.5/Flex3TestApp_withAutomation/
Flex3TestApp.html. The topics in this section describe how you can test the Component Explorer.

Silk Test provides several additional Apache Flex sample applications. To access the sample applications,
go to http://demo.borland.com/flex/SilkTest20.0/index.html.

Configuring Security Settings for Your Local Flash Player
Before you launch an Apache Flex application, that runs as a local application, for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

1. Open the Flex Security Settings Page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest20.0/index.html.

2. Click Always allow.

3. In the Edit Locations menu, click Add Location.

4. Click Browse for folder and navigate to the folder where your local application is installed.

5. Click Confirm and then close the browser.

Launching the Component Explorer
Silk Test provides a sample Apache Flex application, the Component Explorer. Compiled with the Adobe
Automation SDK and the Silk Test specific automation implementation, the Component Explorer is pre-
configured for testing.

Before you launch the application for the first time, you must configure security settings for your local Flash
Player.

To launch the Component Explorer in Internet Explorer, open http://demo.borland.com/flex/
SilkTest20.5/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html.

The application launches in Internet Explorer.

Testing in Your Environment with the Open Agent | 263

http://demo.borland.com/flex/SilkTest20.5/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest20.5/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.5/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest20.5/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. The Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.

If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.

Project files with a .vtp (Verify Test Project) extension, projectname.vtp, and a
projectname.ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.

After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or by clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.

You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname.ini to this location and copies the extension .ini files, which
are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you
are using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

Configuring Web Applications
This functionality is supported only if you are using the Open Agent.

Configure the web application that you want to test to set up the environment that Silk Test Classic will
create each time you record or replay a test case. If you are testing a web application or an application that
uses a child technology domain of the xBrowser technology domain, for example an Apache Flex
application, use this configuration.

1. Click Configure Applications on the basic workflow bar.

If you do not see Configure Applications on the workflow bar, ensure that the default agent is set to
the Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

3. Select the browser that you want to use from the list of available browsers.

264 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

If you want to record a test against a web application, select a browser that is supported for recording.
To see which browsers are supported for recording, refer to the Release Notes.

4. Specify the web page to open in the Enter URL to navigate text box or click Use URL from running
browser.

5. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as the
screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

6. Optional: Select an Orientation for the browser window.

7. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

8. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

9. Navigate to the location in which you want to save the frame file.

10.In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application. By default,
Silk Test Classic lists the caption of the main window of the application as the locator for the base state.
Then Silk Test Classic opens the Web page.

11.Record the test case whenever you are ready.

Recording a Sample Test Case for the Component Explorer
Use the following procedure to become familiar with the sample Silk Test Classic Flex application, the
Component Explorer.

To record a test case for the Component Explorer:

1. Click Record Testcase on the Basic Workflow bar.

2. In the Record Testcase dialog box, type the name of your test case into the Testcase name field.

Test case names are case sensitive; they can have any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default BaseState before the test case begins executing.

4. Click Start Recording. Silk Test Classic closes the Record Testcase dialog box and displays the Flex
sample application.

5. When the Recording window opens, record the following scenario using the Flex sample application.

It is essential that you perform these steps exactly as they are documented. Otherwise, your test case
script may not match the sample provided later in this document.

6. Click the arrow next to the Visual Components tree element to expand the list.

7. Click the arrow next to the General Controls tree element to expand the list.

8. Click the SimpleAlert tree element.

Testing in Your Environment with the Open Agent | 265

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

9. In the Alert Control Example section, click Click Me near the top of the window and then click OK in
the Hello World message box.

10.Click the arrow next to the General Controls tree element to hide the list.

11.Click the arrow next to the Visual Components tree element to hide the list.

12.In the Recording window, click Stop. Silk Test Classic opens the Record Test Case dialog box, which
contains the recorded script.

13.Click Paste to Editor. The Update Files dialog box opens.

14.Choose Paste test case and update window declaration(s) and then click OK.

Your test case should include the following calls:

WebBrowser.BrowserWindow.Application.CompLibTree.Open("Visual Components")
WebBrowser.BrowserWindow.Application.CompLibTree.Open("Visual
Components>General Controls")
WebBrowser.BrowserWindow.Application.CompLibTree.Select("Visual
Components>General Controls>SimpleAlert")
WebBrowser.BrowserWindow.Application.Button1.Click()
WebBrowser.BrowserWindow.Application.Ok.Click()
WebBrowser.BrowserWindow.Application.CompLibTree.Close("Visual
Components>General Controls")
WebBrowser.BrowserWindow.Application.CompLibTree.Close("Visual Components")

The Silk Test Classic Flex Automation SDK is based on the Automation API for Flex. The Silk Test Classic
Automation SDK supports the same components in the same manner that the Automation API for Flex
supports them. For instance, when an application is compiled with automation code and successive .swf
files are loaded, a memory leak occurs and the application runs out of memory eventually. The Flex
Component Explorer sample application is affected by this issue. The workaround is to not compile the
application .swf files that Explorer loads with automation libraries. For example, compile only the Explorer
main application with automation libraries. Another alternative is to use the module loader instead of
swfloader. For more information about using the Flex Automation API, refer to the Apache Flex Release
Notes.

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

266 | Testing in Your Environment with the Open Agent

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications using the Verification wizard.
Or, you can insert verifications manually using the Verify function on Flex object properties.

To customize Adobe Flex scripts:

1. Record a testcase for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

For example, the following code adds a verification call to your script:

Desktop.Find("//BrowserApplication").Find("//BrowserWindow")
.Find("//FlexApplication[@caption='explorer']").Find("//
FlexButton[@caption='OK']")
.VerifyProperties({...})

Each Flex object has a list of properties that you can verify. For a list of the properties available for
verification, review the Flex.inc file. To access the file, navigate to the <SilkTest directory>
\extend\Flex directory. By default, this file is located in C:\Program Files\Silk\SilkTest
\extend\Flex\Flex.inc.

Testing Flex Custom Controls
Silk Test Classic supports testing Flex custom controls. By default, Silk Test Classic provides record and
playback support for the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

Option Description

Basic
support

With basic support, you use dynamic invoke to interact with the custom control during
replay. Use this low-effort approach when you want to access properties and methods of
the custom control in the test application that Silk Test Classic does not expose. The
developer of the custom control can also add methods and properties to the custom control
specifically for making the control easier to test. A Silk Test Classic user can then call those
methods or properties using the dynamic invoke feature.

Testing in Your Environment with the Open Agent | 267

Option Description

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator. For example, Silk Test Classic
records //FlexBox rather than //FlexSpinner.

• Only limited recording support.
• Silk Test Classic cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking
Apache Flex Methods.

Advanced
support

With advanced support, you create specific automation support for the custom control. This
additional automation support provides recording support and more powerful play-back
support. The advantages of advanced support include:

• High-level recording and playback support, including the recording and replaying of
events.

• Silk Test Classic treats the custom control exactly the same as any other built-in Flex
control.

• Seamless integration into Silk Test Classic API.
• Silk Test Classic uses the specific class name in the locator. For example, Silk Test

Classic records //FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open
Agent must be extended.

Defining a Custom Control in the Test Application
Typically, the test application already contains custom controls, which were added during development of
the application. If your test application already includes custom controls, you can proceed to Testing a
Custom Control Using Dynamic Invoke or to Testing a Custom Control Using Automation Support.

This procedure shows how a Flex application developer can create a spinner custom control in Flex. The
spinner custom control that we create in this topic is used in several topics to illustrate the process of
implementing and testing a custom control in Silk Test Classic.

The spinner custom control includes two buttons and a text box, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the text field and click Up to increment
the value in the text field.

The custom control offers a public CurrentValue property that can be set and retrieved.

To define the custom control:
1. In the test application, define the layout of the control.

For example, for the spinner control type:

<?xml version="1.0" encoding="utf-8"?>
<customcontrols:SpinnerClass xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:controls="mx.controls.*" xmlns:customcontrols="customcontrols.*">
 <controls:Button id="downButton" label="Down" />

268 | Testing in Your Environment with the Open Agent

 <controls:TextInput id="text" enabled="false" />
 <controls:Button id="upButton" label="Up"/>
</customcontrols:SpinnerClass>

2. Define the implementation of the custom control.
For example, for the spinner control type:

package
customcontrols
{
 import flash.events.MouseEvent;
 import mx.containers.HBox;
 import mx.controls.Button;
 import mx.controls.TextInput;
 import mx.core.UIComponent;
 import mx.events.FlexEvent;
 [Event(name="increment", type="customcontrols.SpinnerEvent")]
 [Event(name="decrement", type="customcontrols.SpinnerEvent")]

 public class SpinnerClass extends HBox
 {
 public var downButton : Button;
 public var upButton : Button;
 public var text : TextInput;
 public var ssss: SpinnerAutomationDelegate;
 private var _lowerBound : int = 0;
 private var _upperBound : int = 5;
 private var _value : int = 0;
 private var _stepSize : int = 1;

 public function SpinnerClass()
 {
 addEventListener(FlexEvent.CREATION_COMPLETE,
creationCompleteHandler);
 }

 private function creationCompleteHandler(event:FlexEvent) : void
 {
 downButton.addEventListener(MouseEvent.CLICK, downButtonClickHandler);
 upButton.addEventListener(MouseEvent.CLICK, upButtonClickHandler);
 updateText();
 }

 private function downButtonClickHandler(event : MouseEvent) : void
 {
 if(currentValue - stepSize >= lowerBound)
 {
 currentValue = currentValue - stepSize;
 }
 else
 {
 currentValue = upperBound - stepSize + currentValue - lowerBound
+ 1;
 }
 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.DECREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function upButtonClickHandler(event : MouseEvent) : void
 {
 if(currentValue <= upperBound - stepSize)
 {
 currentValue = currentValue + stepSize;

Testing in Your Environment with the Open Agent | 269

 }
 else
 {
 currentValue = lowerBound + currentValue + stepSize - upperBound -
1;
 }
 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.INCREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function updateText() : void
 {
 if(text != null)
 {
 text.text = _value.toString();
 }
 }

 public function get currentValue() : int
 {
 return _value;
 }

 public function set currentValue(v : int) : void
 {
 _value = v;
 if(v < lowerBound)
 {
 _value = lowerBound;
 }
 else if(v > upperBound)
 {
 _value = upperBound;
 }
 updateText();
 }

 public function get stepSize() : int
 {
 return _stepSize;
 }

 public function set stepSize(v : int) : void
 {
 _stepSize = v;
 }

 public function get lowerBound() : int
 {
 return _lowerBound;
 }

 public function set lowerBound(v : int) : void
 {
 _lowerBound = v;
 if(currentValue < lowerBound)
 {
 currentValue = lowerBound;
 }
 }

 public function get upperBound() : int

270 | Testing in Your Environment with the Open Agent

 {
 return _upperBound;
 }

 public function set upperBound(v : int) : void
 {
 _upperBound = v;
 if(currentValue > upperBound)
 {
 currentValue = upperBound;
 }
 }
 }
}

3. Define the events that the control uses.

For example, for the spinner control type:

package customcontrols
{
 import flash.events.Event;

 public class SpinnerEvent extends Event
 {
 public static const INCREMENT : String = "increment";
 public static const DECREMENT : String = "decrement";

 private var _steps : int;

 public function SpinnerEvent(eventName : String)
 {
 super(eventName);
 }

 public function set steps(value:int) : void
 {
 _steps = value;
 }

 public function get steps() : int
 {
 return _steps;
 }
 }
}

4. Proceed to Implement Automation Support.

Testing a Custom Control Using Dynamic Invoke
Silk Test Classic provides record and playback support for custom controls using dynamic invoke to interact
with the custom control during replay. Use this low-effort approach when you want to access properties and
methods of the custom control in the test application that Silk Test Classic does not expose. The developer
of the custom control can also add methods and properties to the custom control specifically for making the
control easier to test.

To test a custom control using dynamic invoke:

1. To retrieve a list of supported dynamic methods for a control, use the GetDynamicMethodList
method.

2. Call dynamic methods on objects with the DynamicInvoke method.

3. Call multiple dynamic methods on objects with the DynamicInvokeMethods method.

4. To retrieve a list of supported dynamic properties for a control, use the GetPropertyList method.

Testing in Your Environment with the Open Agent | 271

5. Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method.

Example

This example tests a spinner custom control that includes two buttons and a text box, as
shown in the following graphic.

The user can click Down to decrement the value that is displayed in the text box and
click Up to increment the value in the text box.

The custom control offers a public CurrentValue property that can be set and
retrieved. The value in this example is 3.

To set the spinner's value to 4, type the following:

WINDOW spinner = Desktop.Find("//
FlexBox[@className=customcontrols.Spinner]")
spinner.SetProperty("CurrentValue", 4)

Testing a Custom Control Using Automation Support
Before you can test a custom control in Silk Test Classic, perform the following steps:

• Define the custom control in the test application.
• Implement automation support.

You can create specific automation support for the custom control. This additional automation support
provides recording support and more powerful play-back support. To create automation support, the test
application must be modified and the Open Agent must be extended.

After the test application has been modified and includes automation support, perform the following steps:

1. Open an existing Flex project or create a new project.

2. Click File > New.

The New File dialog box opens.

3. Choose 4Test include and then click OK.

A new include file opens.

4. Type the custom control class information in the INC file and then click Save.

For example, the INC file for the FlexSpinner class looks like the following:

winclass FlexSpinner : FlexBox
 tag "[FlexSpinner]"
 builtin void Increment(INTEGER steps)
 builtin void Decrement(INTEGER steps)
 property stepSize
 builtin INTEGER Get()
 property lowerBound
 builtin INTEGER Get()
 property currentValue
 builtin INTEGER Get()
 builtin Set(INTEGER value)
 property upperBound
 builtin INTEGER Get()

5. Click Options > Runtime Options and in the Use Files field navigate to the custom control INC file.

6. Record and replay tests for the custom control.

272 | Testing in Your Environment with the Open Agent

Implementing Automation Support for a Custom Control
Before you can test a custom control, implement automation support, which is the automation delegate, in
ActionScript for the custom control and compile that into the test application.

The following procedure uses a custom Flex spinner control to demonstrate how to implement automation
support for a custom control. The spinner custom control includes two buttons and a text box, as shown in
the following graphic.

The user can click Down to decrement the value that is displayed in the text box and click Up to increment
the value in the text box.

The custom control offers a public CurrentValue property that can be set and retrieved.

1. Implement automation support, which is the automation delegate, in ActionScript for the custom control.

For further information about implementing an automation delegate, see the Adobe Live Documentation
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html.

In this example, the automation delegate adds support for the methods increment and decrement.
The example code for the automation delegate looks like this:

package customcontrols
{
 import flash.display.DisplayObject;
 import mx.automation.Automation;
 import customcontrols.SpinnerEvent;
 import mx.automation.delegates.containers.BoxAutomationImpl;
 import flash.events.Event;
 import mx.automation.IAutomationObjectHelper;
 import mx.events.FlexEvent;
 import flash.events.IEventDispatcher;
 import mx.preloaders.DownloadProgressBar;
 import flash.events.MouseEvent;
 import mx.core.EventPriority;

 [Mixin]
 public class SpinnerAutomationDelegate extends BoxAutomationImpl
 {
 public static function init(root:DisplayObject) : void
 {
 //register delegate for the automation
 Automation.registerDelegateClass(Spinner, SpinnerAutomationDelegate);
 }
 public function SpinnerAutomationDelegate(obj:Spinner)
 {
 super(obj);
 // listen to the events of interest (for recording)
 obj.addEventListener(SpinnerEvent.DECREMENT, decrementHandler);
 obj.addEventListener(SpinnerEvent.INCREMENT, incrementHandler);
 }

 protected function decrementHandler(event : SpinnerEvent) : void
 {
 recordAutomatableEvent(event);
 }

 protected function incrementHandler(event : SpinnerEvent) : void
 {
 recordAutomatableEvent(event);
 }

Testing in Your Environment with the Open Agent | 273

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html

 protected function get spinner() : Spinner
 {
 return uiComponent as Spinner;
 }

 //----------------------------------
 // override functions
 //----------------------------------

 override public function get automationValue():Array
 {
 return [spinner.currentValue.toString()];
 }

 private function replayClicks(button : IEventDispatcher, steps : int) :
Boolean
 {
 var helper : IAutomationObjectHelper =
Automation.automationObjectHelper;
 var result : Boolean;
 for(var i:int; i < steps; i++)
 {
 helper.replayClick(button);
 }
 return result;
 }

 override public function replayAutomatableEvent(event:Event):Boolean
 {
 if(event is SpinnerEvent)
 {
 var spinnerEvent : SpinnerEvent = event as SpinnerEvent;
 if(event.type == SpinnerEvent.INCREMENT)
 {
 return replayClicks(spinner.upButton, spinnerEvent.steps);
 }
 else if
 {
 return replayClicks(spinner.downButton, spinnerEvent.steps);
 }
 else
 {
 return false;
 }
 }
 else
 {
 return super.replayAutomatableEvent(event);
 }
 }

 // do not expose the child controls, which are the buttons and the
textfield, as individual controls
 override public function get numAutomationChildren():int
 {
 return 0;
 }
 }
}

2. To introduce the automation delegate to the Open Agent, create an XML file that describes the custom
control.

274 | Testing in Your Environment with the Open Agent

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

The XML file for the spinner custom control looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation>
 <ClassInfo Name="FlexSpinner" Extends="FlexBox">
 <Implementation Class="customcontrols.Spinner" />
 <Events>
 <Event Name="Decrement">
 <Implementation Class="customcontrols.SpinnerEvent"
 Type="decrement" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 </Events>
 <Properties>
 <Property Name="lowerBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="upperBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <!-- expose read and write access for the currentValue property -->
 <Property Name="currentValue" accessType="both">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="stepSize" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 </Properties>
 </ClassInfo>
</TypeInformation>

3. Include the XML file for the custom control in the folder that includes all the XML files, which describe all
classes, methods, and properties for the supported Flex controls.

Silk Test Classic contains several XML files that describe all classes, methods, and properties for the
supported Flex controls. Those XML files are located in the <silktest_install_directory>\ng
\agent\com.borland.fastxd.techdomain.flex.agent\config\automationEnvironment
folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Open Agent starts
and initializes support for Flex, it reads the contents of this directory.

To test the Flex Spinner sample control, you must copy the CustomControls.xml file into this folder. If
the Open Agent is currently running, restart it after you copy the file into the folder.

Now, you can test the custom control using Silk Test Classic.

Flex Class Definition File
The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test Classic contains several XML files that describe all classes, events, and properties for the
common Flex common and specialized controls. Those XML files are located in the
<silktest_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

Testing in Your Environment with the Open Agent | 275

If you provide your own XML file, you must copy your XML file into this folder. When the agent starts and
initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

 <TypeInformation>
<ClassInfo>
<Implementation />
<Events>
<Event />
...
</Events>
<Properties>
<Property />
...
</Properties>
</ClassInfo>
</TypeInformation>

Client/Server Application Support
Silk Test Classic provides built-in support for testing client/server applications including:

• .NET WinForms
• Java AWT applications
• Java SWT/RCP application
• Java Swing applications
• Windows-based applications

In a client/server environment, Silk Test Classic drives the client application by means of an Agent process
running on each application’s machine. The application then drives the server just as it always does. Silk
Test Classic is also capable of driving the GUI belonging to a server or of directly driving a server database
by running scripts that submit SQL statements to the database. These methods of directly manipulating the
server application are intended to support testing in which the client application drives the server. For
additional information on this capability, see Testing Databases.

Client/Server Testing Challenges
Silk Test Classic provides powerful support for testing client/server applications and databases in a
networked environment. Testing multiple remote applications raises the level of complexity of QA
engineering above that required for stand-alone application testing. Here are just a few of the testing
methodology challenges raised by client/server testing:

• Managing simultaneous automatic regression tests on different configurations and platforms.
• Ensuring the reproducibility of client/server tests that modify a server database.
• Verifying the server operations of a client application independently, without relying on the application

under test.
• Testing the concurrency features of a client/server application.
• Testing the intercommunication capabilities of networked applications.
• Closing down multiple failed applications and bringing them back to a particular base state (recovery

control).
• Testing the functioning of the server application when driven at peak request rates and at maximum

data rates (peak load and volume testing).
• Automated regression testing of multi-tier client/server architectures.

276 | Testing in Your Environment with the Open Agent

Verifying Tables in ClientServer Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When verifying a table in a client/server application, that is, an object of the Table class or of a class
derived from Table, you can verify the value of every cell in a specified range in the table using the Table
tab in the Verify Window dialog box. For additional information on verifying tables in Web applications, see
Working with Borderless Tables.

Specifying the range

You specify the range of cells to verify in the Range text boxes using the following syntax for the starting
and ending cells in the range:

row_number : column_name

or

row_number : column_number

Example

Specifying the following in the Range text boxes of the Verify Window dialog box
causes the value of every cell in rows 1 through 3 to be verified, starting with the column
named ID and ending with the column named Company_Name:

From field: 1 : id

To field: 3 : company_name

After you specify a cell range in the Verify Window dialog box, you can click Update to
display the values in the specified range.

Specifying a file to store the values

You specify a file to store the current values of the selected range in the Table File Name text box.

What happens

When you dismiss the Verify Window dialog box and paste the code into your script, the following occurs:

• The values that are currently in the table's specified cell range are stored in the file named in the Table
File Name text box in the Verify Window dialog box.

• A VerifyFileRangeValue method is pasted in your script that references the file and the cell range
you specified.

For example, the following VerifyFileRangeValue method call would be recorded for the preceding
example:

table.VerifyFileRangeValue ("file.tbl", {{"1",
"id"}, {"3", "company_name"}})

When you run your script, the values in the range specified in the second argument to
VerifyFileRangeValue are compared to the values stored in the file referenced in the first argument to
VerifyFileRangeValue.

For additional information, see the VerifyFileRangeValue method.

Evolving a Testing Strategy
There are several reasons for moving your QA program from local to remote testing:

Testing in Your Environment with the Open Agent | 277

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

• You may have a stand-alone application that runs on many different platforms and now you want to
simultaneously drive testing on all the platforms from one Silk Test Classic host system.

• You may have been testing a client/server application as a single local application and now you want to
drive multiple instances of the application so as to apply a heavier load to the server.

• You may want to upgrade your client/server testing so that your test cases can automatically initialize
the server and recover from server failures— in addition to driving multiple application instances.

• You may need to test applications that have different user interfaces and that communicate as peers.

If you are already a Silk Test Classic user, you will find that your testing program can evolve in any of these
directions while preserving large portions of your existing tests. This topic and related topics help you to
evolve your testing strategy by showing the incremental steps you can take to move into remote testing.

Incremental Functional Test Design
Silk Test Classic simplifies and automates the classic QA testing methodology in which testing proceeds
from the simplest cases to the most complex. This incremental functional testing methodology applies
equally well in the client/ server environment, where testing scenarios typically proceed from the simplest
functional testing of one instance of a client application, to functional and performance testing of a heavily
loaded, multi-client configuration. Therefore, we recommend the following incremental progression for
client/server testing:

• Perform functional testing on a single client application that is running on the same system as Silk Test
Classic, with the server application on the same system (if possible).

• Perform functional testing on a single remote client application, with the server application on a
separate system.

• Perform functional and concurrency testing on two remote client applications.
• Perform stress testing on a single client application running locally or remotely.
• Perform volume load testing on a configuration large enough to stress the server application.
• Perform peak load testing on a large configuration, up to the limits of the server, if possible.
• Perform performance testing on several sets of loads until you can predict performance.

Network Testing Types
Software testing can be categorized according to the various broad testing goals that are the focus of the
individual tests. At a conceptual level, the kinds of automated application testing you can perform using Silk
Test Classic in a networked environment are:

• Functional
• Configuration
• Concurrency

The ordering of this list conforms to the incremental functional testing methodology supported by Silk Test
Classic. Each stage of testing depends for its effectiveness on the successful completion of the previous
stage. Functional, configuration, and concurrency testing are variations of regression testing, which is a
prerequisite for any type of load testing. You can use Silk Performer for load testing, stress testing, and
performance testing.

You can perform functional testing with a single client machine. You can perform the first four types of test
with a testbed containing only two clients. The last two testing types require a heavy multi-user load and so
need a larger testbed.

Concurrency Testing
Concurrency testing tests two clients using the same server. This is a variation of functional testing that
verifies that the server can properly handle simultaneous requests from two clients. The simplest form of
concurrency testing verifies that two clients can make multiple non-conflicting server requests during the
same period of time. This is a very basic sanity test for a client/server application.

278 | Testing in Your Environment with the Open Agent

To test for problems with concurrent access to the same database record, you need to write specific scripts
that synchronize two clients to make requests of the same records in your server’s databases at the same
time. Your goal is to encounter faulty read/write locks, software deadlocks, or other concurrency problems.

Once the application passes the functional tests, you can test the boundary conditions that might be
reached by large numbers of transactions.

Configuration Testing
A client/server application typically runs on multiple different platforms and utilizes a server that runs on
one or more different platforms. A complete testing program needs to verify that every possible client
platform can operate with every possible server platform. This implies the following combinations of tests:

• Test the client application and the server application when they are running on the same machine—if
that is a valid operational mode for the application. This testing must be repeated for each platform that
can execute in that mode.

• Test with the client and server on separate machines. This testing should be repeated for all different
platform combinations of server and client.

Functional Testing
Before you test the multi-user aspects of a client/server application, you should verify the functional
operation of a single instance of the application. This is the same kind of testing that you would do for a
non-distributed application.

Once you have written scripts to test all the operations of the application as it runs on one platform, you
can modify the scripts as needed for all other platforms on which the application runs. Testing multiple
platforms thus becomes almost trivial. Moreover, many of the tests you script for functional testing can
become the basis of your other types of testing. For example, you can easily modify the functional tests (or
a subset of them) to use in load testing.

Peak Load Testing
Peak load testing is placing a load on the server for a short time to emulate the heaviest demand that
would be generated at peak user times—for example, credit card verification between noon and 1 PM on
Christmas Eve. This type of test requires a significant number of client systems. If you submit complex
transactions to the server from each client in your test network, using minimal user setup, you can emulate
the typical load of a much larger number of clients.

Your testbed may not have sufficient machines to place a heavy load on your server system — even if your
clients are submitting requests at top speed. In this case it may be worthwhile to reconfigure your
equipment so that your server is less powerful. An inadequate server configuration should enable you to
test the server’s management of peak server conditions.

Volume Testing
Volume testing is placing a heavy load on the server, with a high volume of data transfers, for 24 to 48
hours. One way to implement this is to use one set of clients to generate large amounts of new data and
another set to verify the data, and to delete data to keep the size of the database at an appropriate level. In
such a case, you need to synchronize the verification scripts to wait for the generation scripts. The 4Test
script language makes this easy. Usually, you would need a very large test set to drive this type of server
load, but if you under-configure your server you will be able to test the sections of the software that handle
the outer limits of data capacity.

How 4Test Handles Script Deadlock
It is possible for a multi-threaded 4Test script to reach a state in which competing threads block one
another, so that the script cannot continue. This is called a script deadlock. When the 4Test runtime
environment detects a deadlock, it raises an exception and halts the deadlocked script.

Testing in Your Environment with the Open Agent | 279

Example

The following script will never exit successfully.

share INTEGER iIndex1 = 0
share INTEGER iIndex2 = 0

main ()
 parallel
 access iIndex1
 Sleep (1)
 access iIndex2
 Print ("Accessed iIndex1 and iIndex2")
 access iIndex2
 Sleep (1)
 access iIndex1
 Print ("Accessed iIndex2 and iIndex1")

Troubleshooting Configuration Test Failures
The test of your application may have failed for one of the reasons below. If the following suggestions do
not address the problem, you can enable your extension manually.

Note: Unsupported and embedded browsers, other than AOL, are recognized as client/server
applications.

The application may not have been ready to test

1. Click Enable Extensions on the Basic workflow bar.
2. On the Enable Extensions dialog box, select the application for which you want to enable extensions.
3. Close and restart your application. Make sure the application has finished loading, and then click Test.

Embedded browsers, other than AOL, are recognized as Client/Server applications

If you want to work with a web browser control embedded within an application, you must enable the
extension manually.

Testing .NET Applications with the Open Agent
Silk Test Classic provides built-in support for testing .NET applications with the Open Agent.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Windows Forms Applications
Silk Test Classic provides built-in support for testing .NET Windows Forms (Win Forms) applications using
the Open Agent as well as built-in support for testing .NET standalone and No-Touch Windows Forms (Win
Forms) applications using the Classic Agent. However, side-by-side execution is supported only on
standalone applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Locator Attributes for Windows Forms Applications
This functionality is supported only if you are using the Open Agent.

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

280 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

The attributes that Silk Test Classic supports for Windows Forms include:

• automationId
• caption. Supports wildcards ? and * .
• windowid
• priorlabel. For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Windows Forms Methods
This functionality is supported only if you are using the Open Agent.

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The DynamicInvoke Method

For a Windows Forms or a WPF control, you can use the DynamicInvoke method to call the following
methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the DynamicInvoke Method

For an object of the Silk Test Classic type DataGrid, you can call all methods that
MSDN defines for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//4Test code
BOOLEAN isExpanded = (BOOLEAN)
dataGrid.DynamicInvoke("IsExpanded", {3})

Testing in Your Environment with the Open Agent | 281

Second Example for the DynamicInvoke Method

To invoke the static method String.Compare(String s1, String s2) inside the
AUT, use the following code:

//4Test code
INTEGER result =
mainWindow.DynamicInvoke("System.String.Compare", {"a", "b"});

The DynamicInvokeMethods Method

For a Windows Forms or a WPF control, you can use the DynamicInvokeMethods method to invoke a
sequence of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the DynamicInvokeMethods method generates
a relatively complex script, because you have to pass five methods with their
corresponding parameters to the DynamicInvokeMethods method:

INTEGER rowIndex = 0
INTEGER columnIndex = 2

LIST OF STRING names = { ... }
 "Rows" // Get the list of rows from the grid.
 "get_Item" // Get a specific row from the list of rows by
using the indexer method.
 "Cells" // Get the list of cells from the the row.
 "get_Item" // Get a specific cell from the list of cells
by using the indexer method.
 "Text" // Get the text of the cell.

LIST OF LIST parameters = { ... }
 {} // Parameters for the Rows property.
 {rowIndex} // Parameters for the get_Item method.
 {} // Parameters for the Cells property.
 {columnIndex} // Parameters for the get_Item method.
 {} // Parameters for the Text property.

dataGrid.DynamicInvokeMethods(names, parameters)

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods and properties that the MSDN defines for the control.

282 | Testing in Your Environment with the Open Agent

• If the control is a custom control that is derived from a standard control, all methods and properties from
the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.
• Windows Presentation Foundation (WPF).

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

Testing in Your Environment with the Open Agent | 283

Determining the priorLabel in the Windows Forms Technology Domain
To determine the priorLabel in the Windows Forms technology domain, all labels and groups in the same
window as the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

WPF Applications
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides built-in support for testing Windows Presentation Foundation (WPF) applications
using the Open Agent. Silk Test Classic supports standalone WPF applications and can record and play
back controls in .NET version 3.5 or later.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

WPF applications support hierarchical object recognition and dynamic object recognition. You can create
tests for both dynamic and hierarchical object recognition in your test environment. You can use both
recognition methods within a single test case if necessary. Use the method best suited to meet your test
requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

When you create a new WPF project, Silk Test Classic uses the Open Agent by default.

Supported Controls for WPF
Silk Test Classic includes record and replay support for WPF controls. In Silk Test 2009, WPF replay
support was provided. However, with the release of Silk Test 2010, the earlier WPF controls, which were
prefixed with MSUIA, are deprecated and users should use the new WPF technology domain instead.
When you record new test cases, Silk Test Classic automatically uses the new WPF technology domain.

Note: If you have an existing project that includes scripts that use the earlier MSUIA technology
domain, the test cases will no longer work.

For a complete list of the controls available for WPF testing, see the WPF Class Reference.

Locator Attributes for Windows Presentation Foundation (WPF)
Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

284 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Silk Test Classic supports the following locator attributes for WPF controls:

• automationId
• caption
• className
• name

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk Test Classic recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk Test Classic creates a locator for a WPF control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has a automationId and a name, Silk Test Classic uses the automationId when creating the locator.

Testing in Your Environment with the Open Agent | 285

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Classes that Derive from the WPFItemsControl Class
Silk Test Classic can interact with classes that derive from WPFItemsControl, such as WPFListBox,
WPFTreeView, and WPFMenu, in two ways:

Working with
the control

Most controls contain methods and properties for typical use cases. The items are
identified by text or index.

For example:

listBox.Select("Banana")
listBox.Select(2)
tree.Expand("/Fruit/Banana")

Working with
individual items

For example WPFListBoxItem, WPFTreeViewItem, or WPFMenuItem. For
advanced use cases, use individual items. For example, use individual items for
opening the context menu on a specific item in a list box, or clicking a certain position
relative to an item.

Custom WPF Controls
Generally, Silk Test Classic provides record and playback support for all standard WPF controls.

Silk Test Classic handles custom controls based on the way the custom control is implemented. You can
implement custom controls by using the following approaches:

Deriving classes from
UserControl

This is a typical way to create compound controls. Silk Test Classic
recognizes these user controls as WPFUserControl and provides full
support for the contained controls.

Deriving classes from
standard WPF controls,
such as ListBox

Silk Test Classic treats these controls as an instance of the standard WPF
control that they derive from. Record, playback, and recognition of children
may not work if the user control behavior differs significantly from its base
class implementation.

Using standard controls
that use templates to
change their visual
appearance

Low-level replay might not work in certain cases. Switch to high-level
replay in such cases.

Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Setting WPF Classes to Expose During Recording and Playback
Silk Test Classic filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout

286 | Testing in Your Environment with the Open Agent

purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Options.

2. Click Recorder.
3. In the Custom WPF class names grid, type the name of the class that you want to expose during

recording and playback.

Separate class names with a comma.

4. Click OK.

Dynamically Invoking WPF Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The DynamicInvoke Method

For a Windows Forms or a WPF control, you can use the DynamicInvoke method to call the following
methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the DynamicInvoke Method

For an object of the Silk Test Classic type DataGrid, you can call all methods that
MSDN defines for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//4Test code
BOOLEAN isExpanded = (BOOLEAN)
dataGrid.DynamicInvoke("IsExpanded", {3})

Testing in Your Environment with the Open Agent | 287

Second Example for the DynamicInvoke Method

To invoke the static method String.Compare(String s1, String s2) inside the
AUT, use the following code:

//4Test code
INTEGER result =
mainWindow.DynamicInvoke("System.String.Compare", {"a", "b"});

The DynamicInvokeMethods Method

For a Windows Forms or a WPF control, you can use the DynamicInvokeMethods method to invoke a
sequence of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the DynamicInvokeMethods method generates
a relatively complex script, because you have to pass five methods with their
corresponding parameters to the DynamicInvokeMethods method:

INTEGER rowIndex = 0
INTEGER columnIndex = 2

LIST OF STRING names = { ... }
 "Rows" // Get the list of rows from the grid.
 "get_Item" // Get a specific row from the list of rows by
using the indexer method.
 "Cells" // Get the list of cells from the the row.
 "get_Item" // Get a specific cell from the list of cells
by using the indexer method.
 "Text" // Get the text of the cell.

LIST OF LIST parameters = { ... }
 {} // Parameters for the Rows property.
 {rowIndex} // Parameters for the get_Item method.
 {} // Parameters for the Cells property.
 {columnIndex} // Parameters for the get_Item method.
 {} // Parameters for the Text property.

dataGrid.DynamicInvokeMethods(names, parameters)

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods and properties that the MSDN defines for the control.

288 | Testing in Your Environment with the Open Agent

• If the control is a custom control that is derived from a standard control, all methods and properties from
the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.
• A string for all other types

Call ToString on returned .NET objects to retrieve the string representation

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl.DynamicInvoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

The calculator control also has a LastCalculationResult property. You can use the
following code to read the property:

REAL lastResult =
customControl.GetProperty("LastCalculationResult")

Setting Pre-Fill During Recording and Replaying
This functionality is supported only if you are using the Open Agent.

Defines whether items in a WPFItemsControl, like WPFComboBox or WPFListBox, are pre-filled during
recording and playback. WPF itself lazily loads items for certain controls, so these items are not available
for Silk Test Classic if they are not scrolled into view. Turn pre-filling on, which is the default setting, to
additionally access items that are not accessible without scrolling them into view. However, some
applications have problems when the items are pre-filled by Silk Test Classic in the background, and these
applications can therefore crash. In this case turn pre-filling off.

1. Click Options.

Testing in Your Environment with the Open Agent | 289

2. Click Recorder.

3. In the Pre-fill items area, check the OPT_WPF_PREFILL_ITEMS check box.

4. Click OK.

WPF Class Reference
When you configure a WPF application, Silk Test Classic automatically provides built-in support for testing
standard WPF controls.

Microsoft Silverlight Applications
Microsoft Silverlight (Silverlight) is an application framework for writing and running rich internet
applications, with features and purposes similar to those of Adobe Flash. The run-time environment for
Silverlight is available as a plug-in for most web browsers.

Silk Test Classic provides built-in support for testing Silverlight applications with the Open Agent. Silk Test
Classic supports Silverlight applications that run in a browser as well as out-of-browser and can record and
play back controls in Silverlight.

The following applications, that are based on Silverlight, are supported:

• Silverlight applications that run in Internet Explorer.
• Silverlight applications that run in Mozilla Firefox.
• Out-of-Browser Silverlight applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Silverlight applications support dynamic object recognition. You can create tests for dynamic object
recognition in your test environment.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Silk Test Classic includes record and replay support for Silverlight controls. For a complete list of the
controls available for Silverlight testing, see the Silverlight Class Reference.

The support for testing Silverlight applications in Microsoft Windows XP requires the installation of Service
Pack 3 and the Update for Windows XP with the Microsoft User Interface Automation that is provided in
Windows 7. You can download the update from http://www.microsoft.com/download/en/details.aspx?
id=13821.

Note: The Microsoft User Interface Automation needs to be installed for the Silverlight support. If you
are using a Windows operating system and the Silverlight support does not work, you can install the
update with the Microsoft User Interface Automation, which is appropriate for your operating system,
from http://support.microsoft.com/kb/971513.

Locator Attributes for Silverlight Controls
Silk Test Classic supports the following locator attributes for Silverlight controls:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

290 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
http://www.microsoft.com/download/en/details.aspx?id=13821
http://www.microsoft.com/download/en/details.aspx?id=13821
http://support.microsoft.com/kb/971513

Dynamic Object Recognition

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="OK"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk Test
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk Test Classic creates a locator for a Silverlight control by using the automationId,
name, caption, or className attributes in the order that they are listed in the preceding table. For example,
if a control has a automationId and a name, Silk Test Classic uses the automationId when creating the
locator.

The following table shows how an application developer can define a Silverlight button with the text Ok in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="OK"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Dynamically Invoking Silverlight Methods
You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on Silverlight objects with the DynamicInvoke method. To retrieve a list of
supported dynamic methods for a Silverlight control, use the GetDynamicMethodList() method.

Testing in Your Environment with the Open Agent | 291

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a Silverlight control, use the GetDynamicMethodList() method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a Silverlight control, use the
GetPropertyList() method.

Note: Typically, most properties are read-only and cannot be set.

Supported Parameter Types

All built-in Silk
Test Classic
types

Silk Test Classic types include primitive types, for example boolean, int, and string, lists,
and other types, for example Point and Rect.

Enum types Enum parameters must be passed as string. The string must match the name of an
enum value. For example, if the method expects a parameter of the .NET enum type
System.Windows.Visiblity you can use the string values of Visible, Hidden, or
Collapsed.

.NET structs
and objects

Pass .NET struct and object parameters as a list. The elements in the list must match
one constructor for the .NET object in the test application. For example, if the method
expects a parameter of the .NET type System.Windows.Vector, you can pass a list
with two integers. This works because the System.Windows.Vector type has a
constructor with two integer arguments.

Other controls Control parameters can be passed as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types.
• All methods that have no return value return NULL.
• A string for all other types.

To retrieve this string representation, call the ToString() method on returned .NET objects in the
application under test.

Example

A TabItem in Silverlight, which is an item in a TabControl.

tabItem.DynamicInvoke("SelectionItemPattern.Select")
mySilverligtObject.GetProperty("IsPassword")

Scrolling in Silverlight
Silk Test Classic provides two different sets of scrolling-related methods and properties, depending on the
Silverlight control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk Test Classic exists because the controls in Silk Test Classic implement scrolling in
those two ways.

292 | Testing in Your Environment with the Open Agent

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk Test Classic does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional information,
refer to the Silverlight documentation. The final position is related to the position of the object, which is
defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.SLVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.SLVerticalScrollBar().ScrollToMaximum()

Troubleshooting when Testing Silverlight Applications

Silk Test Classic cannot see inside the Silverlight application and no green rectangles are drawn
during recording

The following reasons may cause Silk Test Classic to be unable to see inside the Silverlight application:

Reason Solution

You use a Mozilla Firefox version prior to 4.0. Use Mozilla Firefox 4.0 or later.

You use a Silverlight version prior to 3. Use Silverlight 3 (Silverlight Runtime 4) or Silverlight 4
(Silverlight Runtime 4).

Your Silverlight application is running in windowless
mode.

Silk Test Classic does not support Silverlight applications
that run in windowless mode. To test such an application,
you need to change the Web site where your Silverlight
application is running. Therefore you need to set the
windowless parameter in the object tag of the HTML
or ASPX file, in which the Silverlight application is hosted,
to false.

The following sample code sets the windowless
parameter to false:

<object ...>
 <param name="windowless"

Testing in Your Environment with the Open Agent | 293

Reason Solution

value="false"/>
 ...
</object>

Silverlight Class Reference
When you configure a Silverlight application, Silk Test Classic automatically provides built-in support for
testing standard Silverlight controls.

Java AWT/Swing Support
Silk Test Classic provides built-in support for testing applications or applets that use the Java AWT/Swing
controls. When you configure an application or applet that uses Java AWT/Swing, Silk Test Classic
automatically provides support for testing standard AWT/Swing controls.

Note: You can also test Java SWT controls embedded in Java AWT/Swing applications or applets as
well as Java AWT/Swing controls embedded in Java SWT applications.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Sample Applications

Silk Test provides a sample Swing test application. Download and install the sample applications from
http://supportline.microfocus.com/websync/SilkTest.aspx. After you have installed the sample applications,
click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Sample Applications > Java Swing
> Swing Test Application or (in Microsoft Windows 10) Start > Silk.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the controls available for Java AWT/Swing testing, see Java AWT andSwing Class
Reference.

4Test methods use a 1-based indexing scheme, where the first indexed value is stored in position 1. Native
Java methods use a 0-based indexing scheme, where the first indexed value is stored in position 0. This
incompatibility can create challenges in coding test scripts that access indexed values using both native
methods and 4Test methods.

Configuring a Test Application that Uses the Java
Network Launching Protocol (JNLP)
This functionality is supported only if you are using the Open Agent.

Applications that start using the Java Network Launching Protocol (JNLP) require additional configuration
in Silk Test Classic. Because these applications are started from the Web, you must manually configure the
application configuration to start the actual application as well as the application that launches the "Web
Start". Otherwise, the test will fail on playback unless the application is already running.

1. Record a test case for the application that you want to test.

2. In the INC file, replace the const sCmdLine = value with the command line pattern that includes the
absolute path to javaws.exe and the URL to the Web Start.

294 | Testing in Your Environment with the Open Agent

http://supportline.microfocus.com/websync/SilkTest.aspx
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

For example, to use the SwingSet3 JNLP application, type const sCmdLine = "%ProgramFiles%
\Java\jre6\bin\javaws.exe http://download.java.net/javadesktop/swingset3/
SwingSet3.jnlp"

When you replay the test case, the JNLP application starts as expected.

Custom Attributes
This functionality is supported only if you are using the Open Agent.

Add custom attributes to a test application to make a test more stable. You can use custom attributes with
the following technologies:

• Java SWT
• Swing
• WPF
• xBrowser
• Windows Forms
• SAP

For example, in Java SWT, the developer implementing the GUI can define an attribute (for example,
silkTestAutomationId) for a widget that uniquely identifies the widget in the application. A tester using
Silk Test Classic can then add that attribute to the list of custom attributes (in this case,
silkTestAutomationId), and can identify controls by that unique ID. Using a custom attribute is more
reliable than other attributes like caption or index, since a caption will change when you translate the
application into another language, and the index will change whenever another widget is added before the
one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different fields, both fields will return when you call the loginName attribute.

First, enable custom attributes for your application and then create the test.

Recording tests that use dynamic object recognition

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition. For example, If you create a button in the application that you want to test using the
following code:

Button myButton = Button(parent, SWT.NONE);
myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test case, you can use the following query:

Window button = Desktop.Find(".//
PushButton[@SilkTestAutomationId='myButton']")

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

Testing in Your Environment with the Open Agent | 295

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

putClientProperty("propertyName", "propertyValue")

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
This functionality is supported only if you are using the Open Agent.

You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods of the SWT, AWT, or Swing widget.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

All built-in Silk
Test Classic
types.

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and
other types (such as Point and Rect).

Enum types. Enum parameters must be passed as string. The string must match the name of an
enum value. For example, if the method expects a parameter of the enum type,
java.sql.ClientInfoStatus you can use the string values of REASON_UNKNOWN,
REASON_UNKNOWN_PROPERTY, REASON_VALUE_INVALID, or
REASON_VALUE_TRUNCATED.

Example

A custom calculator control has a Reset method and an Add method, which performs an addition of two
numbers. You can use the following code to call the methods directly from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

296 | Testing in Your Environment with the Open Agent

invokeMethods Example: Draw a Line in a Text Field
To draw a line in a multiline text field, you need to access a graphics object inside the text field by calling
the following methods in Java:

main()
{
 TextField multiLine = ...; // get reference to multiline text field
 Graphics graphObj = multiLine.getGraphics();
 graphObj.drawLine(10, 10, 20, 20);
}

However, you cannot call the above sequence of methods from 4Test because Graphics is not 4Test-
compatible. Instead, you can insert the invokeMethods prototype in the TextField class declaration, then
add invokeMethods by hand to your test script to draw a line in the Graphics object nested inside the
multiline text field, as shown in this 4Test function:

DrawLineInTextField()
MyDialog.Invoke() // Invoke Java dialog that contains the text field
MyDialog.TheTextField.invokeMethods ({"getGraphics", "drawLine"}, {{}, {10,
10, 20, 20}})

In this code, the following methods are called in Java:

• getGraphics is invoked on the multiline text field TheTextField with an empty argument list, returning a
Graphics object.

• drawLine is invoked on the Graphics object, to draw a line starting from (x,y) coordinates (10,10) and
continuing to (x,y) coordinates (20,20).

Determining the priorLabel in the Java AWT/Swing
Technology Domain
This functionality is supported only if you are using the Open Agent.

To determine the priorLabel in the Java AWT/Swing technology domain, all labels and groups in the same
window as the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• If a parent of the control is a JViewPort or a ScrollPane, the algorithm works as if the parent is the
window that contains the control, and nothing outside is considered relevant.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, and one is to the left and the other above the

control, the left one is preferred.
• If no label is eligible, the caption of the closest group is used.

Oracle Forms Support
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides built-in support for testing applications that are based on Oracle Forms.

Note: For some controls, Silk Test Classic provides only low-level recording support.

For information on the supported versions and browsers for Oracle Forms, refer to the Release Notes.

Prerequisites for Testing Oracle Forms
To test an application that is built with Oracle Forms, the following prerequisites need to be fulfilled:

Testing in Your Environment with the Open Agent | 297

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

• The next-generation Java Plug-In needs to be enabled. This setting is enabled by default. You can
change the setting in the Java Control Panel. For additional information on the next-generation Java
Plug-In, refer to the Java documentation.

• To prevent Java security dialogs from displaying during a test run, the Applet needs to be signed.
• Micro Focus recommends that the Oracle Forms developer enables the Names property. When this

property is enabled, the Oracle Forms runtime exposes the internal name, which is the name that the
developer of the control has specified for the control, as the Name property of the control. Otherwise,
Silk Test Classic calculates a value for the Silk Test Classic Name attribute, which usually consists of the
class name of the control plus an index. This enables Silk Test Classic to generate stable locators for
controls.

Attributes for Oracle Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Oracle Forms include:

• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a
form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Testing Java SWT and Eclipse Applications with the Open
Agent

Silk Test Classic provides built-in support using the Basic Workflow for testing applications that use widgets
from the Standard Widget Toolkit (SWT) controls. When you configure a Java SWT/RCP application, Silk
Test Classic automatically provides support for testing standard Java SWT/RCP controls.

Silk Test Classic supports:

• Testing Java SWT controls embedded in Java AWT/Swing applications as well as Java AWT/Swing
controls embedded in Java SWT applications.

• Standalone SWT applications that use the EXT or CLASSPATH configuration.
• Testing Java SWT applications that use the IBM JDK or the Sun JDK.
• Any Eclipse-based application that uses SWT widgets for rendering. Silk Test Classic supports both

Eclipse IDE-based applications and RCP-based applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Java SWT applications support dynamic object recognition. When you record a test case with the Open
Agent, Silk Test Classic creates locator keywords in an INC file to create scripts that use dynamic object
recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition.

298 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

For a complete list of the widgets available for SWT testing, see Supported SWT Widgets for the Open
Agent.

For a complete list of the record and replay controls available for Java SWT testing, view the SWT.inc and
JavaSWT.inc file. To access the JavaSWT.inc file that is used with the Open Agent, navigate to the
<SilkTest directory>\extend\JavaSWT directory. By default, this file is located in C:\Program
Files\Silk\SilkTest\extend\JavaSWT\JavaSWT.inc. To access the SWT.inc file, navigate to
the <SilkTest directory>\extend\ directory. By default, this file is located in C:\Program Files
\Silk\SilkTest\extend\SWT.inc.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.
• Windows Presentation Foundation (WPF).

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption
• all custom object definition attributes

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
This functionality is supported only if you are using the Open Agent.

You can call methods, retrieve properties, and set properties on controls that Silk Test Classic does not
expose by using the dynamic invoke feature. This feature is useful for working with custom controls and for
working with controls that Silk Test Classic supports without customization.

Testing in Your Environment with the Open Agent | 299

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList() method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty() method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList() method.

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods of the SWT, AWT, or Swing widget.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

All built-in Silk
Test Classic
types.

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and
other types (such as Point and Rect).

Enum types. Enum parameters must be passed as string. The string must match the name of an
enum value. For example, if the method expects a parameter of the enum type,
java.sql.ClientInfoStatus you can use the string values of REASON_UNKNOWN,
REASON_UNKNOWN_PROPERTY, REASON_VALUE_INVALID, or
REASON_VALUE_TRUNCATED.

Example

A custom calculator control has a Reset method and an Add method, which performs an addition of two
numbers. You can use the following code to call the methods directly from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Java SWT Classes for the Open Agent

Troubleshooting Java SWT and Eclipse Applications

Some SWTTree methods do not replay with low-level playback

When using low-level playback, some SWTTree methods, for example Expand and Collapse, do not
replay.

To solve this problem, set the replay mode to Default. For additional information, see Setting Replay
Options for the Open Agent .

Selecting a non-visible node in an SWTTree

When using low-level playback, Silk Test Classic cannot interact with non-visible nodes in an SWTTree.

300 | Testing in Your Environment with the Open Agent

To solve this problem, set the replay mode to Default. For additional information, see Setting Replay
Options for the Open Agent .

Testing Mobile Applications
Silk Test Classic enables you to automatically test your native mobile applications (apps) and mobile web
applications. Automatically testing your mobile applications with Silk Test Classic provides the following
benefits:

• It can significantly reduce the testing time of your mobile applications.
• You can create your tests once and then test your mobile applications on a large number of different

devices and platforms.
• You can ensure the reliability and performance that is required for enterprise mobile applications.
• It can increase the efficiency of QA team members and mobile application developers.
• Manual testing might not be efficient enough for an agile-focused development environment, given the

large number of mobile devices and platforms on which a mobile application needs to function.

Note: To test native mobile applications or hybrid applications with Silk Test Classic, you require a
native mobile license. For additional information, see Licensing Information.

Note: Silk Test Classic provides support for testing mobile apps on both Android and iOS devices.

For information on the supported operating system versions and the supported browsers for testing mobile
applications, refer to the Release Notes.

Android
Silk Test Classic enables you to test a mobile application on an Android device or an Android emulator.

Prerequisites for Testing Mobile Applications on Android
Before you can test a mobile application (app) on an Android device or on an Android emulator, ensure that
the following prerequisites are met:

• If you have created your own hybrid app by adding a web view to a native mobile app, add the following
code to the app to make your app testable with Silk Test Classic:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

• Silk Test Classic does not support showing a live view of the device screen for Android 4.4. Micro Focus
recommends using Android 5 or later.

Testing Mobile Applications on Android
To test a mobile application on a physical Android device or on an Android emulator, perform the following
tasks:

1. Ensure that you have met the prerequisites for testing mobile applications on Android.

For additional information, see Prerequisites for Testing Mobile Applications on Android.

2. If you want to test the mobile application on an Android emulator, configure the emulator settings for Silk
Test Classic.

For additional information, see Configuring the Android Emulator for Silk Test.

3. Start the Android emulator or connect the device to the machine on which Silk Test Classic is installed.

4. If you want to test the mobile application on a physical Android device that you are using for the first
time on this machine, install the appropriate Android USB Driver on the machine.

For additional information, see Installing a USB Driver.

Testing in Your Environment with the Open Agent | 301

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

5. If you want to test the mobile application on a physical Android device, enable USB-debugging on the
Android device.
For additional information, see Enabling USB-Debugging.

6. Create a Silk Test Classic project for your mobile application.
7. Create a test for your mobile application.
8. Record the actions that you want to execute in the test. When you start the Recording window, the

Select Application dialog box opens.
9. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

10.To test a native mobile application or a Hybrid application:

Note: To test native mobile applications or hybrid applications with Silk Test Classic, you require a
native mobile license. For additional information, see Licensing Information.

a) Select the Mobile tab.
b) Select the mobile device, on which you want to test the app, from the list.
c) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk Test Classic supports HTTP
and UNC formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is available in Mobile Center, specify the App identifier.
11.Click OK.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

12.Use the Recording window to record the test against the mobile application.
For additional information, see Recording Mobile Applications.

13.When you have recorded all the actions, stop the recording.
14.Replay the test.
15.Analyze the test results.

Testing Hybrid Applications on Android
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk Test Classic provides full browser support for testing debug hybrid apps that consist of a single web
view, which is embedded in a native container. A common example of such a hybrid app would be an
Apache Cordova application.

302 | Testing in Your Environment with the Open Agent

To prepare a non-debug hybrid app for testing, enable remote debugging in the app by adding the following
code to the app:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk Test Classic fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk Test Classic recognizes and handles the
controls in a web view as native mobile controls instead of browser controls. For example, the following
code clicks on a link when using browser support:

Agent.SetOption(OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT, false)
Desktop.Find("//BrowserApplication//BrowserWindow//
INPUT[@id='email']").Click()

With the fallback support enabled, the following code clicks on the same link:

Agent.SetOption(OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT, true)
Desktop.Find("//BrowserApplication//BrowserWindow//MobileTextField[@resource-
id='email']").Click()

Silk Test Classic can detect web views that support Chrome remote debugging. Silk Test Classic can
detect web views with either the package com.android.webview or the package
com.google.android.webview, which are the default packages on most Android devices.

Note: Silk Test Classic supports testing hybrid apps on Android 4.4 or later. To test hybrid apps on
Android, Android System WebView version 51 or later is required.

The process for testing a hybrid app on Android is the same as the process for testing a mobile native
application. For additional information, see Testing Mobile Applications on Android.

Installing a USB Driver
To connect an Android device for the first time to your local machine to test your mobile applications, you
need to install the appropriate USB driver.

The device manufacturer might provide an executable with all the necessary drivers for the device. In this
case you can just install the executable on your local machine. If the manufacturer does not provide such
an executable, you can install a single USB driver for the device on the machine.

To install the Android USB driver:

1. Download the appropriate driver for your device.

For example, for information on finding and installing a USB driver for a Google Nexus device, see
http://developer.android.com/tools/extras/oem-usb.html.

2. Connect your Android device to a USB port on your local machine.

3. From your desktop or Windows Explorer, right-click Computer and select Manage.

4. In the left pane, select Device Manager.

5. In the right pane, locate and expand Other device.

6. Right-click the device name, for example Nexus 5x, and select Update Driver Software. The Hardware
Update Wizard opens.

7. Select Browse my computer for driver software and click Next.

8. Click Browse and navigate to the folder to which you have downloaded the USB driver.

9. Select the USB driver.

10.Click Next to install the driver.

Testing in Your Environment with the Open Agent | 303

http://developer.android.com/tools/extras/oem-usb.html

Enabling USB-Debugging
To communicate with an Android device over the Android Debug Bridge (adb), enable USB debugging on
the device.

1. On the Android device, open the settings.

2. Tap Developer Settings.

The developer settings are hidden by default. If the developer settings are not included in the settings
menu of the device:

a) Depending on whether the device is a phone or a pad, scroll down and tap About phone or About
Pad.

b) Scroll down again and tap Build Number seven times.

3. In the Developer settings window, check USB-Debugging.

4. Set the USB mode of the device to Media device (MTP), which is the default setting.

For additional information, refer to the documentation of the device.

Recommended Settings for Android Devices
To optimize testing with Silk Test Classic, configure the following settings on the Android device that you
want to test:

• Enable USB-debugging on the Android device. For additional information, see Enabling USB-Debugging
• An Android device must be connected as a media device to the machine on which the Open Agent is

running. The USB mode of the Android device must be set to Media device (MTP).
• An Android device or emulator must not be screen-locked during testing. To keep the device awake

while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

• Make sure to enable the 3-button navigation in the Android settings. 2-button navigation and
gesture navigation are not supported.

Configuring the Android Emulator for Silk Test Classic
Note: When using an Android emulator, an additional adb server is running in addition to the one that
is used by Silk Test Classic. If the running adb servers have different versions, the connection
between the Open Agent and the device might become unstable or even break. To avoid version
mismatch errors, specify the path to the Android SDK directory by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the
environment variable is not set, Silk Test Classic uses the adb version that is shipped with Silk Test
Classic.

When you want to test mobile applications on an Android emulator with Silk Test Classic, you have to
configure the emulator for testing:

1. Install the latest version of the Android SDK.

For information on how to install and configure the Android SDK, see Get the Android SDK.

2. Install Android Studio 2 or later.

Tip: You can skip installing Android Studio and use the emulator provided with the Android SDK.
However, Micro Focus recommends installing Android Studio for improved emulator performance.
The remaining steps in this topic require Android Studio to be installed.

3. From Android Studio, start the AVD Manager.

4. Click Create Virtual Device.

304 | Testing in Your Environment with the Open Agent

http://developer.android.com/sdk/index.html

5. Select a virtual device.

6. Click Next.

7. Download and select a system image of Android that includes Google APIs.

8. Click Next.

9. Configure the virtual device according to your requirements.

10.Click Show Advanced Settings.

11.Adjust the RAM size and the heap space used by the emulator to an amount that is manageable by
your machine.

Tip: Micro Focus recommends using at least 1 GB RAM and 256 MB heap space.

12.Select Auto from the list in the Emulated Performance area.

13.Click Finish.

Tested Configurations for Parallel Test Execution
With Silk Test Classic, you can run automated tests on multiple Android devices in parallel. The amount of
Android devices that you are able to use in parallel depends on the available hardware. Micro Focus has
successfully tested the following hardware configurations:

Testing in Your Environment with the Open Agent | 305

Configuration with a single test machine

Using a single test machine directly connected to the Android devices through USB, we tested up to 8
physical Android devices in parallel.

The test machine was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Configuration with two test machines

Here we are using two test machines, one with Silk Test Classic installed and another, which is configured
as a remote location for the first machine and has the Silk Test Information Service installed. Using such a
configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was a Dell Precision T1700 with the following hardware specifications:

306 | Testing in Your Environment with the Open Agent

• Intel® Core™ i7 - 4770 CPU @ 3.40 GHz
• 4 cores (8 threads)
• 16 GB RAM

Configuration with a Windows machine and a Mac

Here we are using two test machines, a Windows machine with Silk Test Classic installed and a Mac,
which is configured as a remote location for the first machine and has the Silk Test Information Service
installed. Using such a configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was an Apple Mac Mini with the following hardware specifications:

• Intel® Core™ i5 - 4782U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 16 GB RAM

iOS
Silk Test Classic enables you to test a mobile application on an iOS device or an iOS Simulator.

Because of significant changes by Apple in iOS 9.3 in comparison to the previous versions of iOS, Silk Test
supports testing mobile applications on iOS 9.3 or later. For a list of the supported iOS versions, refer to
the Release Notes.

Note: Testing mobile applications on iOS 11 requires Xcode 9. When using Xcode 9 on a Mac, testing
on physical devices and Simulators with iOS versions prior to iOS 11 that are connected to or running

Testing in Your Environment with the Open Agent | 307

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

on this Mac is not supported. Use Xcode 8.3 to test physical devices and Simulators with iOS 9.3 and
iOS 10.

Prerequisites for Testing Mobile Applications on iOS
Before you can test a mobile application (app) on an iOS device or on an iOS Simulator, ensure that the
following prerequisites are met:

• The current version of the Silk Test information service is installed on the Mac. For additional
information, see Installing the Silk Test Infoservice on a Mac.

• If you want to test your application on a physical iOS device, ensure the following:

• The device is connected to the Mac.
• The device has a supported version of iOS. For a list of the supported iOS versions, refer to the

Release Notes.
• If you want to test your application on an iOS Simulator, ensure the following:

• The iOS Simulator image is installed on the Mac.
• The iOS Simulator image has a supported version of iOS. For a list of the supported iOS versions,

refer to the Release Notes.
• If you want to test your application on an physical iOS device, ensure that the same time zone is set on

the device and the Mac.
• A supported version of Xcode is installed on the Mac.
• Silk Test Classic is installed on a Windows machine.
• The Mac is located in the same network as the Windows machine and is added as a remote location to

the Windows machine.
• To test a native mobile app on an iOS device, ensure that the .ipa file of your app has been signed

with a developer account. For additional information, see Preparing an iOS App for Testing.
• To test a native mobile app on an iOS Simulator, ensure that the app has been zipped. For additional

information, see Testing Native Mobile Applications on an iOS Simulator.
• To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the signed .ipa

file and the zipped .app directory have the same name, except for the file extension, and are located in
the same folder.

• To test a native mobile app, ensure that the ID of the iOS device is associated with the developer profile
which was used to sign the app.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

• The Mac should not switch off the screen during testing, otherwise the Playback Status dialog box will
not display anything.

• To test a mobile application on an iOS Simulator, deactivate the display sleep on the Mac during testing.
• To test a native mobile app on a physical iOS device, enable the UI automation on the device. For

additional information, see Preparing an iOS Device for Testing.
• To test a mobile web application with Apple Safari on a physical iOS device, activate the Web

Inspector. For additional information, see Preparing an iOS Device for Testing.
• Micro Focus recommends using iOS devices which have a Lightning connector. Silk Test Classic does

not support showing a live view of the device screen for iOS devices that are not connected to a Mac
through a Lightning cable.

Testing Native Mobile Applications on a Physical iOS Device
Note: To test native mobile applications or hybrid applications with Silk Test Classic, you require a
native mobile license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

308 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

To test a native mobile application (app) or a hybrid application on a physical iOS device, perform the
following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the app for testing.

For additional information, see Preparing an iOS App for Testing.

3. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

4. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

5. Create a Silk Test Classic project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the mobile device, on which you want to test the app, from the list.

10.Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file or
enter the full path to the app file into the App file text field. Silk Test Classic supports HTTP and
UNC formats for the path.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

11.Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the
signed .ipa file and the zipped .app directory have the same name, except for the file extension,
and are located in the same folder.

Testing Native Mobile Applications on an iOS Simulator
Note: To test native mobile applications or hybrid applications with Silk Test Classic, you require a
native mobile license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

To test a native mobile application (app) or a hybrid application on an iOS Simulator, perform the following
tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

Testing in Your Environment with the Open Agent | 309

2. In the Xcode project of the app, compile the app for the iOS Simulator.

You can compile the app either from the Xcode UI or from the command line. For example, to compile
the app through the command line for an iOS Simulator with iOS 10.0, execute the following command:

xcodebuild -sdk iphonesimulator10.0

3. Zip up the .app directory of the app into a .zip file.

By default, the .app directory is located in the directory ~/Library/Developer/Xcode/
DerivedData. You can click File > Project Settings in Xcode to see into which location the directory
is stored.

4. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk Test Classic is installed.

For additional information, see Editing Remote Locations.

Note: You can only test on one iOS Simulator that is installed on a Mac. Multiple Silk Test Classic
users cannot simultaneously test on multiple iOS Simulators that are installed on the same Mac.

5. Create a Silk Test Classic project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the iOS Simulator from the list.

10.Select the native mobile application.

• If you want to install the app on the iOS Simulator, click Browse to select the zipped app file or enter
the full path to the zipped app file into the App file text field. Silk Test Classic supports HTTP and
UNC formats for the path.

• If you want to use an app that is already installed on the iOS Simulator, specify the Bundle ID.

11.Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the
signed .ipa file and the zipped .app directory have the same name, except for the file extension,
and are located in the same folder.

Testing Mobile Web Applications on a Physical iOS Device
For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing mobile web applications,
see Limitations for Testing Mobile Web Applications.

To test a mobile web application on a physical iOS device, perform the following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

3. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

310 | Testing in Your Environment with the Open Agent

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

4. Create a Silk Test Classic project for your mobile application.

5. Create a test for your mobile application.

6. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

7. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

8. Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

9. When you have recorded all actions, stop recording.

10.Replay the test.

11.Analyze the test results.

Testing Mobile Web Applications on an iOS Simulator
For information on the known limitations when testing mobile web applications, see Limitations for Testing
Mobile Web Applications.

To test a mobile web application on an iOS Simulator, perform the following tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

2. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

3. Create a Silk Test Classic project for your mobile application.

4. Create a test for your mobile application.

5. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

6. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

7. Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

8. When you have recorded all actions, stop recording.

9. Replay the test.

10.Analyze the test results.

Testing in Your Environment with the Open Agent | 311

Testing Hybrid Applications on iOS
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk Test Classic provides full browser support for testing debug hybrid apps that consist of a single web
view, which is embedded in a native container. A common example of such a hybrid app would be an
Apache Cordova application.

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk Test Classic fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk Test Classic recognizes and handles the
controls in a web view as native mobile controls instead of browser controls. For example, the following
code clicks on a link when using browser support:

Agent.SetOption(OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT, false)
Desktop.Find("//BrowserApplication//BrowserWindow//
INPUT[@id='email']").Click()

With the fallback support enabled, the following code clicks on the same link:

Agent.SetOption(OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT, true)
Desktop.Find("//BrowserApplication//BrowserWindow//MobileTextField[@resource-
id='email']").Click()

The process for testing a hybrid app on iOS is the same as the process for testing a mobile native
application. For additional information, see Testing Native Mobile Applications on a Physical iOS Device or
Testing Native Mobile Applications on an iOS Simulator.

Before testing a hybrid app on an iOS device, ensure that the Web Inspector is activated on the device.
For additional information, see Preparing an iOS Device for Testing.

Preparing an iOS Device for Testing
Note: To test native mobile applications or hybrid applications with Silk Test Classic, you require a
native mobile license. For additional information, see Licensing Information.

To prepare the iOS device to test mobile applications:

1. Start Xcode on the Mac.

2. Connect the iOS device to the Mac.

3. On the iOS device, click Settings > Developer.

Tip: If the Developer menu is not displayed on the iOS device, restart the device and the Mac.

312 | Testing in Your Environment with the Open Agent

4. Activate Enable UI Automation.

5. To test a mobile web application on Apple Safari, click Settings > Safari > Advanced.

6. Activate the Web Inspector.

7. If you want to test on an iOS Simulator, enable Rotate Device Automatically.

You can enable this setting by using the Silk Test Configuration Assistant or by enabling it manually.
To open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant. To enable the setting manually, perform the following actions:

a) On the Mac, start the iOS Simulator.
b) With Xcode 9 or later, expand the Hardware menu.

With prior versions of Xcode, expand the Debug menu.
c) Check Rotate Device Automatically.

Preparing an iOS App for Testing
This functionality is supported only if you are using the Open Agent.

To be able to test a specific iOS app on a specific iOS device with Silk Test Classic, consider the following:

• Test automation is only possible with iOS apps that can be installed manually on specific iOS devices.
To be able to sign an iOS app, you require a membership in the Apple Developer Program. For
additional information, see Choosing a Membership. To test without having a membership in the Apple
Developer Program, see Using a Personal Team Profile for Testing on Physical iOS Devices.

Note: You cannot automatically test iOS apps that are created for publication in the App Store, as
well as apps that can be installed manually on any iOS device.

• Before you can install and execute an iOS app on a specific iOS device, you have to register the iOS
device with your Apple Developer account.

• You have to use Xcode to create an IPA file of the iOS app, which you can then install on the iOS
device. To create IPA files for testing on a specific iOS device, members of the Apple Developer
Program can use the Archive mechanism of Xcode, by using one of the following two options:

• If you are a member of the Apple Developer Enterprise Program, you can use the Save for Ad Hoc
Deployment option.

• If you are a member of the Apple Developer Program, but not of the Apple Developer Enterprise
Program, you can use the Save for Development Deployment option.

For additional information, see Exporting Your App for Testing (iOS, tvOS, watchOS).

To be able to test a specific iOS app on an iOS Simulator with Silk Test Classic, use Xcode to create a ZIP
file of the iOS app, which you can then install on the iOS Simulator. For additional information, refer to the
Xcode documentation.

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

This functionality is supported only if you are using the Open Agent.

To create and execute tests on a Mac using Apple Safari or using iOS or Android devices, install the Silk
Test information service (information service) on the Mac. Once the information service is installed and
active, you can record and replay tests from a Silk Test Classic client that is installed on a Windows
machine.

Note: You cannot record on a Mac. To add a Mac as a test location to Silk Test Classic, see Editing
Remote Locations in the Silk Test Classic documentation. .

To install the information service on a Mac:

Testing in Your Environment with the Open Agent | 313

https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html

1. Read the information in the topic Prerequisites for Testing with Apple Safari on a Mac in the Silk Test
Classic documentation.

2. Ensure that a Java JDK is installed on the Mac.

3. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

4. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

5. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

6. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

7. Follow the instructions in the installation wizard.

8. When asked for the password, provide the password of the currently signed in Mac user.

9. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: If you want to test against Apple Safari 10 or prior on macOS 10.12 (Sierra) or prior,
SafariDriver needs to be installed on the Mac. You can only install the SafariDriver if you are
directly logged in to the Mac, and not connected through a remote connection.

10.To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac.

11.If you are installing the information service on a Mac with macOS Mojave (10.14) or later, you might
have to enable additional automation permissions for Silk Test after logging in to the Mac.

If permissions need to be granted, Silk Test will automatically show request permission dialogs.

a) Click OK to acknowledge the information dialog.
b) Click OK in all sub-sequent request permission dialogs.

Important: If you do not enable these permissions for Silk Test, you will not be able to test web
applications against Google Chrome or mobile applications on an iOS device or on a Simulator on
this Mac. If by mistake you have clicked Don't Allow in one of the permission dialogs, open a
terminal on the Mac and type the following command:

sudo tccutil reset AppleEvents

Then restart the Mac and accept the permission dialogs by clicking OK.

12.Click on the Silk Test icon in the top-right corner of the screen to see the available devices and
browsers.

Tip: If the Silk Test icon does not appear, restart the Mac.

Preparing a Mac to Test Mobile Applications on iOS
Note: To test native mobile applications or hybrid applications with Silk Test Classic, you require a
native mobile license. For additional information, see Licensing Information.

To test mobile applications on iOS, you require a Mac to which you can connect the iOS device, or on
which the iOS Simulator is running. This Mac requires Xcode to be installed. For additional information on
the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing Mobile Applications
on iOS.

To execute iOS tests on a physical iOS device, follow the instructions in the Silk Test Configuration
Assistant to configure the WebDriverAgentRunner Xcode project. To open the Configuration
Assistant, click on the Silk Test icon in the status menus and select Configuration Assistant.

314 | Testing in Your Environment with the Open Agent

http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

If for any reason you want to manually build the WebDriverAgentRunner Xcode project, perform the
following actions:

1. Start Xcode on the Mac.
2. Select Xcode > Preferences.

3. In the Preferences window, select your account.

a) Select the Accounts tab.
b) Choose your Apple ID.
c) Choose your Team.
d) Click View Details.

4. Access the Apple Member Center and retrieve your development team.
5. In a terminal, navigate to ~/.silk/silktest/conf/.

6. Rename the xcconfig file template silktest.xcconfig.sample to silktest.xcconfig.

7. Add your development team to the silktest.xcconfig file.

DEVELOPMENT_TEAM = <your development team>

8. Execute the following commands in a terminal on the Mac to verify that you have prepared the
WebDriverAgentRunner project correctly:

Testing in Your Environment with the Open Agent | 315

a) Determine the unique device id (udid) of your physical iOS device:

idevice_id -l

b) Navigate to the WebDriverAgentRunner project:

cd /Application/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-
driver/WebDriverAgent

c) Test that the WebDriverAgent can be built:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner
–xcconfig ~/.silk/silktest/conf/silktest.xcconfig -destination
'id=<udid>' test

Replace the <udid> with the unique device id that you have determined previously.

Tip: If the xcodebuild command fails, follow the instructions in the error message.
Additionally, open the Preferences window of the WebDriverAgentRunner project and
ensure that the Automatically manage signing check box in the General tab is not checked.

9. Optional: In the infoservice.properties file, you can specify the port for the Silk Test Information
Service or capabilities which are used during all test runs on the Mac.

For additional information, see Editing the Properties of the Silk Test Information Service.

Using a Personal Team Profile for Testing on Physical iOS Devices
If you have no membership in the Apple Developer Program, you can use a personal team profile to test an
application on a physical iOS device:

1. On the Mac, navigate to /Application/Silk/Mobile/common/Appium/node_modules/
appium-xcuitestdriver/WebDriverAgent.

2. Open WebDriverAgent.xcodeproj project in Xcode.

3. From the TARGETS list, select the WebDriverAgentLib target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

4. From the TARGETS list, select the WebDriverAgentRunner target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

5. If Xcode fails to create a provisioning profile for the WebDriverAgentRunner target, manually change
the bundle id for the target.

a) Click the Build Settings tab.
b) Change the Product Bundle Identifier to something that Xcode accepts.

For example, if the Product Bundle Identifier is com.facebook.WebDriverAgentRunner, change it to
io.appium.WebDriverAgentRunner or io.borland.WebDriverAgentRunner.

c) Click the General tab.

The target should now have a provisioning profile.

6. Save the WebDriverAgent.xcodeproj project.

7. To verify that everything works as expected, open a terminal and build the project:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test IPHONEOS_DEPLOYMENT_TARGET=10.3

8. To avoid problems during the reinstallation of the WebDriverAgent apps, permanently install an
additional app that uses the same provisioning profile, on the device. For example, install the
IntegrationApp of the WebDriverAgent Xcode project:

316 | Testing in Your Environment with the Open Agent

a) From the TARGETS list, select the IntegrationApp target.
b) Click the General tab.
c) Select Automatically manage signing.
d) Select your development team.

9. If Xcode fails to create a provisioning profile for the IntegrationApp target, manually change the
bundle id for the target in the same way as described above for the WebDriverAgentRunner target.

10.After successfully configuring the IntegrationApp target, install and run the IntegrationApp on
the physical iOS device:

a) Select the target and the iOS device.
b) Click Play.

Although the apps are successfully installed on the device, an error message like the following might
appear in the console or the Appium log files:
2017-01-24 09:02:18.358 xcodebuild[30385:339674] Error Domain=com.apple.platform.iphoneos
Code=-12 "Unable to launch com.apple.test.WebDriverAgentRunner-Runner"
UserInfo={NSLocalizedDescription=Unable to launch com.apple.test.WebDriverAgentRunner-Runner,
NSUnderlyingError=0x7fa839cadc60 {Error Domain=DTXMessage Code=1 "(null)"
UserInfo={DTXExceptionKey=The operation couldn't be completed. Unable to launch
com.apple.test.WebDriverAgentRunner-Runner because it has an invalid code signature, inadequate
entitlements or its profile has not been explicitly trusted by the user. : Failed to launch process with bundle
identifier 'com.apple.test.WebDriverAgentRunner-Runner'}}} 2017-01-24 09:02:18.358
xcodebuild[30385:339674] Error Domain=IDETestOperationsObserverErrorDomain Code=5 "Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted"
UserInfo={NSLocalizedDescription=Early unexpected exit, operation never finished bootstrapping - no
restart will be attempted} Testing failed: Test target WebDriverAgentRunner encountered an error (Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted)
The problem is that the developer is not trusted on the device. If you manually try to run the apps on the
device, you will see an Untrusted Developer message.

To solve this issue on the device, go to Settings > General > Profiles or Settings > General > Device
Management, depending on the device type and the iOS version. Then trust the developer and allow the
apps to be run.

Editing the Properties of the Silk Test Information Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk Test Classic should communicate with the information service over a secure
connection through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk Test Classic should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

Testing in Your Environment with the Open Agent | 317

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk Test Classic should communicate with
the information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Uninstalling the Silk Test Information Service from a Mac
This functionality is supported only if you are using the Open Agent.

To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. On the Mac, create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller
fi

exit 0

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

318 | Testing in Your Environment with the Open Agent

Recommended Settings for iOS Devices
To optimize testing with Silk Test Classic, configure the following settings on the iOS device that you want
to test:

• To make the testing reflect the actions an actual user would perform, disable AutoFill and remembering
passwords for Apple Safari. Tap Settings > Safari > Passwords & AutoFill and turn off the Names
and Passwords setting.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

Running Existing Scripts on iOS Using XCUITest
Attention: Prior Silk Test Classic versions used Instruments to automate iOS devices. With iOS 9.3,
Apple has replaced the support for Instruments with support for the XCUITest framework, causing Silk
Test Classic to also no longer support Instruments. Because of this change, existing iOS test scripts
might break when executed from the current version of Silk Test Classic.

• The behavior of the classname attribute in XCUITest is different to the behavior in Instruments. In most
cases, Silk Test Classic will automatically handle this change. However, if an existing test script breaks
because of such a classname attribute, you will have to record a new locator for the corresponding
object.

• The object hierarchy has changed.

Recording Mobile Applications
Once you have established the connection between Silk Test Classic and a mobile device or an emulator,
you can record the actions that are performed on the device. To record mobile applications, Silk Test
Classic uses a Recording window that provides the following functionality:

• Displays the screen of the mobile device or Android emulator which you are testing.
• When you perform an action in the Recording window, the same action is performed on the mobile

device.
• When you interact with a control on the screen, the Recording window preselects the default action.

• If the default action is a Click, and you left-click on the control, the action is executed. You can
perform a right-click to show a list of the available actions against the control. You can then select the
action that you want to perform and click OK.

• If the default action is not a Click, a list of all the available actions against the control displays, and
you can select the action that you want to perform or simply accept the preselected action by clicking
OK.

When you have selected an action from the list, you can type values for the parameters of the selected
action into the parameter fields. Silk Test Classic automatically validates the parameters.

• During recording, Silk Test Classic displays the mouse position next to the recording window. You can
toggle the location to switch between displaying the absolute mouse position on the device display and
the mouse position in relation to the active object.

• When you pause the recording, you can perform actions in the screen which are not recorded to bring
the device into a state from which you want to continue recording.

• When you stop recording, a script is generated with your recorded actions, and you can proceed with
replaying the test.

Selecting the Mobile Device for Test Replay
You can define the mobile device that is used for the replay of a test in the following ways:

Testing in Your Environment with the Open Agent | 319

• If you execute a script from the command line or from a Continuous Integration (CI) server, specify the
connection string in the application configuration of the script.

• If you execute a test from Silk Central, specify the mobile device in the Mobile Device Selection area
of the Deployment tab of the execution definition in Silk Central instead of specifying a connection
string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Using Devices from Mobile Center Directly from Silk
Test Classic
Micro Focus Mobile Center (Mobile Center) provides an end-to-end quality lab of real devices and
emulators that help you test, monitor, and optimize your mobile apps for an enhanced user experience.

Note: Silk Test Classic supports testing against devices that are managed by Mobile Center 3.0 or
later.

You can either access the devices that are managed by Mobile Center directly from Silk Test Classic, or
through Silk Central.

To access the devices that are managed by Mobile Center directly from Silk Test Classic:

1. Add Mobile Center as a remote location.

For additional information, see Editing Remote Locations.

2. To test on iOS, ensure that the following IPA files are signed:

• HP4M-Agent.ipa
• HPMC-AgentLauncher.ipa
• WebDriverAgentRunner-Runner.ipa

Note: Silk Test Classic does not support testing iOS simulators through Mobile Center.

320 | Testing in Your Environment with the Open Agent

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

In the Select Applications dialog, you can now select the Mobile Center device on which you want to test.

Note: You cannot test the same device with Silk Test Mobile and Mobile Center at the same time.
When switching between these products, you need to remove all apps that are used for automation
and restart the mobile device.

Android Before testing an Android device with Silk Test Mobile or before installing Mobile Center,
you need to remove the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.text
• MC Agent
• Silk Screencast
• Unlock

iOS Before testing an iOS device with Silk Test Mobile or before installing Mobile Center, you
need to remove the WebDriverAgent from the device.

Mobile Center might re-install some of these apps.

If you want to replay tests from a CI server or tests from the command line on a device that is managed by
Mobile Center, you can specify the connection string for the device instead of configuring the remote
connection. The connection string should look like the following:

"deviceName=MotoG3;platformName=Android;host=http://<Mobile Center server>:
8080;hostType=MC;userName=<Mobile Center user name>;password=<Mobile Center
password>"

Note: For security reasons, Silk Test Classic saves an encrypted form of the Mobile Center password
when you create a new application configuration.Micro Focus recommends using the encrypted
password in the connection string.

Note: When testing on a device that is managed through the Mobile Center, Silk Test Classic does
not support using the methods TypeKeys or SetText to type key codes like ENTER. Additionally,
Silk Test Classic does not support pressing the Home button on iOS devices.

Note: When testing on an Android Emulator, disable the GPU HW Acceleration.

Using Devices from Mobile Center through Silk Central
Micro Focus Mobile Center (Mobile Center) provides an end-to-end quality lab of real devices and
emulators that help you test, monitor, and optimize your mobile apps for an enhanced user experience.

Note: Silk Test Classic supports testing against devices that are managed by Mobile Center 3.0 or
later.

You can either access the devices that are managed by Mobile Center directly from Silk Test Classic, or
through Silk Central.

To access the devices that are managed by Mobile Center through Silk Central:

1. Integrate Silk Test Classic with Silk Central.

For additional information, see Integrating Silk Test Classic with Silk Central.

2. Configure Silk Central to use Mobile Center.

Note: While installing Mobile Center, ensure that the appropriate Android SDK version is used.
Ensure that the same version is used in Silk Test Classic by setting the environment variable

Testing in Your Environment with the Open Agent | 321

SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. For additional information, refer to the Silk Central Help.

3. To test on iOS, ensure that the following IPA files are signed:

• HP4M-Agent.ipa
• HPMC-AgentLauncher.ipa
• WebDriverAgentRunner-Runner.ipa

Note: Silk Test Classic does not support testing iOS simulators through Mobile Center.

In the Select Applications dialog, you can now select the Mobile Center device on which you want to test.

Note: You cannot test the same device with Silk Test Mobile and Mobile Center at the same time.
When switching between these products, you need to remove all apps that are used for automation
and restart the mobile device.

Android Before testing an Android device with Silk Test Mobile or before installing Mobile Center,
you need to remove the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.text
• MC Agent
• Silk Screencast
• Unlock

iOS Before testing an iOS device with Silk Test Mobile or before installing Mobile Center, you
need to remove the WebDriverAgent from the device.

Mobile Center might re-install some of these apps.

Note: When testing on a device that is managed through the Mobile Center, Silk Test Classic does
not support using the methods TypeKeys or SetText to type key codes like ENTER. Additionally,
Silk Test Classic does not support pressing the Home button on iOS devices.

Note: When testing on an Android Emulator, disable the GPU HW Acceleration.

Installing the Certificate for an HTTPS Connection to
Mobile Center
To use a secure connection through HTTPS between Silk Test Classic and Mobile Center, install the
certificate for Mobile Center into the installation directory of the Java that is used by the Open Agent.

1. Open a browser.

2. Navigate to the HTTPS URL of the secure Mobile Center server.

3. Export the certificate of the secure Mobile Center server.

For information about exporting the certificate, refer to the documentation of the browser that you are
using.

For example, if you are using Mozilla Firefox, perform the following actions:

a) When Mozilla Firefox informs you that the connection is not secure, click Advanced.
b) Click Add Exception...
c) In the Add Security Exception dialog, click View.
d) In the Certificate Viewer, select the Details tab.

322 | Testing in Your Environment with the Open Agent

e) Click Export.
f) In the Save Certificate To File dialog, browse to the location in which you want to store the

certificate file.
g) Specify a name for the certificate, for example mc.crt.
h) Click Save.

4. Browse to the location into which you have downloaded the certificate file.

5. Double-click the certificate file and install the certificate using the wizard.

a) Select Place all certificates in the following store, and then click Browse.
b) Select Trusted Root Certification Authorities, and then complete the wizard.

6. If a security warning appears, click Yes to confirm the installation.

7. Restart the Open Agent.

8. Refresh the Mobile Center server or connector machine URL in the browser and verify that there are no
SSL certificate-related errors..

Changing the Mobile Center Password
When your Mobile Center password changes, use the Edit Location dialog to apply the new password in
Silk Test Classic.

1. Click Options > Edit Remote Locations. The Remote Locations dialog box appears.

2. Select the Mobile Center remote location and click Edit. The Edit Location - Mobile Center dialog
appears.

3. Type the new password into the Password field.

4. Optional: Click Test to test if the new password woks.

5. If you are using the same Mobile Center in one or more connection strings, click Copy to copy the
password in encrypted form to the clipboard. You can then paste the copied encrypted password into
the connection strings.

6. Click OK.

Using SauceLabs Devices
SauceLabs provides an automated testing platform, enabling you to test on various mobile devices and
mobile platform versions without having to purchase and maintain your own infrastructure.

To access SauceLabs devices through Silk Central, perform the following actions:

1. Ensure that Silk Test Classic is integrated with Silk Central.

For additional information, see Integrating Silk Test Classic with Silk Central.

2. Ensure that Silk Central is configured to use SauceLabs.

For additional information, refer to the Silk Central Help.

In the Select Applications dialog, you can now select the SauceLabs device on which you want to test.

Connection String for a Mobile Device
The connection string specifies which mobile device is used for testing. When performing mobile testing,
Silk Test Classic uses the connection string to connect to the mobile device. The connection string is
typically part of the application configuration. You can set the connection string when you configure your
application under test. To change the connection string, you can use the Edit Application Configuration
dialog box.

Testing in Your Environment with the Open Agent | 323

Note: If you execute a test from Silk Central, specify the mobile device in the Mobile Device
Selection area of the Deployment tab of the execution definition in Silk Central instead of specifying
a connection string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

The following components are available for the connection string:

Component Description

deviceName The name of the mobile device. When testing on a physical mobile device, the device ID
can be used instead. Supports wildcards. Case-insensitive.

platformName Android or iOS. Required.

deviceId Optional: The ID of the mobile device. Can be used instead of the device name, when
testing on a physical mobile device. Supports wildcards. Case-insensitive.

platformVersion Optional: The Android or iOS version. Specify the version to test only on mobile devices that
have a specific Android or iOS version. Supports wildcards. Case-insensitive.

browserVersion Optional: Can be used in combination with the browser type to test only on the specified
browser version. Supports wildcards. Case-insensitive.

host Optional: If not set, any specified remote location can be used as the host. Supports
wildcards. Case-insensitive.

app The full path to an app that is not installed on the mobile device yet. For example
app=MyApp.apk.

• appPackage
• appActivity

To test an app that is already installed on an Android device, specify both the package of
the app and the activity that you want to use. For example
appPackage=silktest.insurancemobile;appActivity=.LoginActivit
y .

bundleId The identifier of the bundle of an app that is already installed on an iOS device. For example
app=MyApp.ipa or bundleId=silktest.InsuranceMobile.

mobileCenterAppIdentif
ier

The identifier of an app that is already installed on a mobile device that is managed by
Mobile Center. For example
mobileCenterAppIdentifier=com.microfocus.silktest.testapp.

mobileCenterAppUploa
dNumber

The upload number of an app that is already installed on a mobile device that is managed
by Mobile Center. Can be used to identify the application uniquely when the application is
uploaded more than once. If this number is not specified, Silk Test Classic uses the latest
upload. For example mobileCenterAppUploadNumber=3.

noReset Optional: Can be set when testing native mobile applications. Is only valid if the app is
specified. True if the app should not be reinstalled before testing. False if the app should be
reinstalled before testing. The default value is False.

isSimulator Optional: Used to specify that the test should only be executed on an iOS Simulator. The
device name can be used instead.

isPhysicalDevice Optional: Used to specify that the test should only be executed on a physical device. The
device name can be used instead.

324 | Testing in Your Environment with the Open Agent

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

When using a pool of devices and to find out which device is actually used for testing, you can use the
return value of the GenerateConnectionString method of MobileDevice class.

Testing a mobile web application on a mobile device or on an Android Emulator

When testing a mobile web application on a mobile device or on an Android Emulator, the connection string
consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The browser version. This can only be used in combination with setting the browser type
4. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

Example: Connection string for any available Android device

"platformName=Android"

Example: Connection string for a browser on an Android device that is connected
to the local machine

To test a mobile browser on an Android device that is connected to the local machine,
the connection string should look similar to the following:

"deviceName=MotoG3;platformName=Android;host=localhost"

or

"platformName=Android;deviceId=11111111;host=localhost"

Example: Connection string for a browser on an Android device that is connected
to a remote machine

To test a mobile browser on a remote Android device, the connection string should look
similar to the following:

"deviceName=MotoG3;platformName=Android;host=10.0.0.1"

"deviceName=MotoG3;platformName=Android;host=MyRemoteLocation*"

Example: Connection string for an Android device that is managed by Mobile
Center

If you want to replay tests from a CI server or tests from the command line on a device
that is managed by Mobile Center, you can specify the connection string for the device
instead of configuring the remote connection. The connection string should look like the
following:

"deviceName=MotoG3;platformName=Android;host=http://<Mobile
Center server>:8080;hostType=MC;userName=<Mobile Center user
name>;password=<Mobile Center password>"

Note: For security reasons, Silk Test Classic saves an
encrypted form of the Mobile Center password when you create

Testing in Your Environment with the Open Agent | 325

a new application configuration.Micro Focus recommends using
the encrypted password in the connection string.

Example: Connection string for a browser on an iOS device that is connected to a
Mac

To test a mobile browser on a remote iOS device, the connection string would look like
the following:

"deviceName=myiPhone6;platformName=iOS;host=10.0.0.1"

Testing a native mobile application on a mobile device or on an Android Emulator

When testing a native mobile application on a mobile device or on an Android Emulator, the connection
string consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

4. The name of the file of the app that you want to test, or the URL of the file, if the file is located on a web
server. For example C:/MyApp.apk or MyApp.ipa.

• Android apps are always .apk files.
• iOS apps on a real device are always .ipa files.
• iOS apps on a Simulator are either a zipped file or a directory with the name app.

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS device that is connected to a
Mac

To test the app MyApp.ipa on an iOS device that is connected to a remote machine,
the connection string would look like the following:

"platformName=iOS;deviceName=MyiPhone;host=http://
10.0.0.1;app=MyApp.ipa"

Testing a mobile web application on an iOS Simulator

When testing a mobile web application on an iOS Simulator, the connection string consists of the following
parts:

1. The platform name, which is iOS.

326 | Testing in Your Environment with the Open Agent

2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the Mac, on which the iOS Simulator is running.

Example: Connection string for a browser on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;isSimulator=true"

Testing a native mobile application on an iOS Simulator

When testing a native mobile application on an iOS Simulator on a Mac, the connection string consists of
the following parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the remote machine, for example 10.0.0.1.
5. The name of the app that you want to test, for example MyApp.ipa.

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Interacting with a Mobile Device
To interact with a mobile device and to perform an action like a swipe in the application under test:

1. In the Recording window, click Show Mobile Device Actions. All the actions that you can perform
against the mobile device are listed.

2. Select the action that you want to perform from the list.

3. To record a swipe on an Android device or emulator, move the mouse while holding down the left mouse
button.

4. Continue with the recording of your test.

Releasing a Mobile Device
When recording or playing back a test against a mobile device, the Open Agent instance takes ownership
of the device. By doing so, the Open Agent is preventing other Silk Test users from using the device. To
enable other Silk Test users to use the device after you have finished recording or replaying tests on the
device, Silk Test automatically releases the device when the Silk Test client is closed, when an unattended
test process finishes, or when the Open Agent is closed. You can also manually release the device.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Recording
Release a mobile device after recording to enable other Silk Test users to test on the device.

To release a mobile device after you have finished recording, perform one of the following actions:

• Stop the Open Agent from the System Tray.
• Close the current project.

Testing in Your Environment with the Open Agent | 327

• Close Silk Test Classic. The device is only released by this action when parallel testing is enabled.
• If you are testing a device that is managed by Mobile Center, you can also release the device

through the Mobile Center UI. For additional information, refer to the Mobile Center documentation.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Replay
Release a mobile device after replay to enable other Silk Test users to test on the device.

To manually release a mobile device after replaying is complete, type the following into the test script:

[-] ScriptExit(BOOLEAN bException)
 [] // To test a mobile web application:
 [] // WebBrowser.Close()
 [] // To test a native mobile application:
 [] // Device.CloseApp()
 [] // Alternative for both WebBrowser.Close()and Device.CloseApp():
 [] // Agent.DetachAll()
 []
 [] WebBrowser.Close()
 [] DefaultScriptExit(bException)

A mobile device is automatically released if one of the following conditions is met:

• The Open Agent is closed.
• The test process stops during unattended testing. The device is only released by this action when

parallel testing is enabled.
• Silk Test Classic is closed. The device is only released by this action when parallel testing is enabled.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Using the setLocation Method when Testing a Mobile
Application
• When testing a native mobile application on iOS, the SetLocation method is not supported.
• When testing a native mobile application on an Android version prior to Android 6.0, you have to enable

Allow mock locations to use the SetLocation method. To do so, open the settings of the Android
device or emulator and tap Developer Options.

• When testing a native mobile application on Android 6.0 or later, you have to set the app to Appium
Settings to use the SetLocation method. To do so, open the settings of the Android device or
emulator and tap Developer Options > Select mock location app. Then choose Appium Settings.

Note: The Appium Settings entry is only available if you have already executed a test with
Appium on the Android device or emulator.

• To use the SetLocation method when testing on an Android emulator on a Windows machine:

1. On the Windows machine on which the emulator is running, navigate to the %userprofile% folder.
2. Remove the content of the file .emulator_console_auth_token. This file is created when the

emulator is started for the first time.
3. Set the .emulator_console_auth_token file to be read only.

328 | Testing in Your Environment with the Open Agent

Troubleshooting when Testing Mobile Applications

Why does the Select Application dialog not display my mobile devices?

If Silk Test Classic does not recognize a mobile device or emulator, the Mobile tab in the Select
Application dialog does not display the device or emulator. Additionally, the Web tab of the Select
Application dialog does not display the mobile browsers that are installed on the device or emulator.

Silk Test Classic might not recognize a mobile device or emulator for one of the following reasons:

Reason Solution

The emulator is not running. Start the emulator.

The Android Debug Bridge (adb) does not recognize the
mobile device.

To check if the mobile device is recognized by adb:

1. Navigate to the Android Debug Bridge (adb) in the
Android SDK installation folder. If the Android SDK is
not installed, navigate to C:\Program Files
(x86)\Silk\SilkTest\ng\Mobile
\windows\AndroidTools\platform-tools
to use the adb that is installed with Silk Test Classic.

2. Hold Shift and right-click into the File Explorer
window.

3. Select Open command window here.

4. In the command window, type adb devices to get
a list of all attached devices.

5. If your device is not listed, check if USB-debugging is
enabled on the device and if the appropriate USB
driver is installed.

6. If you get an error, for example adb server is
out of date, ensure that the adb version in C:
\Program Files (x86)\Silk\SilkTest
\ng\Mobile\windows\AndroidTools
\platform-tools is the same as the adb version
of your local Android SDK. For additional information,
see What can I do if the connection between the
Open Agent and my device is unstable?.

The version of the operating system of the device is not
supported by Silk Test Classic.

For information on the supported mobile operating
system versions, refer to the Release Notes.

The USB driver for the device is not installed on the local
machine.

Install the USB driver for the device on the local machine.
For additional information, see Installing a USB Driver.

USB-debugging is not enabled on the device. Enable USB-debugging on the device. For additional
information, see Enabling USB-Debugging.

Note: If all previous solutions do not work, you could try to restart the device.

Why does Silk Test Classic search for a URL in Chrome for Android instead of navigating to the
URL?

Chrome for Android might in some cases interpret typing an URL into the address bar as a search. As a
workaround you can manually add a command to your script to navigate to the URL.

Testing in Your Environment with the Open Agent | 329

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

What do I do if the adb server does not start correctly?

When the Android Debug Bridge (adb) server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients. All adb clients use port 5037 to communicate with the adb server. The
adb server locates emulator and device instances by scanning odd-numbered ports in the range 5555 to
5585, which is the range used by emulators and devices. Adb does not allow changing those ports. If you
encounter a problem while starting adb, check if one of the ports in this range is already in use by another
program.

For additional information, see http://developer.android.com/tools/help/adb.html.

What can I do if the connection between the Open Agent and my device is unstable?

If you have installed the Android SDK or another tool that uses the Android Debug Bridge (adb), an
additional adb server might be running in addition to the one that is used by Silk Test Classic. If the running
adb servers have different versions, the connection between the Open Agent and the device might become
unstable or even break.

To avoid version mismatch errors, specify the path to the Android SDK directory by setting the environment
variable SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the variable is
not set, Silk Test Classic uses the adb version that is shipped with Silk Test Classic.

Why do I get the error: Failed to allocate memory: 8?

This error displays if you are trying to start up the emulator and the system cannot allocate enough
memory. You can try the following:

1. Lower the RAM size in the memory options of the emulator.
2. Lower the RAM size of Intel HAXM. To lower the RAM size, run the IntelHaxm.exe again and choose

change.
3. Open the Task Manager and check if there is enough free memory available. If not, try to free up

additional memory by closing a few programs.

Why do I get the error "Silk Test cannot start the app that you have specified" during testing on an
iOS device?

This error might display for one or more of the following reasons:

Reason Solution

The iOS device is not in developer mode. You can enable the developer mode in one of the
following two ways:

• Connect the device to a Mac on which Xcode is
installed, and start the app that you want to test on
the device.

• Add your provisioning profiles to the device.

1. Open Xcode.

2. Select Window > Devices.

3. Right-click on the iOS device.

4. Select Show Provisioning Profiles.

5. Add your provisioning profiles.

You have recently updated the iOS version of the device. 1. Open Xcode.

2. Select Window > Devices.

330 | Testing in Your Environment with the Open Agent

http://developer.android.com/tools/help/adb.html

Reason Solution

3. Wait unitl Xcode has processed the symbol files.

UI automation is not enabled on the iOS device. 1. Select Settings > Developer.

2. Activate Enable UI Automation.

The Web Inspector is not activated on the iOS device,
while you are trying to test a mobile web application.

1. Click Settings > Safari > Advanced.

2. Activate the Web Inspector.

The app that you want to test was not built for the iOS
version of the iOS device on which you are testing.

Use Xcode to build the app for the iOS version of the
device.

The Software Update dialog box is currently open on the
iOS device.

Close the dialog box and disable automatic software
updates:

1. Select Settings > App and iTunes Stores >
AUTOMATIC DOWNLOADS.

2. Deactivate Updates.

Why does my Android device display only the Back button in the dynamic hardware controls?

If the Android or the Android Emulator is screen-locked when you start testing, the device or Emulator
might display only the button Back in the dynamic hardware controls.

To solve this issue, stop the Open Agent, restart the device, and change the device settings to no longer
lock the screen.

Why does my Android device or emulator no longer display a keyboard?

To support unicode characters, Silk Test Classic replaces the standard keyboard with a custom keyboard.
When testing is finished, the original keyboard is restored. If an error occurs during testing, the custom
keyboard might still be active and cannot be replaced.

To solve this issue, manually reset the keyboard under Settings > Language & input > Current
Keyboard.

Why does my device not respond during testing?

If the device, emulator, or Simulator is screen-locked when you start testing, and Silk Test Classic is unable
to unlock the screen, the device, emulator, or Simulator might stop responding to any actions.

To solve this issue, stop the Open Agent and change the device settings to no longer lock the screen.

Why can I not install the Information Service on a Mac?

When the Allow apps downloaded from setting in the General tab of the Security & Privacy system
preferences pane is set to Mac App Store and identified developers, which is the default value, the
following error message appears when opening the Information Service setup:
"SilkTestInformationService<version>.pkg" can't be opened because it is from an unidentified developer.

To solve this issue, use one of the following:

• Right-click the setup file and select Open. A warning message will appear, but you will still be able to
open the file.

• Set the Allow apps downloaded from setting to Anywhere.
• After attempting to open the file, navigate to the General tab of the Security & Privacy system

preferences pane and click Open Anyway.

Testing in Your Environment with the Open Agent | 331

Why is the Recording window black when recording an Android app?

Android apps that require a higher level of security, for example apps that handle financial transactions,
might have the FLAG_SECURE flag set, which prevents Silk Test Classic from capturing the app. Silk Test
Classic relies on screenshots or on a video of the Android device during recording and will display a black
screen of the device in the Recording window, if the Android app that you are testing has this flag set. To
test such an app with Silk Test, you have to contact the app development team, and ask them to un-set the
FLAG_SECURE flag during testing.

Why does Silk Test Classic not show a video when testing on an Android emulator?

If the emulator is using the graphic card of your computer for better rendering, the video capturing of Silk
Test Classic might not work. To solve this, emulate the graphics in software:

1. Open the Android Virtual Device Manager.
2. Click Edit in the Actions column of the emulator.
3. Select Software from the list in the Emulated Performance area of the Virtual Device Configuration

dialog.

What can I do if Silk Test Classic does not show a video when testing in a cloud environment?

When testing in a cloud environment, showing a video might not work when recording or replaying a test,
for example because required ports are not open.

To solve this issue, you can specify a list of WebDriver host URLs in the infoservice.properties file.
For information on how to access this properties file, see Editing the Properties of the Silk Test Information
Service. Add the option infoservice.disableScreencastHosts to the file, by typing the following:

infoservice.disableScreencastHosts=<URL_1>,<URL_2>, ...

For example:

infoservice.disableScreencastHosts=http://my-webdriver-server-url.com:
80/wd/hub

You can specify URL patterns like *my-webdriver-server-url.com by using asterisks (*) as wildcards.

Silk Test Classic will show a series of screenshots instead of a video when recording and replaying on the
specified hosts.

How can I change the installed version of Xcode?

If the version of Xcode that you are using is not supported by Silk Test Classic, for example when you
upgrade to the latest version of Xcode, an error message might appear when testing on iOS.

To replace the installed version of Xcode with a supported version, download a supported Xcode version
from https://developer.apple.com/download/more/, and replace the unsupported version with the
downloaded version. For information about the supported Xcode versions, refer to the Release Notes.

What can I do if my Mac runs out of disk space?

Silk Test Classic uses Instruments to automate iOS devices. This tool creates large log files in the /
Library/Caches/com.apple.dt.instruments directory, which might fill up disk space on the Mac.
To solve this issue, Micro Focus recommends regularly deleting these log files, either manually or by using
a cronjob. For example, to delete the files each day at the same time, you could do the following:

1. Type sudo crontab -e into a Terminal. This opens an editor in which you can edit the crontab for
root.

2. Add the following line to the crontab:

0 2 1 * * find /Library/Caches/com.apple.dt.instruments -mtime +10 -delete

3. Save the crontab.

In this example, all log files that are older than ten days will be deleted each day at 2 AM from the directory.

332 | Testing in Your Environment with the Open Agent

https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#FLAG_SECURE
https://developer.apple.com/download/more/
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Why does my test fail with the error message "Unable to sign WebDriver Agent for testing "?

When testing on a physical iOS device, this error usually means that during the build process the
WebDriverAgent app could not be signed or that there is a problem with the provisioning profile.

You can check the actual problem with the following commands, which have to be executed at the Mac
machine to which the device is connected:

cd /Applications/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-driver
xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test

Verify that the folder Resources exists under /Applications/Silk/Mobile/common/Appium/
node_modules/appium-xcuitest-driver and that the folder contains the file
WebDriverAgent.bundle. If not, create this folder and an empty WebDriverAgent.bundle file, for
example by using the following command:

mkdir -p Resources/WebDriverAgent.bundle

What can I do to prevent the Developer Tools Access from requesting to take control of another
process?

When starting the execution of a test on iOS, a message box stating the following might appear:
Developer Tools Access needs to take control of another process for debugging to continue. Type your
password to allow this.

To avoid getting this message, execute the following command in a Terminal:

sudo /usr/sbin/DevToolsSecurity --enable

Why are the rectangles wrong while testing a mobile web application on an iPad?

If the rectangles around controls are offset when testing a mobile web application on an iPad, you might
have multiple browser tabs open and the Tab bar might be displayed. To fix this issue, close all tabs except
one.

Why can I no longer record or replay tests on my device after updating Silk Test Classic?

When updating to a new version of Silk Test Classic, some Appium apps on any physical mobile devices
that have already been used for mobile testing with the previous version of Silk Test Classic are updated
automatically. If for any reason these apps are not automatically updated, you might experience difficulties
when trying to record or replay tests on the device.

If you are experiencing such issues on a specific Android device after updating Silk Test Classic, manually
uninstall the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.test
• Unlock

If you are experiencing such issues on a specific iOS device after updating Silk Test Classic, manually
uninstall the WebDriverAgentRunner from the device.

Why can I not record a mobile application?

Silk Test Classic uses Appium to test mobile applications. Some network proxy settings set in Appium
might interfere with recording Silk Test Classic. You could try to deactivate the network proxy settings on
the mobile device or Emulator.

Testing in Your Environment with the Open Agent | 333

Why can I not test on my Android device?

Some Android devices might have additional settings that prevent Silk Test Classic from testing mobile
applications on the device. For example, the Xiaomi Mi Mix 2 has the same prerequisites for testing as
every other device, but these are not enough. To prepare the Xiaomi Mi Mix 2 for testing, perform the
following actions:

1. Enable the developer mode on the device.
2. Navigate to Settings > Additional settings > Developer options.
3. Enable USB debugging.
4. Enable Stay awake.
5. Enable Install via USB.
6. Enable USB debugging (Security settings).
7. Disable Turn on MIUI optimizations.

Why did replay become much slower on iOS 13 compared to iOS12 when testing hybrid apps?

Testing on iOS 13 or later can result in unstable test results because the UIWebView controls have been
deprecated. Make sure to upgrade the WebView to WKWebView.

Limitations for Testing Mobile Web Applications
The support for playing back tests and recording locators on mobile browsers is not as complete as the
support for the other supported browsers. The known limitations for playing back tests and recording
locators for mobile web applications are:

• The following classes, interfaces, methods, and properties are currently not supported for mobile web
applications:

• BrowserApplication class.

• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetActiveTab method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• ImageClick method
• OpenTab method
• SelectTab method

• DomElement class.

• DomDoubleClick method
• DomMouseMove method
• GetDomAttributeList method

• IKeyable interface.

• PressKeys method
• ReleaseKeys method

• Silk Test Classic does not support testing HTML frames and iFrames with Apple Safari on iOS, including
text recognition in HTML frames and iFrames.

Text recognition includes the following methods:

334 | Testing in Your Environment with the Open Agent

• TextCapture

• TextClick

• TextExists

• TextRectangle

• Recording in landscape mode is not supported for emulators that include virtual buttons in the system
bar. Such emulators do not correctly detect rotation and render the system bar in landscape mode to
the right of the screen, instead of the lower part of the screen. However, you can record against such an
emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk Test Classic does not support properties in XPath expressions.

• If you are testing a mobile web application on Android, Silk Test Classic does not support zooming.
• The following JavaScript alert-handling methods of the BrowserWindow class do not work when

testing on the Original Android Stock (AOSP) Browser:

• AcceptAlert method
• DismissAlert method
• GetAlertText method
• IsAlertPresent method

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac.

• Before starting to test a mobile web application, ensure that no browser tab is open.

Tip: On iPads you can disable tabs in Apple Safari. Navigate to Settings > Safari and disable
Show Tab Bar to do so.

• While testing a mobile web application, you can only have one browser tab open.
• Silk Test Classic does not support testing mobile web applications that are opened by a native mobile

application.
• Testing web or hybrid applications on iOS requires iOS version 11 or later.

Limitations for Testing Native Mobile Applications
The known limitations for playing back tests and recording locators on native mobile applications (apps)
are:

• The following classes, interfaces, methods, and properties are currently not supported for native mobile
applications:

• IKeyable interface.

• PressKeys method
• ReleaseKeys method

• MobileDevice class.

• When testing a native mobile application on iOS, the SetLocation method is not supported.
• When testing a native mobile application on an Android version prior to Android 6.0, you have to

enable Allow mock locations to use the SetLocation method. To do so, open the settings of
the Android device or emulator and tap Developer Options.

• When testing a native mobile application on Android 6.0 or later, you have to set the app to
Appium Settings to use the SetLocation method. To do so, open the settings of the Android
device or emulator and tap Developer Options > Select mock location app. Then choose
Appium Settings.

Note: The Appium Settings entry is only available if you have already executed a test with
Appium on the Android device or emulator.

• When testing on iOS, the getValue method of the XCUIElementTypeSwitch class returns the
strings false or true depending on the checked state, instead of returning the strings 0 and 1.

Testing in Your Environment with the Open Agent | 335

• Recording in landscape mode is not supported for Android emulators that include virtual buttons in the
system bar. Such emulators do not correctly detect rotation and render the system bar in landscape
mode to the right of the screen, instead of the lower part of the screen. However, you can record against
such an emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk Test Classic does not support properties in XPath expressions.

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1 or later, you are
no longer required to use multiple user sessions on a Mac to test mobile applications on iOS.

• Silk Test Classic does not support text recognition when testing native mobile applications on both
Android and iOS.

Text recognition includes the following methods:

• TextCapture

• TextClick

• TextExists

• TextRectangle

• Silk Test Classic does not support testing native mobile applications with multiple web views.
• When testing on iOS, the state of the isVisible property is always true, even if the element is not

visible.
• When testing on iOS, a swipe action with multiple steps swipes to a point, releases the mouse pointer

and then swipes to the next point. On prior versions of iOS, the action does not release the mouse
pointer between the swipes.

• When testing on iOS, Silk Test Classic does not support any multi-touch actions except pinch.
• When testing on iOS, Silk Test Classic does not support the PinchIn method.
• When testing on iOS, you can only accept or dismiss alert dialog boxes. If no Cancel button is available

and Silk Test Classic cannot dismiss the dialog, the default action is to accept the dialog.
• When testing on Android, Silk Test Classic does not provide automated synchronization for controls of

the Animation class.
• When testing toasts on Android, the following limitations apply:

• During recording, Silk Test Classic always displays the rectangle for the toast in the lowest quarter of
the Recording window, independent of the actual position of the toast.

• During recording and replay, the detection of a toast by Silk Test Classic always has a duration of five
seconds, even if the toast appears in a shorter time period.

• When testing on iOS, Silk Test Classic does not provide automated synchronization for controls that call
the UIView.animate function or the UIView.animateWithDuration function.

You can workaround this issue by increasing the speed of the animation in the app delegate:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 // Speed animations up (recommended)
 window!.layer.speed = 100;
 }
}

Micro Focus does not recommend disabling such animations completely, as this might change the
applications behavior. However, if speeding up the animation does not resolve the synchronization
issue, you could completely disable animations in the app delegate as follows:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {

336 | Testing in Your Environment with the Open Agent

https://developer.android.com/reference/android/view/animation/Animation.html

 UIView.setAnimationsEnabled(false)
 }
}

• When testing on iOS, the following additional limitations apply:

• You might experience performance decreases while recording and replaying tests.
• Due to internal changes in iOS, the locators of some controls might have changed, and some of your

existing tests might break.
• Text fields that are not in focus might not be recognized as text fields. To ensure that text fields are

recognized correctly, set the focus on the text fields, for example by clicking on a text field before
trying to interact with it.

Dynamically Invoking Methods for Native Mobile Apps
Dynamic invoke enables you to directly call methods of the underlying Appium WebDriver for a mobile
native app. This is useful whenever an Appium WebDriver method is not exposed through the Silk Test
Classic API.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Supported Methods

• When testing a native mobile application on Android, Silk Test Classic supports the methods available in
the AndroidDriver class of the Appium Java-client API.

• When testing a native mobile application on iOS, Silk Test Classic supports the methods available in the
IOSDriver class of the Appium Java-client API.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum ScreenOrientation, you can use the string
values LANDSCAPE or PORTRAIT.

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

Returned Values

The following values are returned for methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Example

The following code sample contains some common examples for using dynamic invoke.

// Getting the page source
String pageSource = Device.DynamicInvoke("getPageSource")

Testing in Your Environment with the Open Agent | 337

http://appium.github.io/java-client/
http://appium.github.io/java-client/

// Resetting an app
Device.DynamicInvoke("resetApp")

// Changing the device orientation
Device.DynamicInvoke("rotate", {"LANDSCAPE"})
Device.DynamicInvoke("rotate", {"PORTRAIT"})

// Dynamic invoke on MobileObject (calls get redirected to the
underlying web element for WebDriver)
Device.CheckBox2.DynamicInvoke("click")

Clicking on Objects in a Mobile Website
When clicking on an object during the recording and replay of an automated test, a mobile website
presents the following challenges in comparison to a desktop website:

• Varying zoom factors and device pixel ratios.
• Varying screen sizes for different mobile devices.
• Varying font and graphic sizes between mobile devices, usually smaller in comparison to a website in a

desktop browser.
• Varying pixel size and resolution for different mobile devices.

Silk Test Classic enables you to surpass these challenges and to click the appropriate object on a mobile
website.

When recording a test on a mobile device, Silk Test Classic does not record coordinates when recording a
Click. However, for cross-browser testing, coordinates are allowed during replay. You can also manually
add coordinates to a Click. Silk Test Classic interprets these coordinates as the HTML coordinates of the
object. To click on the appropriate object inside the BrowserWindow, during the replay of a test on a
mobile device, Silk Test Classic applies the current zoom factor to the HTML coordinates of the object. The
device pixel coordinates are the HTML coordinates of the object, multiplied with the current zoom factor.

If the object is not visible in the currently displayed section of the mobile website, Silk Test Classic scrolls to
the appropriate location in the website.

Example

The following code shows how you can test a DomButton with a fixed size of 100 x 20
px in your HTML page.

DomButton domButton = Desktop.Find("locator for the button")
domButton.Click(MouseButton.LEFT, new Point(50, 10))

During replay on a different mobile device or with a different zoom factor, the
DomButton might for example have an actual width of 10px on the device screen. Silk
Test Classic clicks in the middle of the element when using the code above,
independent of the current zoom factor, because Silk Test Classic interprets the
coordinates as HTML coordinates and applies the current zoom factor.

Using Existing Mobile Web Tests
Silk Test 17.0 or later uses a different approach to mobile web testing than previous versions of Silk Test.
This change might result in your old mobile web tests no longer working on Silk Test 17.0 or later. This
topic describes some of the changes that were introduced with Silk Test 17.0 and provides guidance on
changing existing mobile web tests with Silk Test 17.0 or later.

The following changes for mobile web testing were introduced with Silk Test 17.0:

338 | Testing in Your Environment with the Open Agent

• With previous versions of Silk Test, you were able to test on iOS devices that were connected by USB to
a Windows machine. With Silk Test 17.0 or later, you can only test on iOS devices that are connected to
an OSX machine (Mac).

• If you have tested mobile web applications on an Android device with a previous version of Silk Test,
you have to manually remove the proxy from the Android device to test a web application with Silk Test
17.0 or later. Silk Test 17.0 or later no longer requires a proxy, and if the proxy is set, the message
Unable to connect to the proxy server displays on the device.

Testing Rumba Applications
Rumba is the world's premier Windows desktop terminal emulation solution. Silk Test provides built-in
support for recording and replaying Rumba.

When testing with Rumba, please consider the following:

• The Rumba version must be compatible to the Silk Test version. Versions of Rumba prior to version 8.1
are not supported.

• All controls that surround the green screen in Rumba are using basic WPF functionality (or Win32).
• The supported Rumba desktop types are:

• Mainframe Display
• AS400 Display
• Unix Display

For a complete list of the record and replay controls available for Rumba testing, see the Rumba Class
Reference.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Enabling and Disabling Rumba
Rumba is the world's premier Windows desktop terminal emulation solution. Rumba provides connectivity
solutions to mainframes, mid-range, UNIX, Linux, and HP servers.

Enabling Support

Before you can record and replay Rumba scripts, you need to enable support:

1. Install Rumba desktop client software version 8.1 or later.
2. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Administration > Rumba plugin

> Enable Silk Test Rumba plugin or (in Microsoft Windows 10) Start > Silk > Enable Silk Test
Rumba plugin.

Disabling Support

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Administration > Rumba plugin >
Disable Silk Test Rumba plugin or (in Microsoft Windows 10) Start > Silk > Disable Silk Test Rumba
plugin.

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

caption The text that the control displays.

Testing in Your Environment with the Open Agent | 339

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Testing a Unix Display
Unix displays in Rumba are completely text-based, and provide no UI controls except the main RUMBA
screen control. To replay a test on a Unix display, you can use the SendKeys method to send keys to the
Unix display. Silk Test Classic does not support recording on a Unix display.

Rumba Class Reference
When you configure a Rumba application, Silk Test Classic automatically provides built-in support for
testing standard Rumba controls.

Testing SAP Applications
Silk Test Classic provides built-in support for testing SAP client/server applications based on the Windows-
based GUI module.

For information on the supported versions and any eventual known issues, refer to the Release Notes.

Note: If you use SAP NetWeaver with Internet Explorer or Mozilla Firefox, Silk Test Classic tests the
application using the xBrowser technology domain.

Silk Test Agent Support

When you create a Silk Test Classic SAP project, the Open Agent is assigned as the default Agent.

Note: You must set Ctrl+Shift as the shortcut key combination to use to pause recording. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Locator Attributes for SAP Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for SAP controls:

• automationId

340 | Testing in Your Environment with the Open Agent

• caption

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking SAP Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk Test Classic supports for the control.
• All public methods that the SAP automation interface defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types

Silk Test Classic types includes primitive types (such as boolean, int, string), lists, and other types (such
as Point and Rect).

• UI controls

UI controls can be passed or returned as AnyWin.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types. These types are listed in the Supported
Parameter Types section.

• All methods that have no return value return NULL.

Testing in Your Environment with the Open Agent | 341

Example

A custom calculator control has a Reset method and an Add method, which performs
an addition of two numbers. You can use the following code to call the methods directly
from your tests:

customControl.Invoke("Reset")
REAL sum = customControl.DynamicInvoke("Add",{1,2})

Configuring Automation Security Settings for SAP
Before you launch an SAP application, you must configure the security warning settings. Otherwise, the
security warning A script is trying to attach to the GUI displays each time a test plays back
an SAP application.

1. Click Start > Control Panel.

2. Choose SAP Configuration. The SAP GUI Configuration dialog box opens.

3. In the Design Selection tab, uncheck the Notify When a Script Attaches to a Running SAP GUI
check box.

SAP Class Reference
When you configure a SAP application, Silk Test Classic automatically provides built-in support for testing
standard SAP controls.

Note: To enable Silk Test Classic to recognize SAP controls, enable SAP GUI Scripting on the server.
For information on enabling SAP GUI scripting, see Introduction to SAP Gui Scripting. If SAP GUI
Scripting is not enabled, Silk Test Classic recognizes all controls as Win32 and custom controls.

The classes included in the SAP class reference, along with all included properties and methods, are part
of the SAP Automation module that is directly accessible through Silk Test Classic.

Note: The interface, including the underlying algorithms and the behavior of the interface, is not under
the control of Silk Test Classic.

Cross-Browser Testing with the Open Agent
This functionality is supported only if you are using the Open Agent.

With Silk Test Classic, you can easily verify the functionality of even the most advanced web application
across a variety of browsers, with a single, portable test script. Silk Test Classic provides leading support
for effective and maintainable cross-browser testing with modern web technologies.

One of the main challenges in test automation is to create and maintain test cost effectively. As different
browsers behave differently, web application validation is hard to carry out productively. Silk Test Classic
enables you to focus on writing tests, as it handles the following three areas of cross-browser testing:

Built-in
synchronization

This enables you to create scripts that run on all supported browsers, without the
need to manually synchronize against asynchronous events, which are typical of
highly dynamic web applications such as AJAX, or HTML5. Silk Test Classic
supports synchronization modes for HTML or AJAX as well as all major web
environments including Apache Flex, Microsoft Silverlight, and HTML5/AJAX. For
additional information, see Page Synchronization for xBrowser.

Unified object model Silk Test Classic enables you to create and maintain a test which runs across a
wide range of different browsers. A unified object model across all browsers gives
you the ability to focus on a single browser when you create or maintain a test.

342 | Testing in Your Environment with the Open Agent

http://scn.sap.com/community/gui/blog/2012/10/08/introduction-to-sap-gui-scripting

Silk Test Classic ensures that the object you interact with is accessible in the
same way on all the other browsers, which saves time and enables you to focus
on testing rather than on finding workarounds for different browsers.

Out-of-the-box
recording of a cross-
browser script

Record a script once and replay it in all the other browsers, without any
modifications. This significantly reduces the time and effort it takes to create and
maintain test scripts. Nothing is simulated - testing is carried out across real
browsers, which ensures that the test behaves exactly as it does for your end
user.

With Silk Test Classic, you can replay tests against web applications that use:

• Internet Explorer.
• Mozilla Firefox, both on Microsoft Windows and on macOS.
• Google Chrome, both on Microsoft Windows and on macOS.
• Microsoft Edge.
• Chrome for Android on an Android device.
• Apple Safari, both on macOS and on an iOS device.
• Embedded browser controls.

Note: You can record tests for web applications using one of the following browsers:

• Internet Explorer.
• Microsoft Edge.
• Mozilla Firefox, both on Microsoft Windows and on macOS.
• Google Chrome, both on Microsoft Windows and on macOS.
• A mobile browser on a mobile device.

When recording a script for cross-browser testing, Micro Focus recommends using Google Chrome,
Mozilla Firefox, or Microsoft Edge, as a script recorded with Silk Test Classic against Internet Explorer
might slightly differ in comparison to a script recorded on one of the other browsers.

Note: Before you record or playback web applications, disable all browser add-ons that are installed
in your system. To disable add-ons in Internet Explorer, click Tools > Internet Options, click the
Programs tab, click Manage add-ons, select an add-on and then click Disable.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Sample Applications

To access the Silk Test sample web applications, go to:

• http://demo.borland.com/InsuranceWebExtJS/
• http://demo.borland.com/gmopost
• http://demo.borland.com/gmoajax

Test Objects for xBrowser
Silk Test Classic uses the following classes to model a web application:

Class Description

BrowserApplication Exposes the main window of a web browser and provides
methods for tabbing.

BrowserObject Represents the base class for all objects that are
contained within a BrowserApplication.

BrowserWindow Provides access to tabs and embedded browser controls
and provides methods for navigating to different pages.

Testing in Your Environment with the Open Agent | 343

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/gmopost
http://demo.borland.com/gmoajax

Class Description

DomElement Exposes the DOM tree of a web application, including
frames, and provides access to all DOM attributes.
Specialized classes are available for several DOM
elements.

DomButton Represents the top-level container for a web page. It
exposes the DOM tree through DomElement.

DomCheckBox Represents all DOM elements that were specified using
the <input type='checkbox'> tag.

DomForm Represents all DOM elements that are specified using the
<form> tag.

DomLink Represents all DOM elements that were specified using
the <a> tag.

DomListBox Represents all DOM elements that were specified using
the <select> tag.

DomRadioButton Represents all DOM elements that were specified using
the <input type='radio'> tag.

DomTable Represents all DOM elements that were specified using
the <table> tag.

DomTableRow Represents all DOM elements that were specified using
the <tr> tag.

DomTextField Represents all DOM elements that were specified using
one of the following tags:

• <input type='text'>

• <input type='password'>

• <input type='file'>

• <textarea>

Overview of Test Frames
A test frame is an include file (.inc) that serves as a central global repository of information about the
application under test. It contains all the data structures that support your test cases and test scripts.
Though you do not have to create a test frame, by declaring all the objects in your application, you will find
it much easier to understand, modify, and interpret the results of your tests.

When you create a test frame, Silk Test Classic automatically adds the frame file to the Use files field of
the Runtime Options dialog box. This allows Silk Test Classic to use the information in the declarations
and recognize the objects in your application when you record and run test cases.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. For extensions that use
the Open Agent, Silk Test Classic names the include file <technology_type>.inc. For instance, if you
enable extensions for an Apache Flex application, a file named flex.inc is added. If you enable
extensions for an Internet Explorer browser, Silk Test Classic adds the explorer.inc file to the Runtime
Options dialog box.

A constant called wStartup is created when you record the test frame. By assigning the identifier of the
login window to wStartup and by recording a new invoke method, your tests can start the application,
enter any required information into the login window, then dismiss the login window.

See Marking 4Test Code as GUI-Specific to learn about the ways you modify the test frame when porting
your test cases to other GUIs.

344 | Testing in Your Environment with the Open Agent

Recording the Test Frame for a Web Application (Open Agent)
This functionality is supported only if you are using the Open Agent.

Record a test frame file for a web application to store information about the web application, for example
the URL.

1. Click File > New from the menu bar.

2. Click Test Frame and then click OK. The Select Application dialog box displays.

3. Select the Web tab.

4. Select one of the installed browsers or mobile browsers from the list.

5. Specify the web page to open in the Enter URL to navigate text box.

If an instance of the selected browser is already running, you can click Use URL from running
browser to record against the URL currently displayed in the running browser instance.

6. Click OK.

Modifying the Identifiers
Identifiers are arbitrary strings. You use identifiers to identify objects in your scripts. Tags, on the other
hand, are not arbitrary and should not be changed except in well-specified ways.

To make your tests easier to understand and maintain, you can change your objects’ identifiers to
correspond to their meaning in your application. Then when Silk Test Classic records tests, it will use the
identifiers that you specify.

Testing Web Applications on Different Browsers
Testing web applications can be challenging because of the large number of browsers and browser
versions available. Your web applications must support the browsers that the users of these applications
prefer to use. While developing tests for web applications, you might ask your self the following questions:

• How will your test cases handle differences between browsers?
• How can you specify which browser to use for the test case or test script?

Handling differences between browsers

In most cases, your include files (declarations) and scripts apply to any browser. You can run test cases
against different browsers by simply changing the default browser and running the test case, even if the
pages look a bit different, such as pushbuttons being in different places. Because Silk Test Classic is
object-based, the layout is not relevant. All that matters are the objects on the page.

Declarations and scripts might have one or more lines that apply only to particular browsers. In such a
case you can use browser specifiers to make lines specific to one or more browsers. Browser specifiers are
of the built-in data type BROWSERTYPE.

Changing the Browser Type When Replaying Tests
from the UI
This topic describes how to change the browser type for replay in the UI. For information on how you to set
the browser when executing automated tests from a command-line interface, for example from a CI server
or from Silk Central, see Setting the Browser when Running Automated Tests.

To select a specific browser to replay a test, perform the following actions:

1. Record the test case against the web application.

For a list of the supported browsers for recording, see Cross-Browser Testing.

Testing in Your Environment with the Open Agent | 345

2. Replay the test to ensure it works as expected.

3. Click Configure Applications on the Basic Workflow bar.

If you do not see Configure Applications on the Basic Workflow bar, ensure that the default Agent is
set to the Open Agent.

The Select Application dialog box opens.

4. Select the Web tab.

5. Select the browser on which you want to replay the test.

6. Click OK.

If you have selected an existing instance of Google Chrome, Silk Test Classic checks whether the
automation support is included. If the automation support is not included, Silk Test Classic restarts
Google Chrome.

The Choose name and folder of the new frame file page opens. Silk Test Classic configures the
recovery system and names the corresponding file frame1.inc by default.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save.

9. Copy the window declaration for the additional browser into the original frame1.inc file.

frame1.inc must not contain two window declarations of the same name, so rename the Internet
Explorer declaration to InternetExplorer and the new declaration to another name, for example
Firefox.

10.To ensure that each of the window declarations works with the appropriate browser type, add the
browsertype property to the locator.

For example, "//BrowserApplication[@browsertype='Firefox']".

11.Determine which browser you want to use and change the const wDynamicMainWindow =
<browsertype> to use that browser and then replay the test.

For example, you might type const wDynamicMainWindow = InternetExplorer.

Setting the Browser when Running Automated Tests
This functionality is supported only if you are using the Open Agent.

This topic describes how you can set the browser when executing automated tests from a command-line
interface, for example from a CI server or from Silk Central. For information on how to set the browser for
test replay from the UI, see Changing the Browser Type When Replaying Tests.

1. Record the test case.

2. Use the sBrowserType property to specify the browser.

The following browsers are supported for the Open Agent:

[] const BROWSER_TYPE_INTERNET_EXPLORER = "InternetExplorer"
[] const BROWSER_TYPE_FIREFOX = "Firefox"
[] const BROWSER_TYPE_CHROME = "GoogleChrome"
[] const BROWSER_TYPE_ANDROID_BROWSER = "AndroidBrowser"
[] const BROWSER_TYPE_SAFARI = "Safari"
[] const BROWSER_TYPE_EDGE = "Edge"

Tip: For a complete list of the available browser types, see the file 4Test.inc file in the Silk Test
installation directory, which is by default C:\Program Files (x86)\Silk\SilkTest.

3. Call the default base state.

4. Replay the test case.

346 | Testing in Your Environment with the Open Agent

Examples

The following code shows a sample frame file for the sample web application http://
demo.borland.com/InsuranceWebExtJS/:

[-] window BrowserApplication WebBrowser
 [] locator "//BrowserApplication"
 []
 [] // The start URL
 [] const sUrl = "http://demo.borland.com"
 []
 [] STRING sBrowserType = NULL
 [] STRING sConnectionString = NULL
 [] STRING sCmdLine = NULL
 []
 [] const bCloseOtherTabs = TRUE

To run a test against a specific browser, set the sBrowserType property and call the
base state. The following code sample implements a simple test case that opens the
application under test in Internet Explorer:

[-] testcase OpenGMOAjaxAppIE () appstate none
 [] WebBrowser.sBrowserType = BROWSER_TYPE_INTERNET_EXPLORER
 [] WebBrowser.sCmdLine = "C:\\Program Files\\Internet Explorer
\\iexplore.exe" // Optional
 [] DefaultBaseState()
 [] WebBrowser.BrowserWindow.DemoApplication.Select()

The following code sample opens the same application in Mozilla Firefox:

[-] testcase OpenGMOAjaxAppFF () appstate none
 [] WebBrowser.sBrowserType = BROWSER_TYPE_FIREFOX
 [] DefaultBaseState()
 [] WebBrowser.BrowserWindow.DemoApplication.Select()

To run the test against a remote browser, for example Apple Safari on a Mac, you have
to additionally specify the connection string:

[-] testcase OpenGMOAjaxAppSafari () appstate none
 [-] recording
 [] WebBrowser.sBrowserType = BROWSER_TYPE_SAFARI
 [] WebBrowser.sConnectionString = "host=10.0.0.1"
 [] DefaultBaseState()
 [] WebBrowser.BrowserWindow.DemoApplication.Select()

Testing Objects in a Web Page with the Open Agent
This functionality is supported only if you are using the Open Agent.

The Document Object Model (DOM) extension uses information in the HTML source to recognize and
manipulate objects on a web page. Silk Test Classic uses the DOM extension to test the objects that are
included in a web application.

Using the DOM extension provides several advantages:

• During recording, Silk Test Classic displays a rectangle which highlights the active control in the web
page.

• The DOM extension is highly accurate, because it gets information directly from the browser. For
example, the DOM extension recognizes text size and the actual name of an object.

• The DOM extension is independent of the browser size and text size settings.
• The DOM extension recognizes non-visible objects.
• The DOM extension offers support for borderless tables.

Testing in Your Environment with the Open Agent | 347

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

• The DOM extension is consistent with the standard being developed by the W3C.

Testing Columns and Tables
• If you are using the Classic Agent, tables in Web applications are recognized as HtmlTable controls.

An HtmlTable consists of two or more HtmlColumn controls.
• If you are using the Open Agent, tables in Web applications are recognized as DomTable controls.

Rows in a table are recognized as DomTableRow controls.

Definition of a Table (Open Agent)
For the Open Agent, a table is a DomTable, which is a DOM element that is specified using the <table>
tag.

Testing Controls
Web applications can contain the same controls as standard applications, including the following:

Control Classic Agent Class Open Agent Class

check box HtmlCheckBox DomCheckBox

combo box HtmlComboBox No corresponding class.

list boxes HtmlListBox DomListBox

popup lists HtmlPopupList DomListBox

pushbuttons HtmlPushButton DomButton

radio lists HtmlCheckBox DomCheckBox

All these classes are derived from their respective standard class. For example, HtmlCheckBox is derived
from CheckBox. So all the testing you can do with these controls in standard applications you can also do
in Web applications.

Classic Agent Example

The following code gets the list of items in the credit card list in the Billing Information
page of the sample GMO application:

LIST OF STRING lsCards
lsCards = BillingPage.CreditCardList.GetContents ()
ListPrint (lsCards)

Result:
American Express
MasterCard
Visa

Open Agent Example

The following code gets the list of items in the credit card list in the Billing Information
page of the sample GMO application:

LIST OF STRING lsCards
lsCards = WebBrowser.BrowserWindow.CardType.Items
ListPrint(lsCards)

Result:
American Express
MasterCard
Visa

348 | Testing in Your Environment with the Open Agent

Testing Images

Classic Agent

If you are using the Classic Agent, images in your Web application are objects of type HtmlImage. You
can verify the appearance of the image by using the Bitmap tab in the Verify Window dialog box.

If an HtmlImage is an image map, which means that the image contains clickable regions, you can use
the following methods to test the clickable regions:

• GetRegionList

• MoveToRegion

• ClickRegion

Open Agent

If you are using the Open Agent, you can test images by using the IMG locator. For example, the following
code sample finds an image and then prints some of the properties of the image:

Window img = FindBrowserApplication("/
BrowserApplication").FindBrowserWindow("//BrowserWindow").Find("//
IMG[@title='Image1.png']")
String src = img.GetProperty("src")
String altText = img.GetProperty("alt")
print(src)
print(altText)

Testing Links
• If you are using the Classic Agent, links in your application are objects of type HtmlLink.
• If you are using the Open Agent, links in your application are objects of type DomLink.

Silk Test Classic provides several methods that let you get their text properties as well as the location to
which they jump.

Classic Agent Example

The following code returns the definition for the HtmlLink on a sample home page:

STRING sJump
sJump = Acme.LetUsKnowLink.GetLocation ()
Print (sJump)

Result:
mailto:support@acme.com

Open Agent Example

The following code returns the definition for the DomLink on the sample home page:

STRING sJump
sJump =
WebBrowser.BrowserWindow.LetUsKnowLink.GetProperty("href")
Print(sJump)

Result:
mailto:support@acme.com

Testing in Your Environment with the Open Agent | 349

Testing Text in Web Applications

Classic Agent

Straight text in a Web application can be in the following classes:

• HtmlHeading

• HtmlText

Silk Test Classic provides methods for getting the text and all its properties, such as color, font, size, and
style.

There are also classes for text in Java applets and applications.

Classic Agent Example

For example, the following code gets the copyright text on a sample Web page:

STRING sText
sText = Acme.Copyright.GetText ()
Print (sText)

Result:
Copyright © 2006 Acme Software, Inc. All rights reserved.

Open Agent

When you are using the Open Agent, use the GetText() method to get text out of every DomElement
control.

Open Agent Example

For example, the following code gets the text of a DomLink control:

Window link = FindBrowserApplication("/BrowserApplication")

 .FindBrowserWindow("//BrowserWindow")
 .FindDomLink("A[@id='story2128000']")
String linkText = link.GetText()
print(linkText)

Object Recognition for xBrowser Objects
This functionality is supported only if you are using the Open Agent.

The xBrowser technology domain supports dynamic object recognition.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

Test cases use locator strings to find and identify objects. A typical locator includes a locator name and at
least one locator attribute, such as "//LocatorName[@locatorAttribute='value']".

350 | Testing in Your Environment with the Open Agent

Locator
Names

With other technology types, such as Java SWT, locator names are created using the
class name of the test object. With xBrowser, the tag name of the DOM element can also
be used as locator name. The following locators describe the same element:

1. Using the tag name: "//a[@href='http://www.microfocus.com']"
2. Using the class name: "//DomLink[@href='http://www.microfocus.com']"

To optimize replay speed, use tag names rather than class names.

Locator
Attributes

All DOM attributes can be used as locator string attributes. For example, the element
<button automationid='123'>Click Me</button> can be identified using the
locator "//button[@automationid='123']".

Recording
Locators

Silk Test Classic uses a built-in locator generator when recording test cases and using the
Locator Spy. You can configure the locator generator to improve the results for a specific
application.

xBrowser Default BaseState
This functionality is supported only if you are using the Open Agent.

By default, Silk Test Classic uses the dynamic base state for xBrowser projects. When you configure the
application, the base state is generated to the frame.inc file.

• The wDynamicMainWindow variable in the first line of the frame.inc file tells Silk Test Classic to use
the dynamic base state rather than the classic base state.

• The WebBrowser window declaration contains the necessary information to launch the browser and
navigate to the Web application that you want to test.

• If you do not want to close all other tabs during base state execution, change bCloseOtherTabs to
false.

Locator Attributes for xBrowser controls
This functionality is supported only if you are using the Open Agent.

When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Silk Test Classic supports the following locator attributes for xBrowser controls:

caption Supports wildcards ? and *.

all DOM attributes Supports wildcards ? and *.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Note: Whitespace, which includes spaces, carriage returns, line feeds, and tabs, is handled differently
by each browser. As a result, the textContents and innerText attributes have been normalized.
Whitespace is skipped or replaced by a single space if an empty space is followed by another empty
space. The matching of such values is normalized also. In Silk Test 14.0 or later, whitespace in texts,
which are retrieved through the textContents property of an element, is trimmed consistently
across all supported browsers. For some browser versions, this whitespace handling differs to Silk
Test versions prior to Silk Test 13.5. You can re-enable the old behavior by setting the
OPT_COMPATIBILITY option to a version lower than 13.5.0.

Example

<a>abc abc

Testing in Your Environment with the Open Agent | 351

Uses the following locator:

//A[@innerText='abc abc']

Page Synchronization for xBrowser
This functionality is supported only if you are using the Open Agent.

Synchronization is performed automatically before and after every method call. A method call is not started
and does not end until the synchronization criteria is met.

Note: Any property access is not synchronized.

Synchronization Modes

Silk Test Classic includes synchronization modes for HTML and AJAX.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary to
manually script synchronization functions, such as:

• WaitForObject

• WaitForProperty

• WaitForPropertyNotEquals

• WaitForDisappearance

• WaitForChildDisappearance

• WaitForScreenshotStable

The AJAX mode synchronization waits for the browser to be in a kind of idle state, which is especially
useful for AJAX applications or pages that contain AJAX components. Using the AJAX mode eliminates the
need to manually script synchronization functions (such as wait for objects to appear or disappear, wait for
a specific property value, and so on), which eases the script creation process dramatically. This automatic
synchronization is also the base for a successful record and playback approach without manual script
adoptions.

Troubleshooting

Because of the true asynchronous nature of AJAX, generally there is no real idle state of the browser.
Therefore, in rare situations, Silk Test Classic will not recognize an end of the invoked method call and
throws a timeout error after the specified timeout period. In these situations, it is necessary to set the
synchronization mode to HTML at least for the problematic call.

Note: Regardless of the page synchronization method that you use, in tests where a Flash object
retrieves data from a server and then performs calculations to render the data, you must manually add
a synchronization method to your test. Otherwise, Silk Test Classic does not wait for the Flash object
to complete its calculations. For example, you might use Thread.sleep(millisecs).

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently open
in order to retrieve asynchronous data from the server. These requests may let the synchronization hang
until the specified synchronization timeout expires. To prevent this situation, either use the HTML
synchronization mode or specify the URL of the problematic request in the Synchronization exclude list
setting.

Use a monitoring tool to determine if playback errors occur because of a synchronization issue. For
instance, you can use FindBugs, http://findbugs.sourceforge.net/, to determine if an AJAX call is affecting
playback. Then, add the problematic service to the Synchronization exclude list.

Note: If you exclude a URL, synchronization is turned off for each call that targets the URL that you
specified. Any synchronization that is needed for that URL must be called manually. For example, you

352 | Testing in Your Environment with the Open Agent

http://findbugs.sourceforge.net/

might need to manually add WaitForObject to a test. To avoid numerous manual calls, exclude
URLs for a concrete target, rather than for a top-level URL, if possible.

Configuring Page Synchronization Settings

You can configure page synchronization settings for each individual test or you can set global options that
apply to all tests in the Script Options dialog box.

To add the URL to the exclusion filter, specify the URL in the Synchronization exclude list in the Script
Options dialog box.

To configure individual settings for tests,

To configure individual settings for tests, record the test and then insert an agent option to override the
global replay value.

For example, you might set the Synchronization mode replay setting to HTML and then return the
Synchronization mode to AJAX for the remaining portion of the test if necessary.

To configure individual settings within a test, call any of the following:

• OPT_XBROWSER_SYNC_MODE

• OPT_XBROWSER_SYNC_EXCLUDE_URLS

• OPT_SYNC_TIMEOUT

Setting xBrowser Synchronization Options
This functionality is supported only if you are using the Open Agent.

Specify the synchronization and timeout values for web applications. Synchronization is performed before
and after every method call. A method call is not started and does not end until the synchronization criteria
is met.

1. Click Options > Agent and then click the Synchronization tab.

2. From the Synchronization mode list box, select the synchronization algorithm for the ready state of a
web application.

The synchronization algorithm configures the waiting period for the ready state of an invoke call.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary
to manually script synchronization functions.

Using the AJAX mode eliminates the need to manually script synchronization functions (such as wait for
objects to appear or disappear, wait for a specific property value, and so on), which eases the script
creation process dramatically. This automatic synchronization is also the base for a successful record
and replay approach without manual script adoptions.

3. In the Synchronization timeout text box, enter the maximum time, in seconds, to wait for an object to
be ready.

4. In the Synchronization exclude list text box, type the entire URL or a fragment of the URL for any
service or Web page that you want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently
open in order to retrieve asynchronous data from the server. These requests may let the
synchronization hang until the specified synchronization timeout expires. To prevent this situation, either
use the HTML synchronization mode or specify the URL of the problematic request in the
Synchronization exclude list setting.

For example, if your web application uses a widget that displays the server time by polling data from the
client, permanent traffic is sent to the server for this widget. To exclude this service from the
synchronization, determine what the service URL is and enter it in the exclusion list.

Testing in Your Environment with the Open Agent | 353

For example, you might type:

http://example.com/syncsample/timeService
timeService
UICallBackServiceHandler

Separate multiple entries with a comma.

Note: If your application uses only one service, and you want to disable that service for testing, you
must use the HTML synchronization mode rather than adding the service URL to the exclusion list.

5. Click OK.

You can now record or manually create a test that uses ignores browser attributes and uses the type of
page input that you specified.

Configuring the Locator Generator for xBrowser
This functionality is supported only if you are using the Open Agent.

The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

To achieve optimal results, add a custom automation ID to the elements that you want to interact with in
your test. In Web applications, you can add an attribute to the element that you want to interact with, such
as <div myAutomationId=”my unique element name” />. This approach can eliminate the
maintenance associated with locator changes.

1. Click Options > Recorder and then click the Custom Attributes tab.

2. If you use custom automation IDs, from the Select a TechDomain list box, select xBrowser and then
add the IDs to the list.

The custom attributes list contains attributes that are suitable for locators. If custom attributes are
available, the locator generator uses these attributes before any other attribute. The order of the list also
represents the priority in which the attributes are used by the locator generator. If the attributes that you
specify are not available for the objects that you select, Silk Test Classic uses the default attributes for
xBrowser.

3. Click the Browser tab.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, use this list to specify attributes that change frequently, such as size, width, height, and
style. You can include the wildcards ‘*’ and ‘?’ in the Locator attribute name blacklist.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

Some AJAX frameworks generate attribute values that change every time the page is reloaded. Use this
list to ignore such values. You can also use wildcards in this list.

Separate attribute values with a comma.

6. Click OK.

You can now record or manually create a test case.

354 | Testing in Your Environment with the Open Agent

Comparing API Playback and Native Playback for
xBrowser
This functionality is supported only if you are using the Open Agent.

Silk Test Classic supports API playback and native playback for Web applications. If your application uses a
plug-in or AJAX, use native user input. If your application does not use a plug-in or AJAX, we recommend
using API playback.

Advantages of native playback include:

• With native playback, the agent emulates user input by moving the mouse pointer over elements and
pressing the corresponding elements. As a result, playback works with most applications without any
modifications.

• Native playback supports plug-ins, such as Flash and Java applets, and applications that use AJAX,
while high-level API recordings do not.

Advantages of API playback include:

• With API playback, the Web page is driven directly by DOM events, such as onmouseover or
onclick.

• Scripts that use API playback do not require that the browser be in the foreground.
• Scripts that use API playback do not need to scroll an element into view before clicking it.
• Generally API scripts are more reliable since high-level user input is insensitive to pop-up windows and

user interaction during playback.
• API playback is faster than native playback.

Differences Between API and Native Playback Functions

The DomElement class provides different functions for API playback and native playback.

The following table describes which functions use API playback and which use native playback.

API Playback Native Playback

Mouse Actions DomClick

DomDoubleClick

DomMouseMove

Click

DoubleClick

MoveMouse

PressMouse

ReleaseMouse

Keyboard Actions not available TypeKeys

Specialized Functions Select

SetText

etc.

not available

Setting Recording Options for xBrowser
This functionality is supported only if you are using the Open Agent.

There are several options that can be used to optimize the recording of Web applications.

1. Click Options > Recorder.

Testing in Your Environment with the Open Agent | 355

2. Check the Record mouse move actions box if you are testing a Web page that uses mouse move
events. You cannot record mouse move events for child technology domains of the xBrowser technology
domain, for example Apache Flex and Swing.

Silk Test Classic will only record mouse move events that cause changes to the hovered element or its
parent in order to keep scripts short.

3. You can change the mouse move delay if required.

Mouse move actions will only be recorded if the mouse stands still for this time. A shorter delay will
result in more unexpected mouse move actions.

4. Click the Browser tab.

5. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, if you do not want to record attributes named height, add the height attribute name to the
grid. Separate attribute names with a comma.

6. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the grid.
Separate attribute values with a comma.

7. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.

For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

8. Click the Custom Attributes tab.

9. Select xBrowser in the Select a tech domain list box and add the DOM attributes that you want to use
for locators to the text box.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added. If custom attributes are available, the locator generator uses these attributes
before any other attribute. The order of the list also represents the priority in which the attributes are
used by the locator generator. If the attributes that you specify are not available for the objects that you
select, Silk Test Classic uses the default attributes for xBrowser.

10.Click OK.

You can now record or manually create a test that uses ignores browser attributes and uses the type of
page input that you specified.

Browser Configuration Settings for xBrowser
Several browser settings help to sustain stable test executions. Although Silk Test Classic works without
changing any settings, there are several reasons that you might want to change the browser settings.

Increase replay speed Use about:blank as home page instead of a slowly loading Web
page.

Avoid unexpected behavior of the
browser

• Disable pop up windows and warning dialog boxes.
• Disable auto-complete features.
• Disable password wizards.

Prevent malfunction of the
browser

Disable unnecessary third-party plugins.

The following sections describe where these settings are located in the corresponding browser.

356 | Testing in Your Environment with the Open Agent

Internet Explorer

The browser settings are located at Tools > Internet Options. The following table lists options that you
might want to adjust.

Tab Option Configuration Comments

General Home page Set to about:blank. Minimize start up time of new tabs.

General Tabs • Disable warning when closing multiple tabs.

• Enable to switch to new tabs when they are
created.

• Avoid unexpected dialog boxes.

• Links that open new tabs might
not replay correctly otherwise.

Privacy Pop-up
blocker

Disable pop up blocker. Make sure your Web site can open
new windows.

Content AutoComplete Turn off completely • Avoid unexpected dialog boxes.

• Avoid unexpected behavior when
typing keys.

Program
s

Manage add-
ons

Only enable add-ons that are absolutely required. • Third-party add-ons might contain
bugs.

• Possibly not compatible to Silk
Test Classic.

Advance
d

Settings • Disable Automatically check for Internet
Explorer updates.

• Enable Disable script debugging (Internet
Explorer).

• Enable Disable script debugging (Other).

• Disable Enable automatic crash recovery.

• Disable Display notification about every
script error.

• Disable all Warn ... settings

Avoid unexpected dialog boxes.

Note: Recording a Web application in Internet Explorer with a zoom level different to 100% might not
work as expected. Before recording actions against a Web application in Internet Explorer, set the
zoom level to 100%.

Mozilla Firefox

You do not have to change browser settings for Mozilla FirefoxSilk Test Classic automatically starts Mozilla
Firefox with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Mozilla
Firefox. For additional information, see Stop automatic updates.

Google Chrome

You do not have to change browser settings for Google Chrome. Silk Test Classic automatically starts
Google Chrome with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Google
Chrome. For additional information, see Turning Off Auto Updates in Google Chrome.

Connection String for a Remote Desktop Browser
The connection string specifies the remote desktop browser that is used for testing. When testing a web
application in a remote browser, Silk Test Classic uses the connection string to connect to the remote

Testing in Your Environment with the Open Agent | 357

https://support.mozilla.org/questions/1003777
http://dev.chromium.org/administrators/turning-off-auto-updates

location. The connection string is typically part of the application configuration. You can set the connection
string when you configure the web application that you want to test. To change the connection string, you
can use the Edit Application Configuration dialog box.

When testing a web application in a remote browser, the connection string includes only the host, which
means the IP address or the host name of the remote machine, for example 10.0.0.1. To select the correct
browser, Silk Test Classic uses the connection string in combination with the browser type, which you can
also specify in the Edit Application Configuration dialog box.

The host name is case-insensitive.

Note: Remote desktop browser testing is only supported for Microsoft Edge on a remote Microsoft
Windows machine, and for Apple Safari on a remote Mac.

Connection string example

"host=10.0.0.1"

Setting Capabilities for WebDriver-Based Browsers
If you are testing a web application on a WebDriver-based browser, you can customize and configure the
browser session by setting the capabilities.

In Silk Test Classic, you can specify WebDriver capabilities in the connection string for the following
browser types:

• Google Chrome
• Mozilla Firefox

For information on the available options and capabilities for Mozilla Firefox 48 or later, see https://
github.com/mozilla/geckodriver. For information on the available options and capabilities for Google
Chrome, see Capabilities & ChromeOptions.

To set the capabilities in Silk Test Classic:

1. Select the project which corresponds to the web application for which you want to change the
capabilities.

2. Edit the connection string in the base state of the project.

You can edit the connection string in the following ways:

• By using the Edit Application Configurations dialog, for example if you want to record actions
against a customized browser.

• In a script, if you only want to execute the tests in the script against the customized browser.

For additional information, see Modifying the Base State (Open Agent).

3. Execute the script to start the browser with the specified options and capabilities.

Examples

You can add the following code to the base state in a script to automatically download
executables from Mozilla Firefox:

STRING sConnectionString = "moz:firefoxOptions="{""prefs"":
"{ ""browser.download.folderList"": 2,
""browser.helperApps.neverAsk.saveToDisk"": ""application/octet-
stream""}}"

You can add the following code to the base state in a script to specify the download
folder for Mozilla Firefox:

STRING sConnectionString = "moz:firefoxOptions="{""prefs"":
"{ ""browser.download.dir"" : ""C:/Download""}}"

358 | Testing in Your Environment with the Open Agent

https://github.com/mozilla/geckodriver
https://github.com/mozilla/geckodriver
https://sites.google.com/a/chromium.org/chromedriver/capabilities

You can add the following code to the base state in a script to set a command line
argument for Mozilla Firefox:

STRING sConnectionString = "moz:firefoxOptions="{""args"": [""--
devtools""]}"

You can add the following code to the base state in a script to automatically download
executables from Google Chrome to a specific folder:

STRING sConnectionString = "chromeOptions="{""prefs"":
"{""profile.default_content_setting_values.automatic_downloads""
:1, ""download.default_directory"":""c:/Download"",
""download.prompt_for_download"":false}}"

You can add the following code to the base state in a script to disable the password
manager from showing messages in Google Chrome:

STRING sConnectionString = "chromeOptions="{""args"": [""--
disable-save-password-bubble""], ""prefs"":
"{""profile.password_manager_enabled"": false,
""credentials_enable_service"":false}}"

Capturing the Contents of a Web Page
To capture a screenshot of the the part of the web page that is currently visible in the browser window, you
can use the CaptureBitmap method. You have to specify the absolute or relative file path to the location
and the name for the image file as a parameter. For example:

WebBrowser.BrowserWindow.CaptureBitmap("C:\Temp\MyPage.png")

To capture a screenshot of the entire contents of a web page as a single image, you can use the
CaptureFullPageBitmap method. You have to specify the absolute or relative file path to the location
and the name for the image file as a parameter. For example:

WebBrowser.BrowserWindow.CaptureFullPageBitmap("C:\Temp\MyPage.png")

Testing with Apple Safari on a Mac
This functionality is supported only if you are using the Open Agent.

This section describes how you can enhance your cross-browser test set by testing Apple Safari on Mac
machines that are connected to a Windows machine on which Silk Test Classic is installed.

Prerequisites for Testing with Apple Safari on a Mac
This functionality is supported only if you are using the Open Agent.

Before you can test with Apple Safari on a Mac, ensure that the following prerequisites are met:

• The Mac is connected as a remote location to a Windows machine, on which Silk Test Classic is
installed. For additional information, see Editing Remote Locations.

• If you are testing with Apple Safari 9, the SafariDriver, which is the WebDriver extension for Apple Safari
that inverts the traditional client/server relationship and communicates with the WebDriver client using
WebSockets, needs to be installed on the Mac. With Apple Safari 10.1, Safari features a built-in driver
implementation.

• Java JDK is installed on the Mac.
• The information service is installed on the Mac. To get the files that are required for the information

service, use the Silk Test installer. For additional information, see Installing the Silk Test Information
Service on a Mac.

• To run tests on Apple Safari, the user that has installed the information service needs to be logged in on
the Mac.

Testing in Your Environment with the Open Agent | 359

Tip: Micro Focus recommends to set the Mac to automatically log in the correct user during
startup. For additional information, see Set your Mac to automatically log in during startup.

• To run unattended tests against Apple Safari on a Mac, adjust the following energy-related settings in
the Energy Saver pane of the System Preferences:

• Set Turn display off after to Never.
• Check the Prevent computer from sleeping automatically when the display is off check box.

Note: You can use the Silk Test Configuration Assistant to easily configure such settings. To
open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant.

• To run unattended tests against Apple Safari on a Mac, disable the screen saver.

1. Navigate to System Preferences > Desktop & Screen Saver.
2. Click the Screen Saver tab.
3. Set Start screen saver to Never.

Note: You can use the Silk Test Configuration Assistant to easily configure such settings. To
open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant.

• If you are testing with Apple Safari 10.1, enable the Safari developer menu. Choose Safari >
Preferences , click Advanced, and check Show develop menu in menu bar.

• If you are testing with Apple Safari 10.1, enable remote automation. In the Safari developer menu,
check Allow Remote Automation.

• When executing a test for the first time against Apple Safari 10.1, you need to provide a password.

Preparing Apple Safari for Testing
To test web applications on Apple Safari 10.1 or later, you can use the Silk Test Configuration Assistant
to easily configure Apple Safari. To open the Configuration Assistant on a Mac, click on the Silk Test icon
in the status menus and select Configuration Assistant. As an alternative, you can also perform the
following preparation steps in addition to fulfilling the requirements listed in Prerequisites for Testing with
Apple Safari on a Mac:

1. Enable remote automation in Apple Safari, by opening the Develop menu and checking Allow Remote
Automation.

The Develop menu is hidden by default. To open the menu:

a) In the Safari menu, choose Preferences.
b) In the Preferences window, select the Advanced tab.
c) Check the Show Develop menu in menu bar check box.
d) Close the Preferences window.

2. When running a test for the first time on Apple Safari, a dialog box appears, stating that the browser
window is remotely controlled by an automated test. Click Continue Session.

For additional information on Apple Safari and Selenium WebDriver, see https://webkit.org/blog/6900/
webdriver-support-in-safari-10/.

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

This functionality is supported only if you are using the Open Agent.

To create and execute tests on a Mac using Apple Safari or using iOS or Android devices, install the Silk
Test information service (information service) on the Mac. Once the information service is installed and
active, you can record and replay tests from a Silk Test Classic client that is installed on a Windows
machine.

360 | Testing in Your Environment with the Open Agent

https://support.apple.com/en-us/HT201476
https://webkit.org/blog/6900/webdriver-support-in-safari-10/
https://webkit.org/blog/6900/webdriver-support-in-safari-10/

Note: You cannot record on a Mac. To add a Mac as a test location to Silk Test Classic, see Editing
Remote Locations in the Silk Test Classic documentation. .

To install the information service on a Mac:

1. Read the information in the topic Prerequisites for Testing with Apple Safari on a Mac in the Silk Test
Classic documentation.

2. Ensure that a Java JDK is installed on the Mac.

3. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

4. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

5. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

6. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

7. Follow the instructions in the installation wizard.

8. When asked for the password, provide the password of the currently signed in Mac user.

9. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: If you want to test against Apple Safari 10 or prior on macOS 10.12 (Sierra) or prior,
SafariDriver needs to be installed on the Mac. You can only install the SafariDriver if you are
directly logged in to the Mac, and not connected through a remote connection.

10.To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac.

11.If you are installing the information service on a Mac with macOS Mojave (10.14) or later, you might
have to enable additional automation permissions for Silk Test after logging in to the Mac.

If permissions need to be granted, Silk Test will automatically show request permission dialogs.

a) Click OK to acknowledge the information dialog.
b) Click OK in all sub-sequent request permission dialogs.

Important: If you do not enable these permissions for Silk Test, you will not be able to test web
applications against Google Chrome or mobile applications on an iOS device or on a Simulator on
this Mac. If by mistake you have clicked Don't Allow in one of the permission dialogs, open a
terminal on the Mac and type the following command:

sudo tccutil reset AppleEvents

Then restart the Mac and accept the permission dialogs by clicking OK.

12.Click on the Silk Test icon in the top-right corner of the screen to see the available devices and
browsers.

Tip: If the Silk Test icon does not appear, restart the Mac.

Limitations for Testing with Apple Safari
This functionality is supported only if you are using the Open Agent.

The following are the known limitations for testing with Apple Safari on a Mac:

• The following classes, interfaces, methods, and properties are currently not supported when testing web
applications with Apple Safari on a Mac:

Testing in Your Environment with the Open Agent | 361

http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

• BrowserApplication class.

• ClearCache method
• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetHorizontalScrollbar method
• GetNextCloseWindow method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• GetVerticalScrollbar method
• IsActive method
• Minimize method
• OpenContextMenu method
• OpenTab method
• Restore method
• SelectTab method
• SetActive method
• WindowState property

• BrowserWindow class.

• AcceptAlert method
• DismissAlert method
• GetAlertText method
• IsAlertPresent method
• MouseMove method
• PressKeys method
• PressMouse method
• ReleaseKeys method
• ReleaseMouse method

• MoveableWin class.

• GetFocus function.
• Silk Test Classic does not support the CMD key for the TypeKeys method.
• Silk Test Classic does not support testing Apache Flex.
• Silk Test Classic does not support testing iframes with a JavaScript source on Apple Safari.
• To test secure web applications over HTTPS on Apple Safari, ensure that any required server

certificates are trusted.
• Silk Test Classic does not provide native support for Apple Safari. You cannot test internal Apple Safari

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar. As a workaround, you can use API calls to navigate between web pages.

• Silk Test Classic does not support JavaScript dialog API functions for Apple Safari. As a workaround,
you could patch such functions so that they are ignored. For additional information, see https://
groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c.

• Silk Test Classic does not support tabbing on Apple Safari.
• To test a multi window application, disable the Apple Safari pup-up blocker. To do so, start Apple Safari

and navigate to Safari Preferences > Security > Block pop-up window.
• Silk Test Classic does not support testing the dialog box for saving a password. To avoid this dialog box,

start Apple Safari, navigate to Safari Preferences > AutoFill, and check the User names and
passwords check box.

362 | Testing in Your Environment with the Open Agent

https://groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c
https://groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c

• Silk Test Classic does not support properties in XPath expressions for Apple Safari. Only attributes are
supported in XPath expressions.

• Silk Test Classic does not support testing web applications which include a Content-Security-Policy
HTTP header.

• With Apple Safari 10.1, Silk Test Classic does not support navigating back in the browser.
• With Apple Safari 10.1, Silk Test Classic does not support using control keys in the TypeKeys method.
• With Apple Safari 10.1, Silk Test Classic only supports dom actions in Frames and IFrames.
• With Apple Safari 10.1, Silk Test Classic does not support navigating with Frames and IFrames.
• With Apple Safari 10.1, Silk Test Classic does not support direct scrolling during recording. As a

workaround, you could use the executeJavaScript method.

Running Multiple Apple Safari Tests at the Same Time
To execute a test on Apple Safari, you require a Mac that is connected to the Windows machine on which
Silk Testis installed. If multiple Apple Safari want to execute tests on Apple Safari, these tests can be
executed simultaneously on the same Mac.

Note: Each test that is executed against Apple Safari on the Mac opens an individual instance of
Apple Safari. Having too many instances of Apple Safari running simultaneously might reduce the
performance of the Mac.

Uninstalling the Silk Test Information Service from a Mac
This functionality is supported only if you are using the Open Agent.

To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. On the Mac, create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller
fi

exit 0

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

Testing with Google Chrome
This functionality is supported only if you are using the Open Agent.

Testing in Your Environment with the Open Agent | 363

This section describes how you can enhance your cross-browser test set by testing with Google Chrome.

Silk Test Classic supports recording actions and replaying tests on Google Chrome.

• When starting to test on Google Chrome, with no running instance of Google Chrome open, Silk Test
Classic starts a new instance of Google Chrome. This new browser uses a temporary profile without
add-ons and with an empty cache.

• When starting to test on an instance of Google Chrome, which is already running, Silk Test Classic
restarts Google Chrome with the same command line arguments that were used when the instance was
initially started. This restart is required to enable the Silk Test Classic automation support.

• When testing with Google Chrome, the Google Chrome instance is closed when shutting down the
Open Agent or when starting to test another application outside Google Chrome.

Tip: If you want to execute an existing test script with Google Chrome, Micro Focus recommends that
you use a base state or that you add a command to the test script to navigate to the URL.

Example 1

If the running instance of Google Chrome was initially started with the command C:/
Program Files (x86)/Google/Chrome/Application/chrome.exe
www.borland.com, Google Chrome opens to www.borland.com after the restart.

Example 2

If the running instance of Google Chrome was initially started with the command C:/
Program Files (x86)/Google/Chrome/Application/chrome.exe, Google
Chrome opens to about:blank after the restart.

Prerequisites for Replaying Tests with Google Chrome
Command-line parameters

When you use Google Chrome to replay a test or to record locators, Google Chrome is started with the
following command:

%LOCALAPPDATA%\Google\Chrome\Application\chrome.exe
 --enable-logging
 --log-level=1
 --disable-web-security
 --disable-hang-monitor
 --disable-prompt-on-repost
 --dom-automation
 --full-memory-crash-report
 --no-default-browser-check
 --no-first-run
 --homepage=about:blank
 --disable-web-resources
 --disable-preconnect
 --enable-logging
 --log-level=1
 --safebrowsing-disable-auto-update
 --test-type=ui
 --noerrdialogs
 --metrics-recording-only
 --allow-file-access-from-files
 --disable-tab-closeable-state-watcher
 --allow-file-access
 --disable-sync
 --testing-channel=NamedTestingInterface:st_42

When you use the wizard to hook on to an application, these command-line parameters are automatically
added to the base state. If an instance of Google Chrome is already running when you start testing, without

364 | Testing in Your Environment with the Open Agent

the appropriate command-line parameters, Silk Test Classic closes Google Chrome and tries to restart the
browser with the command-line parameters. If the browser cannot be restarted, an error message displays.

Note: The command-line parameter disable-web-security is required when you want to record
or replay cross-domain documents.

Note: To test a web application that is stored in the local file system, navigate to the chrome://
extensions in Google Chrome and check the Allow access to file URLs check box for the Silk
Test Chrome Extension.

Testing Google Chrome Extensions
You can use one of the following two approaches to test a Google Chrome extension (add-on) with Silk
Test Classic:

Install the
extension as a .crx
file when starting
Google Chrome

To test a Google Chrome extension that is installed as a .crx file, add the following
command line to the base state:

chrome.exe --load-extension=C:/myExtension/myExtension.crx

Note: You can only install a single extension in Google Chrome as a .crx file.
To install multiple extensions in Google Chrome, use a comma separated list
of .crx files. For example:

chrome.exe --load-extension=C:/myExtension/
myExtension.crx,C:/myExtension2/myExtension2.crx

For information on adding command line arguments to a browser, see Modifying the
Base State.

Add the extension
to a profile

Add the extension to a Google Chrome user data directory and use that profile for
testing. For additional information, see Testing Google Chrome with User Data
Directories.

Testing Google Chrome with User Data Directories
All changes that you make in Google Chrome, for example your home page, what toolbars you use, any
saved passwords, and your bookmarks, are all stored in a special folder, which is called a user data
directory.

With Silk Test Classic, you can test Google Chrome user data directories by specifying the path to the user
data directory in the base state of the application under test. The following command line includes the path
to the profile:

chrome.exe "--user-data-dir=C:/Users/MyUser/AppData/Local/Google/Chrome/User
Data"

To set the profile directory for our sample web application, you can use the following code:

const sCmdLine = """C:\Program Files (x86)\Google\Chrome\Application
\chrome.exe"" --user-data-dir=D:/temp/SilkTest --profile-directory=Profile1"

Note: When Google Chrome is started by Silk Test Classic, an empty user data directory is used.
This ensures that the test starts at a clean state.

Limitations for Testing with Google Chrome
The following list lists the known limitations for playing back tests and recording locators with Google
Chrome on a local Windows machine:

• Silk Test does not support testing child technology domains of the xBrowser domain with Google
Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.

• Silk Test Classic does not support recording a test in an HTTP Basic Authentication dialog.
• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome

functionality. For example, in a test, you cannot change the currently displayed web page by adding text

Testing in Your Environment with the Open Agent | 365

to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk Test Classic does not support the GetFocus method of the MoveableWin class.
• Silk Test does not recognize opening the Print dialog box in Google Chrome by using the Google

Chrome menu. To add opening this dialog box in Google Chrome to a test, you have to send Ctrl+Shift
+P using the TypeKeys method. Internet Explorer does not recognize this shortcut, so you have to first
record your test in Internet Explorer, and then manually add pressing Ctrl+Shift+P to your test.

• Testing on multiple Google Chrome windows at the same time is only supported if the additional
windows are opened from the initial Google Chrome window by the AUT itself. If the additional Google
Chrome windows are opened manually, Silk Test Classic does not recognize the elements on these
Google Chrome windows. For example, Silk Test Classic recognizes the elements in a Google Chrome
window that is opened by clicking on a link or a button in the AUT during recording, but Silk Test Classic
does not recognize the elements in a Google Chrome window that was opened by pressing CTRL+N
during recording.

• When using Internet Explorer to replay a test, you can use the following code to test executeJavaScript:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("function foo() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("foo();");

When replaying tests on Google Chrome, the scripts are not executed in the global context (window),
but in a closure. Everything is executed within a function. The first ExecuteJavaScript call in the
previous code sample will not work with Google Chrome, because the function foo is only available as
long as the ExecuteJavaScript call lasts.

To replay the same test on Google Chrome, you can use the following function expression:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo = function() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo();");

The previous code samples will work in Silk4J. The code for the other Silk Test clients is similar. For
additional information, refer to the documentation of the ExecuteJavaScript method in the Help of
your Silk Test client.

• Parallel testing on Google Chrome does not work if the user data directory for Google Chrome is set
through a group policy. As a workaround, ask your administrator to remove the registry key
HKEY_LOCAL_MACHINE\Software\Policies\Google\Chrome\UserDataDir or
HKEY_CURRENT_USER\Software\Policies\Google\Chrome\UserDataDir.

• Google Chrome version 73 and newer does not allow to create small browser windows in testing mode.
The exact allowed minimum size depends on the operating system. 550 pixels width and 440 pixels
height is the smallest size that works on all operating systems.

Limitations for Testing with Google Chrome on macOS
The following list lists the known limitations for playing back tests and recording locators with Google
Chrome on macOS:

• Silk Test Classic does not support the CMD key for the TypeKeys method.
• Silk Test does not support testing child technology domains of the xBrowser domain with Google

Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.
• Silk Test Classic does not support recording a test in an HTTP Basic Authentication dialog.
• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

366 | Testing in Your Environment with the Open Agent

• Silk Test Classic does not support the GetFocus method of the MoveableWin class.
• Testing on multiple Google Chrome windows at the same time is not supported on macOS.
• Attaching to an already opened Google Chrome window on macOS is not supported.
• When using Internet Explorer to replay a test, you can use the following code to test executeJavaScript:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("function foo() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("foo();");

When replaying tests on Google Chrome, the scripts are not executed in the global context (window),
but in a closure. Everything is executed within a function. The first ExecuteJavaScript call in the
previous code sample will not work with Google Chrome, because the function foo is only available as
long as the ExecuteJavaScript call lasts.

To replay the same test on Google Chrome, you can use the following function expression:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo = function() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo();");

The previous code samples will work in Silk4J. The code for the other Silk Test clients is similar. For
additional information, refer to the documentation of the ExecuteJavaScript method in the Help of
your Silk Test client.

Testing with Mozilla Firefox
This functionality is supported only if you are using the Open Agent.

This section describes how you can enhance your cross-browser test set by testing with Mozilla Firefox.

Silk Test Classic supports recording actions and replaying tests on Mozilla Firefox.

• When starting to test on Mozilla Firefox, with no running instance of Mozilla Firefox open, Silk Test
Classic starts a new instance of Mozilla Firefox. This new browser uses a temporary profile without add-
ons and with an empty cache.

• When starting to test on an instance of Mozilla Firefox which is already running, Silk Test Classic
restarts Mozilla Firefox with the same command line arguments that were used when the instance was
initially started. This restart is required to enable the Silk Test Classic automation support.

• The Mozilla Firefox instance is closed when shutting down the Open Agent or when starting to test
another application outside Mozilla Firefox.

Tip: If you want to execute an existing test script with Mozilla Firefox, Micro Focus recommends that
you use a base state or that you add a command to the test script to navigate to the URL.

While recording against Mozilla Firefox, Mozilla Firefox opens external links in a new tab, instead of a new
window. Disable the OPT_FIREFOX_SINGLE_WINDOW_MODE option in the Browser options to open
external links in a new window.

Example 1

If the running instance of Mozilla Firefox was initially started with the command C:/
program files/Mozilla/firefox.exe www.borland.com, Mozilla Firefox
opens to www.borland.com after the restart.

Testing in Your Environment with the Open Agent | 367

Example 2

If the running instance of Mozilla Firefox was initially started with the command C:/
program files/Mozilla/firefox.exe, Mozilla Firefox opens to about:blank after
the restart.

Testing Mozilla Firefox with Profiles
All changes that you make in Mozilla Firefox, for example your home page, what toolbars you use, any
saved passwords, and your bookmarks, are all stored in a special folder, which is called a profile.

To test Mozilla Firefox profiles, you can specify either the name of the profile or the path to the profile as
custom browser command line arguments in the INC file of the test:

Using the name
of the profile

The following command specifies the name of the profile:

const sCmdLine = """C:\Program Files (x86)\Mozilla Firefox
\firefox.exe"" -p myProfile"

You can configure the named profile in the Profile Manager. To start the Profile
Manager, type firefox.exe -P into a command window.

Using the path to
the profile

The following command specifies the path to the profile:

const sCmdLine = """C:\Program Files (x86)\Mozilla Firefox
\firefox.exe"" -Profile ""C:/Temp"""

Note: If Mozilla Firefox is started by Silk Test Classic, an empty profile is used. This ensures that the
test starts at a clean state. If the user manually starts Mozilla Firefox, the default profile is used.

Note: As profiles need to be deployed to the test machine are and have high memory consumption,
you might face some issues when testing profiles. If you only want to change a few browser settings,
you can use capabilities instead of profiles. For additional information, see Setting Capabilities for
Web-Driver Based Browsers.

Testing Mozilla Firefox Extensions
To test a Mozilla Firefox extension (add-on) with Silk Test Classic, add the extension to a Mozilla Firefox
profile and use that profile for testing. For additional information, see Testing Mozilla Firefox with Profiles.

Limitations for Testing with Mozilla Firefox
The following limitations are known when testing web applications with Silk Test Classic on Mozilla Firefox:

• Testing on multiple Mozilla Firefox windows at the same time is only supported if the additional windows
are opened from the initial Mozilla Firefox window by the AUT itself. If the additional Mozilla Firefox
windows are opened manually, Silk Test Classic does not recognize the elements on these Mozilla
Firefox windows. For example, Silk Test Classic recognizes the elements in a Mozilla Firefox window
that is opened by clicking on a link or a button in the AUT during recording, but Silk Test Classic does
not recognize the elements in a Mozilla Firefox window that was opened by pressing CTRL+N during
recording.

• Silk Test Classic does not support testing modal browser windows, which are windows that can be
displayed with the window.showmodaldialog command. These modal browser windows have been
officially deprecated, and are disabled with Google Chrome 37 or later, while they are planned to no
longer be supported in future versions of Mozilla Firefox. You can workaround this issue by using low-
level actions, for example native clicks with coordinates to click on an object or typekeys to fill out text
fields.

• Silk Test Classic does not support testing Silverlight with Mozilla Firefox.
• Silk Test Classic does not support testing some browser dialogs, for example the About dialog, with

Mozilla Firefox.

368 | Testing in Your Environment with the Open Agent

• Silk Test Classic does not support testing about:* pages with Mozilla Firefox.
• Silk Test Classic does not support recording a click on the Print button in Mozilla Firefox. To click on this

button during replay, you can manually add a desktop click with coordinates to your test script. For
example:

[] RECT rect = printButton.GetRect(true)
[] DesktopOA.Click(MB_LEFT, rect.xPos + (rect.xSize / 2), rect.yPos +
(rect.ySize / 2))

• Silk Test does not provide native support for Mozilla Firefox. You cannot test internal Mozilla Firefox
functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk Test Classic does not support recording locators on JavaScript alert boxes with Mozilla Firefox.
Additionally, you cannot use the following methods to handle Javascript alert boxes with Mozilla Firefox:

• AcceptAlert

• DismissAlert

• GetAlertText

• IsAlertPresent

• Silk Test Classic does not support Java applets for Mozilla Firefox.
• Silk Test Classic does not support properties in XPath expressions for Mozilla Firefox. Only attributes

are supported in XPath expressions.
• Silk Test Classic does not support the GetFocus method of the MoveableWin class.
• Silk Test does not support testing child technology domains of the xBrowser domain with Mozilla

Firefox. For example Apache Flex or Microsoft Silverlight are not supported with Mozilla Firefox.
• With Mozilla Firefox, the following methods are not supported:

• PressKeys

• ReleaseKeys

• With Mozilla Firefox, native playback for the following is not supported:

• Double-click.
• Right and middle mouse button click.

• With Mozilla Firefox, the DomClick method is not supported on controls that open an alert.

Limitations for Testing with Mozilla Firefox on macOS
The following limitations are known when testing web applications with Mozilla Firefox on macOS:

• Silk Test Classic has been tested on macOS with Mozilla Firefox 54 or later.
• Testing on multiple Mozilla Firefox windows at the same time is only supported if the additional windows

are opened from the initial Mozilla Firefox window by the AUT itself. If the additional Mozilla Firefox
windows are opened manually, Silk Test Classic does not recognize the elements on these Mozilla
Firefox windows. For example, Silk Test Classic recognizes the elements in a Mozilla Firefox window
that is opened by clicking on a link or a button in the AUT during recording, but Silk Test Classic does
not recognize the elements in a Mozilla Firefox window that was opened by pressing CTRL+N during
recording.

• Silk Test Classic does not support testing modal browser windows, which are windows that can be
displayed with the window.showmodaldialog command. These modal browser windows have been
officially deprecated, and are disabled with Google Chrome 37 or later, while they are planned to no
longer be supported in future versions of Mozilla Firefox. You can workaround this issue by using low-
level actions, for example native clicks with coordinates to click on an object or typekeys to fill out text
fields.

• Silk Test Classic does not support testing Silverlight with Mozilla Firefox.
• Silk Test Classic does not support testing some browser dialogs, for example the About dialog, with

Mozilla Firefox.

Testing in Your Environment with the Open Agent | 369

• Silk Test Classic does not support testing about:* pages with Mozilla Firefox.
• Silk Test Classic does not support recording a click on the Print button in Mozilla Firefox. To click on this

button during replay, you can manually add a desktop click with coordinates to your test script. For
example:

[] RECT rect = printButton.GetRect(true)
[] DesktopOA.Click(MB_LEFT, rect.xPos + (rect.xSize / 2), rect.yPos +
(rect.ySize / 2))

• Silk Test does not provide native support for Mozilla Firefox. You cannot test internal Mozilla Firefox
functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk Test Classic does not support recording locators on JavaScript alert boxes with Mozilla Firefox.
Additionally, you cannot use the following methods to handle Javascript alert boxes with Mozilla Firefox:

• AcceptAlert

• DismissAlert

• GetAlertText

• IsAlertPresent

• Silk Test Classic does not support Java applets for Mozilla Firefox on macOS.
• Silk Test Classic does not support properties in XPath expressions for Mozilla Firefox. Only attributes

are supported in XPath expressions.
• Silk Test Classic does not support the GetFocus method of the MoveableWin class.
• Silk Test does not support testing child technology domains of the xBrowser domain with Mozilla

Firefox. For example Apache Flex or Microsoft Silverlight are not supported with Mozilla Firefox.
• The following methods are not supported:

• PressKeys

• ReleaseKeys

• Native playback for the following is not supported:

• Double-click.
• Right and middle mouse button click.

• The DomClick method is not supported on controls that open an alert.
• With Mozilla Firefox 55, uploading a file does not work. For additional information, see File upload no

longer works with geckodriver 0.18.0 and Firefox 55.

Testing with Microsoft Edge
This functionality is supported only if you are using the Open Agent.

This section describes how you can enhance your cross-browser test set by testing with Microsoft Edge.

Limitations for Testing with Microsoft Edge
This functionality is supported only if you are using the Open Agent.

The following are the known limitations for testing with Microsoft Edge:

• The following classes, interfaces, methods, and properties are currently not supported when testing web
applications on Microsoft Edge:

• BrowserApplication class.

• ClearCache method
• CloseOtherTabs method
• CloseTab method
• ExistsTab method

370 | Testing in Your Environment with the Open Agent

https://github.com/mozilla/geckodriver/issues/858
https://github.com/mozilla/geckodriver/issues/858

• GetHorizontalScrollbar method
• GetNextCloseWindow method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• GetVerticalScrollbar method
• IsActive method
• Minimize method
• OpenContextMenu method
• OpenTab method
• Restore method
• SelectTab method
• SetActive method
• WindowState method

• The following methods of the BrowserWindow class are not supported for Microsoft Edge versions
prior to build 38.14393, the Microsoft Edge version for Microsoft Windows 10 Anniversary Update.

• PressKeys method
• ReleaseKeys method

• Silk Test Classic does not automatically bring the browser into the foreground when recording actions
against Microsoft Edge.

• When testing with Microsoft Edge, the rectangle for the BrowserApplication is not absolute.
• Silk Test Classic does not support testing Apache Flex.
• Silk Test Classic does not provide native support for Microsoft Edge. You cannot test internal Microsoft

Edge functionality. For example, in a test, you cannot change the currently displayed web page by
adding text to the navigation bar. As a workaround, you can use API calls to navigate between web
pages.

• Silk Test Classic does not support handling alerts and similar dialog boxes for Microsoft Edge.
• Image clicks are only supported for Microsoft Edge Threshold 2 (build 25.10586) or later. If you are

testing a web application on a prior version of Microsoft Edge, you can only use image verifications.
• Silk Test Classic does not support tabbing on Microsoft Edge. Tabs are recognized as windows.
• When testing web applications on Microsoft Edge, Silk Test Classic cannot locate meta-tags which

include the http-equiv attribute. For example, Silk Test Classic cannot locate the following meta-tag:

<meta http-equiv="content-type" content="text/html; charset=utf-8">

• With Microsoft Edge, Silk Test Classic does not support directly reading the currentStyle attribute of
a DOM element. You can use the GetCssStyle method of the DomElement class to retrieve the
computed CSS style with the specified style name.

• When starting the interaction with a web application on Microsoft Edge, Silk Test Classic closes any
open instance of Microsoft Edge and starts a new browser. This new browser uses a temporary profile
without add-ons and with an empty cache. This instance of Microsoft Edge is closed when shutting
down the Open Agent or when starting to test another application outside Microsoft Edge.

• With Microsoft Edge, Silk Test Classic does not recognize the textContents attribute while recording
actions or locators. However, you can use the textContents attribute in object maps and when
replaying a test on Microsoft Edge.

• Silk Test Classic does not support properties in XPath expressions for Microsoft Edge. Only attributes
are supported in XPath expressions.

• Silk Test Classic does not support the GetFocus method of the MoveableWin class.
• Silk Test Classic does not support testing web applications which include a Content-Security-Policy

HTTP header.

Testing in Your Environment with the Open Agent | 371

Responsive Web Design Testing
Desktop web applications which are built based upon responsive web design might change their
appearance in response to the size of the screen or web browser in which these applications are displayed.
Choosing the appropriate size of the replay window might have significant impact on the stability of such
tests.

Silk Test Classic enables you to specify the exact size of the browser window in the following situations:

• When you add an application configuration for a web application to a project.

You can use the following settings to specify the size of the browser window:

• The Browser size list contains a mix of predefined and custom browser window sizes, enabling you to
select the size on which you want to test.

• The Orientation list enables you to select whether you want the browser window to use landscape or
portrait orientation.

• Click Edit Browser Sizes to add custom browser sizes to the Browser size list or to specify which
browser sizes are displayed in the list.

• To add a new custom browser size to the list, click Add Browser Size.
• To exclude a size from the list, uncheck the corresponding check box.
• To add the visual breakpoints of a specific web application to the Browser size list, click Detect

Visual Breakpoints.

When replaying a test against a web application from the command line or from Silk Central, you can
specify the size of the browser viewport by setting the silktest.browserViewportSize environment variable.
You can either specify the name of a browser from the Browser Size list or a specific size.

You can change the size of the browser directly in a test script:

[] WebBrowser.BrowserWindow.SetViewportName("Google Pixel 2")
[] WebBrowser.BrowserWindow.SetViewportSize(800,300)

Example: Setting the browser size for automated replay by using the name

The following code sample sets the browser size to SVGA (800, 600) by using the
SVGA entry of the Browser size list:

SET silktest.browserViewportSize=name=SVGA;orientation=landscape

Example: Setting the browser size for automated replay by using the width and
height

The following code sample sets the browser size to SVGA (800, 600) by using the
width and height parameters:

SET
silktest.browserViewportSize=width=800;height=600;orientation=la
ndscape

Detecting Visual Breakpoints
Before detecting the visual breakpoints in a responsive web application, ensure that Mozilla Firefox 56 or
later or Google Chrome 60 or later is installed on the machine on which Silk Test Classic is running.

Many web applications that are implemented with responsive web design techniques change their layout in
response to the size of the browser or device in which they are displayed. The specific resolutions on which
the layout changes are called visual breakpoints.

372 | Testing in Your Environment with the Open Agent

Silk Test Classic supports testing such applications by detecting the visual breakpoints, and by allowing
you to resize the recording window to the specific size of such a visual breakpoint.

Silk Test Classic enables you to specify the exact size of the browser window in the following situations:

• When you add an application configuration for a web application to a project.

To find the visual breakpoints in a web application, and to display the corresponding resolutions in the
Browser size list, perform the following actions:

1. Click Edit Browser Sizes. The Edit Browser Sizes dialog appears.

2. Click Detect Visual Breakpoints. If no URL for the web application is specified in an application
configuration or base state, the Visual Breakpoint Detection URL dialog appears.

3. If no URL for the web application has been specified in an application configuration or base state, the
Visual Breakpoint Detection URL dialog appears. Type the URL into the text field and click OK. Silk
Test Classic detects all visual breakpoints for the web application and adds them to the Browser sizes
list.

4. Click OK to close the Edit Browser Sizes dialog.

You can now select any of the visual breakpoints as the size of the browser window or mobile device for
testing.

Manually Creating Tests for Dynamic Popup Menus
You must enable xBrowser extensions and use the Open Agent to create scripts that use dynamic object
recognition.

Although the xBrowser extension does not support recording, you can manually create scripts that test
dynamic popup menus. When you manually create scripts use the Record Window Identifiers dialog box
to identify the locator strings for dynamic object recognition. After you determine which event needs to be
triggered in order to pop up the menu, trigger it either by using native user input, by moving the mouse over
the element or clicking the element, or by triggering the event directly. For example, to trigger the event,
type:

DomElement.ExecuteJavaScript("currentElement.onmouseover()"))

Finding Hidden Input Fields
Hidden input fields are HTML fields for which the tag includes type="hidden". To enable a Find to
locate hidden input fields, you can use the OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS option.
The default value of the option is TRUE.

Agent.SetOption (OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS, TRUE)

Improving iframe Performance
Replaying tests against web applications that contain many iframes on browsers other than Internet
Explorer might sometimes be slow. This topic provides some performance optimization suggestions when
using the following browsers:

• Google Chrome
• Mozilla Firefox
• Microsoft Edge
• Apple Safari
• A supported mobile browser on a mobile device or on an emulator.

If you are facing such performance issues, you could try to apply some performance optimizations to your
test scripts.

Testing in Your Environment with the Open Agent | 373

For example, assume that you are testing against a web application with an iframe structure that looks
similar to the following:

BrowserWindow
 iframe name=1
 iframe name=2
 iframe name=3
 iframe name=4
 iframe name=5
 iframe name=6
 iframe name=7
 iframe name=8
 iframe name=9

You could try to apply one or more of the following performance optimizations:

Using the
Whitelist for
iframe support
to enable only
the iframes that
you are
interested in

For example, in the previous iframe structure, assume you only want to interact with
elements in the iframe with the name 8. A locator for such an element would look like
the following:

//BrowserApplication//BrowserWindow//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='username']

Note: All supported browsers except Internet Explorer include iframes in the
locator.

To interact with the elements from the iframe with the name 8, you need to also include
all parent iframes in the Whitelist for iframe support. For this example, type name:6,
name:8 into the Whitelist for iframe support field.

Using the
Blacklist for
iframe support
to disable the
iframes that
you are not
interested in

You can use the Blacklist for iframe support to disable iframes that you are not
interested in, for example iframes for ads.

For example, in the previous iframe structure, if you know that you will never test
elements in the iframe with the name 1 or in its child iframes, type name:1 into the
Blacklist for iframe support field.

Completely
disabling
iframe support

You can completely disable the iframe support by unchecking the option
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.

For example, if all iframes in your application are only used for ads, and you do not
want to test any of these iframes, you can use this option.

Adapt locators
to reduce the
number of
iframe
searches

To enhance the replay performance of find actions, you can adapt the locators to
reduce the number of iframe searches. Applying this performance optimization might
work very well in combination with using the Blacklist for iframe support or Whitelist
for iframe support.

For example, in the previous iframe structure, assume you only want to interact with
elements in the iframe with the name 8. You can adapt the Xpath locators or the object
map entries to reduce the number of iframe searches.

The following sample script searches multiple times for the iframe with the name 8.

 // .inc file
[-] window BrowserApplication WebBrowser
 [] locator "//BrowserApplication"
 [-] BrowserWindow BrowserWindow
 [] locator "//BrowserWindow"
 [-] DomElement Username
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='username']"

374 | Testing in Your Environment with the Open Agent

 [-] DomElement Password
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='password']"
 [-] DomElement LoginButton
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='loginButton']"

// .t file
WebBrowser.BrowserWindow.Username.TypeKeys("my user name")
WebBrowser.BrowserWindow.Password.TypeKeys("top secret")
WebBrowser.BrowserWindow.LoginButton.Click()

You can adapt the locators in the previous sample script to only search once for the
iframe with the name 8.

 // .inc file
[-] window BrowserApplication WebBrowser
 [] locator "//BrowserApplication"
 [-] BrowserWindow BrowserWindow
 [] locator "//BrowserWindow"
 [-] DomElement Username
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='username']"
 [-] DomElement Password
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='password']"
 [-] DomElement LoginButton
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='loginButton']"

// .t file, leave the .inc file unchanged
WINDOW iframe = WebBrowser.BrowserWindow.Find("//
IFRAME[@name='6']//IFRAME[@name='8']")
iframe.Find("//input[@name='username']").TypeKeys("my user
name")
iframe.Find("//input[@name='password']")TypeKeys("top secret")
iframe.Find("//input[@name='loginButton']").Click()

Tip: You cannot use window declarations to improve the performance. Adapting
the INC file as follows does not provide any performance improvement, as the
iframe is still resolved every time.

 // .inc file
[-] window BrowserApplication WebBrowser
 [] locator "//BrowserApplication"
 [-] BrowserWindow BrowserWindow
 [] locator "//BrowserWindow"
 [-] DomElement Iframe
 [] locator "//IFRAME[@name='6']//IFRAME[@name='8']"
 [-] DomElement Username
 [] locator "//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='username']"
 [-] DomElement Password
 [] locator "//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='password']"
 [-] DomElement LoginButton
 [] locator "//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='loginButton']"

// .t file
WebBrowser.BrowserWindow.Username.TypeKeys("my user name")
WebBrowser.BrowserWindow.Password.TypeKeys("top secret")
WebBrowser.BrowserWindow.LoginButton.Click()

Testing in Your Environment with the Open Agent | 375

Cross-Browser Testing: Frequently Asked Questions
This section includes questions that you might encounter when testing your Web application on various
browsers.

How do I Verify the Font Type Used for the Text of an Element?
You can access all attributes of the currentStyle attribute of a DOM element by separating the attribute
name with a ":".

Internet Explorer 8 or earlier wDomElement.GetProperty("currentStyle:fontName")

All other browsers, for example
Internet Explorer 9 or later and
Mozilla Firefox

wDomElement.GetProperty("currentStyle:font-name")

What is the Difference Between textContents, innerText, and
innerHtml?
• textContents is all text contained by an element and all its children that are for formatting purposes

only.
• innerText returns all text contained by an element and all its child elements.
• innerHtml returns all text, including html tags, that is contained by an element.

Consider the following html code.

<div id="mylinks">
 This is my link collection:

 Bye bye Borland
 Welcome to Micro Focus

</div>

The following table details the different properties that return.

Code Returned Value

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("textContents")

This is my link collection:

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerText")

This is my link collection:Bye bye Borland
Welcome to Micro Focus

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerHtml")

This is my link collection:

 Bye bye
Borland
 Welcome to
Micro Focus

Note: In Silk Test 13.5 or later, whitespace in texts, which are retrieved through the textContents
property of an element, is trimmed consistently across all supported browsers. For some browser
versions, this whitespace handling differs to Silk Test versions prior to Silk Test 13.5. You can re-

376 | Testing in Your Environment with the Open Agent

enable the old behavior by setting the OPT_COMPATIBILITY option to a version lower than 13.5.0.
For example, to set the option to Silk Test 13.0, type the following into your script:

Agent.SetOption(OPT_COMPATIBILITY, "13.0.0")

I Configured innerText as a Custom Class Attribute, but it Is Not Used
in Locators
A maximum length for attributes used in locator strings exists. InnerText tends to be lengthy, so it might
not be used in the locator. If possible, use textContents instead.

What Should I Take Care Of When Creating Cross-Browser Scripts?
When you are creating cross-browser scripts, you might encounter one or more of the following issues:

• When recording a script for cross-browser testing, Micro Focus recommends using Google Chrome,
Mozilla Firefox, or Microsoft Edge, as a script recorded with Silk Test Classic against Internet Explorer
might slightly differ in comparison to a script recorded on one of the other browsers.

• Different attribute values. For example, colors in Internet Explorer are returned as "# FF0000" and in
Mozilla Firefox as "rgb(255,0,0)".

• Different attribute names. For example, the font size attribute is called "fontSize" in Internet Explorer
8 or earlier and is called "font-size" in all other browsers, for example Internet Explorer 9 or later
and Mozilla Firefox.

• Some frameworks may render different DOM trees.

How Can I See Which Browser I Am Currently Using?
The BrowserApplication class provides a property "browsertype" that returns the type of the
browser. You can add this property to a locator in order to define which browser it matches.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Examples

To get the browser type, type the following into the locator:

browserApplication.GetProperty("browsertype")

Additionally, the BrowserWindow provides a method GetUserAgent that returns the user agent string of
the current window.

Which Locators are Best Suited for Stable Cross Browser Testing?
The built in locator generator attempts to create stable locators. However, it is difficult to generate quality
locators if no information is available. In this case, the locator generator uses hierarchical information and
indices, which results in fragile locators that are suitable for direct record and replay but ill-suited for stable,
daily execution. Furthermore, with cross browser testing, several AJAX frameworks might render different
DOM hierarchies for different browsers.

To avoid this issue, use custom IDs for the UI elements of your application.

Logging Output of My Application Contains Wrong Timestamps
This might be a side effect of the synchronization. To avoid this problem, specify the HTML synchronization
mode.

Testing in Your Environment with the Open Agent | 377

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

My Test Script Hangs After Navigating to a New Page
This can happen if an AJAX application keeps the browser busy (open connections for Server Push /
ActiveX components). Try to set the HTML synchronization mode. Check the Page Synchronization for
xBrowser topic for other troubleshooting hints.

Recorded an Incorrect Locator
The attributes for the element might change if the mouse hovers over the element. Silk Test Classic tries to
track this scenario, but it fails occasionally. Try to identify the affected attributes and configure Silk Test
Classic to ignore them.

Rectangles Around Elements in Internet Explorer are Misplaced
• Make sure the zoom factor is set to 100%. Otherwise, the rectangles are not placed correctly.
• Ensure that there is no notification bar displayed above the browser window. Silk Test Classic cannot

handle notification bars.

Link.Select Does Not Set the Focus for a Newly Opened Window in
Internet Explorer
This is a limitation that can be fixed by changing the Browser Configuration Settings. Set the option to
always activate a newly opened window.

DomClick(x, y) Is Not Working Like Click(x, y)
If your application uses the onclick event and requires coordinates, the DomClick method does not
work. Try to use Click instead.

FileInputField.DomClick() Will Not Open the Dialog
Try to use Click instead.

How can I scroll in a browser?
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides the following ways to scroll controls in a browser into view during replay:

ExecuteJavaScript method
(DomElement)

Use the ScrollIntoView method to scroll a specific DOM element
into the visible area of the browser window.

ExecuteJavaScript method
(BrowserWindow)

Use the ExecuteJavaScript method to scroll the entire page up or
down by a specified range.

Examples

The following command scrolls one page down:

browserWindow.ExecuteJavaScript("window.scrollBy(0,
window.innerHeight)")

The following command scrolls down 100 pixels:

browserWindow.ExecuteJavaScript("window.scrollBy(0, 100)")

The following command scrolls up 100 pixels:

browserWindow.ExecuteJavaScript("window.scrollBy(0, -100)")

378 | Testing in Your Environment with the Open Agent

The Move Mouse Setting Is Turned On but All Moves Are Not
Recorded. Why Not?
In order to not pollute the script with a lot of useless MoveMouse actions, Silk Test Classic does the
following:

• Only records a MoveMouse action if the mouse stands still for a specific time.
• Only records MoveMouse actions if it observes activity going on after an element was hovered over. In

some situations, you might need to add some manual actions to your script.
• Silk Test Classic supports recording mouse moves only for Web applications, Win32 applications, and

Windows Forms applications. Silk Test Classic does not support recording mouse moves for child
technology domains of the xBrowser technology domain, for example Apache Flex and Swing.

I Need Some Functionality that Is Not Exposed by the xBrowser API.
What Can I Do?
You can use ExecuteJavaScript() to execute JavaScript code directly in your Web application. This
way you can build a workaround for nearly everything.

Why Are the Class and the Style Attributes Not Used in the Locator?
These attributes are on the ignore list because they might change frequently in AJAX applications and
therefore result in unstable locators. However, in many situations these attributes can be used to identify
objects, so it might make sense to use them in your application.

Dialog is Not Recognized During Replay
When recording a script, Silk Test Classic recognizes some windows as Dialog. If you want to use such a
script as a cross-browser script, you have to replace Dialog with Window, because some browsers do not
recognize Dialog.

For example, the script might include the following line:

/BrowserApplication//Dialog//PushButton[@caption='OK']

Rewrite the line to enable cross-browser testing to:

/BrowserApplication//Window//PushButton[@caption='OK']

Why Do I Get an Invalidated-Handle Error?
This topic describes what you can do when Silk Test Classic displays the following error message: The
handle for this object has been invalidated.

This message indicates that something caused the object on which you called a method, for example
Click, to disappear. For example, if something causes the browser to navigate to a new page, during a
method call in a web application, all objects on the previous page are automatically invalidated.

When testing a web application, the reason for this problem might be the built-in synchronization. For
example, suppose that the application under test includes a shopping cart, and you have added an item to
this shopping cart. You are waiting for the next page to be loaded and for the shopping cart to change its
status to contains items. If the action, which adds the item, returns too soon, the shopping cart on the
first page will be waiting for the status to change while the new page is loaded, causing the shopping cart
of the first page to be invalidated. This behavior will result in an invalidated-handle error.

As a workaround, you should wait for an object that is only available on the second page before you verify
the status of the shopping cart. As soon as the object is available, you can verify the status of the shopping
cart, which is then correctly verified on the second page.

Testing in Your Environment with the Open Agent | 379

Why Are Clicks Recorded Differently in Internet Explorer 10?
When you record a Click on a DomElement in Internet Explorer 10 and the DomElement is dismissed
after the Click, then the recording behavior might not be as expected. If another DomElement is located
beneath the initial DomElement, Silk Test records a Click, a MouseMove, and a ReleaseMouse, instead
of recording a single Click.

A possible workaround for this unexpected recording behavior depends on the application under test.
Usually it is sufficient to delete the unnecessary MouseMove and ReleaseMouse events from the
recorded script.

Testing the Insurance Company Sample Web
Application
Silk Test Classic provides a sample insurance company Web application, http://demo.borland.com/
InsuranceWebExtJS/.

To complete a tutorial for how to test the insurance company Web application using Silk Test Classic,
complete each of the following steps. Or, in the Help, click the Contents tab and then expand Testing in
Your Environment > Testing Web Applications > Using the xBrowser Tech Domain > Testing the
Insurance Company Sample Web Application. Follow the topics sequentially in the Testing the
Insurance Company Sample Web Application book to test the sample Web application using Silk Test
Classic.

To test the sample Web application, follow these steps:

• Create a New Project for the insurance company Web application.
• Configure the insurance company Web application.
• Record a test case for the insurance company Web site.
• Replay the test case for the insurance company Web site.
• Modify the insurance company test case to replay tests in a different browser than Internet Explorer.

Creating a New Project for the Insurance Company Web Application
The type of project that you select determines the default Agent. For Web application projects, the Open
Agent is automatically set as the default agent. Silk Test Classic uses the default agent when configuring
an application and recording a test case.

1. Click File > New Project, or click Open Project > New Project on the Basic workflow bar. The Create
Project dialog box opens.

2. Type a project name and a description in the appropriate fields.

3. Click OK to save your project in the default location, C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within the specified
directory, saves the projectname.vtp and projectname.ini to this location and copies the
extension .ini files, which are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the
extend subdirectory. If you do not want to save your project in the default location, click Browse and
specify the folder in which you want to save your project.

Silk Test Classic creates your project and displays nodes on the Files and Global tabs for the files and
resources associated with this project.

Configuring the Insurance Company Web Application
When you configure an application, Silk Test Classic automatically creates a base state for the application.
An application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended execution.

380 | Testing in Your Environment with the Open Agent

http://demo.borland.com/InsuranceWebExtJS
http://demo.borland.com/InsuranceWebExtJS

1. Click Configure Applications on the Basic Workflow bar.

If you do not see Configure Applications on the Basic Workflow bar, ensure that the default Agent is
set to the Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

3. Select Internet Explorer.

4. In the Enter URL to navigate text box, type the URL of the web application that you want to test.

For example, type http://demo.borland.com/gmoajax.

5. Click OK.

The Choose name and folder of the new frame file page opens. Silk Test Classic configures the
recovery system and names the corresponding file frame.inc by default.

6. Navigate to the location in which you want to save the frame file.

7. In the File name field, type the name for the frame file that contains the default base state and recovery
system. Then, click Save.

Silk Test Classic automatically creates a base state for the application. By default, Silk Test Classic lists
the caption of the main window of the application as the locator for the base state. When you configure
an application, Silk Test Classic adds an include file based on the technology or browser type that you
enable to the Use files location in the Runtime Options dialog box. For instance, if you configure an
application that uses one of the supported browsers, Silk Test Classic adds the xBrowser.inc file to
the Runtime Options dialog box.

Silk Test Classic opens the Web page. Record the test case whenever you are ready.

Recording a Test Case for the Insurance Company Web Site

1. Click Record Testcase on the Basic Workflow bar. The Record Testcase dialog box opens.

2. Type the name of your test case in the Testcase name field.

For example, type ZipTest.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

3. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing. If you choose DefaultBaseState
as the application state, the test case is recorded in the script file as: testcase testcase_name ().

4. If you do not want Silk Test Classic to display the status window during playback when driving the
application to the specified base state, uncheck the Show AppState status window check box.

Typically, you check this check box. However, in some circumstances it is necessary to hide the status
window. For instance, the status bar might obscure a critical control in the application you are testing.

5. Click Start Recording. Silk Test Classic:

• Closes the Record Testcase dialog box.
• Starts your application, if it is not already running
• Removes the editor window from the display.
• Displays the Recording window.
• Waits for you to take further action.

6. In the insurance company web site, perform the following steps:

a) From the Select a Service or login list box, select Auto Quote. The Automobile Instant Quote
page opens.

b) Type a zip code and email address in the appropriate fields, click an automobile type, and then click
Next.

Testing in Your Environment with the Open Agent | 381

http://demo.borland.com/gmoajax

c) Specify an age, click a gender and driving record type, and then click Next.
d) Specify a year, make, and model, click the financial info type, and then click Next. A summary of the

information you specified displays.
e) Point to the Zip Code that you specified and press Ctrl+Alt to add a verification to the script.

You can add a verification for any of the information that displays.

The Verify Properties dialog box opens.
f) Check the textContents check box and then click OK. A verification action is added to the script for

the zip code text.

An action that corresponds with each step is recorded.

7. To review what you have recorded, click Stop in the Recording window.

Silk Test Classic displays the Record Testcase dialog box, which contains the code that has been
recorded for you.

8. Click Paste to Editor.

9. Click File > Save.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Replaying a Test Case for the Insurance Company Web Site
Replay a test to ensure that it works as expected.

1. Make sure that the test case you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select the ZipTest test case.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. Click Run.

Silk Test Classic runs the test case and generates a results file. The results file describes whether the
test passed or failed, and provides summary information.

xBrowser Classes
This section lists the classes that are used for the xBrowser technology domain.

382 | Testing in Your Environment with the Open Agent

Universal Windows Platform Support
Describes the built-in support for testing Microsoft Windows 10 apps that are using the Universal Windows
Platform API.

UWP is an API created by Microsoft that allows developing apps that can be purchased and downloaded
through the Microsoft Store.

Silk Test Classic provides built-in support for testing UWP apps on the following operating systems:

• Microsoft Windows 10
• Microsoft Windows Server 2019

Note: Silk Test does not support testing Universal Windows Platform (UWP) apps (also known as
Windows Store apps or Metro-style apps) on Microsoft Windows 8 and Microsoft Windows 8.1.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported controls

Silk Test Classic includes record and replay support for UWP controls that are based on UIA controls, as
well as for the following controls:

• UWPComboBoxItem

• UWPComboBox

Application configuration

The application configuration for a UWP app includes the following:

Executable The executable for a UWP app is a combination of the name of the app, the publisher ID,
and a part of the app identifier that uniquely identifies the app in the context of the
package. For example, a UWP app with the name Microsoft.WindowsCalculator, the
publisher ID 8wekyb3d8bbwe, and the app identifier App has the executable
Microsoft.WindowsCalculator_8wekyb3d8bbwe!App.

Executable
pattern

The executable pattern for a UWP app is similar to the executable. For example, a UWP
app could have the executable pattern Microsoft.WindowsCalculator_8wekyb3d8bbwe!App
or *\Microsoft.WindowsCalculator_8wekyb3d8bbwe!App.

An individual window of a UWP app can often be another UWP app. To test such a window, you need to
configure an additional application configuration. If Silk Test Classic does not recognize a window in a UWP
app, open the Select Application dialog box while the window is open and check whether the Windows
tab includes an entry for the window that is not recognized. Then add an application configuration for the
window.

Testing Windows API-Based Applications
This section describes how Silk Test Classic provides built-in support for testing Microsoft Windows API-
based applications.

Overview of Windows API-Based Application Support
Silk Test Classic provides built-in support for testing Microsoft Windows API-based applications. Several
objects exist in Microsoft applications that Silk Test Classic can better recognize if you enable Accessibility.
For example, without enabling Accessibility Silk Test Classic records only basic information about the menu
bar in Microsoft Word and the tabs that display in Internet Explorer 7.0. However, with Accessibility

Testing in Your Environment with the Open Agent | 383

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

enabled, Silk Test Classic fully recognizes those objects. You can also improve Silk Test Classic object
recognition by defining a new window, if necessary.

You can test Windows API-based applications using the Classic or Open Agent.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Object Recognition

Windows API-based applications support hierarchical object recognition and dynamic object recognition.
You can create tests for both dynamic and hierarchical object recognition in your test environment. Use the
method best suited to meet your test requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

To test Windows API-based applications using hierarchical object recognition, record a test for the
application that you want to test. Then, replay the tests at your convenience.

Supported Controls

For a complete list of the record and replay controls available for Windows-based testing for each Agent
type, view the WIN32.inc and winclass.inc file. To access the WIN32.inc file, which is used with the
Open Agent, navigate to the <SilkTest directory>\extend\WIN32 directory. By default, this file is
located in C:\Program Files\Silk\SilkTest\extend\WIN32\WIN32.inc. To access the
winclass.inc file, which is used with the Classic Agent, navigate to the <SilkTest directory>\
directory. By default, this file is located in C:\Program Files\Silk\SilkTest\winclass.inc.

Locator Attributes for Windows API-Based
Applications
Silk Test Classic supports the following locator attributes for the controls of Windows API-based client/
server applications:

• caption.
• windowid.
• priorlabel. For controls that do not have a caption, priorlabel is used as the caption

automatically. For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Suppressing Controls (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can suppress the controls for certain classes for .NET, Java SWT, and Windows API-based
applications. For example, you might want to ignore container classes to streamline your test cases.
Ignoring these unnecessary classes simplifies the object hierarchy and shortens the length of the lines of
code in your test scripts and functions. Container classes or ‘frames’ are common in GUI development, but
may not be necessary for testing.

The following classes are commonly suppressed during recording and playback:

384 | Testing in Your Environment with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Technology Domain Class

.NET Group

Java SWT org.eclipse.swt.widgets.Composite

org.eclipse.swt.widgets.Group

Windows API-based applications Group

To suppress specific controls:

1. Click Options > Class Map. The Class Map dialog box opens.

2. In the Custom class field, type the name of the class that you want suppress.

The class name depends on the technology and the extension that you are using. For Windows API-
based applications, use the Windows API-based class names. For Java SWT applications, use the fully
qualified Java class name. For example, to ignore the SWT_Group in a Windows API-based
application, type SWT_Group, and to ignore to ignore the Group class in Java SWT applications, type
org.eclipse.swt.widgets.Group.

3. In the Standard class list, select Ignore.

4. Click Add. The custom class and the standard class display at the top of the dialog box.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.
• Windows Presentation Foundation (WPF).

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

Configuring Standard Applications
A standard application is an application that does not use a Web browser, such as a Windows application
or Java SWT application.

Configure the application that you want to test to set up the environment that Silk Test Classic will create
each time you record or replay a test case.

Testing in Your Environment with the Open Agent | 385

1. Start the application that you want to test.

2. Click Configure Applications on the basic workflow bar.

If you do not see Configure Applications on the workflow bar, ensure that the default agent is set to
the Open Agent.

The Select Application dialog box opens.

3. Select the Windows tab.

4. Select the application that you want to test from the list.

Note: If the application that you want to test does not appear in the list, uncheck the Hide
processes without caption check box. This option, checked by default, is used to filter only those
applications that have captions.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application and opens
the include file.

9. Record the test case whenever you are ready.

Note: For SAP applications, you must set Ctrl+Alt as the shortcut key combination to use. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Determining the priorLabel in the Win32 Technology
Domain
To determine the priorLabel in the Win32 technology domain, all labels and groups in the same window as
the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

386 | Testing in Your Environment with the Open Agent

Testing Embedded Chrome Applications
An embedded Chrome application is a desktop application with an embedded web browser engine that is
based on the Chromium core. Such applications enable you to add web browser capabilities to a desktop
application. You can create such an app by using for example the Chromium Embedded Framework (CEF)
or the Electron framework.

Silk Test Classic provides full support for testing embedded Chrome applications that allow remote
debugging through the --remote-debugging-port command line argument. Silk Test Classic does not
support testing embedded Chrome applications that are based on Java, for example Java AWT and Swing
applications.

To test an embedded Chrome application with Silk Test Classic, you have to set the debugging ports for the
executable of the application. Start the application from the command line and set the remote debugging
port.

• Silk Test Classic checks if the -remote-debugging-port argument is set in the command line
arguments of the embedded Chrome application. If the argument is set, Silk Test Classic automatically
sets the Enable embedded Chrome support field to the appropriate executable and debugging port.

• If the -remote-debugging-port argument is not set in the command line arguments of the
embedded Chrome application, you have to manually specify the executable and the port in the Enable
embedded Chrome support field:

1. In the Silk Test Classic UI, select Edit Options.
2. In the Options dialog, select the Advanced tab.
3. In the Enable embedded Chrome support option, specify the executable and the port as a comma-

separated value pair:

<application name>.exe=<port number>

Note: You cannot test embedded Chrome applications that do not allow remote debugging with Silk
Test Classic.

Note: Silk Test Classic does not support testing non-browser menus of Electron apps.

Example

For example, you can start the application myApp from the command line as follows:

myApp.exe --remote-debugging-port=9222

You can then specify the executable and port in the Enable embedded Chrome
support option as follows:

myApp.exe=9222

Microsoft Foundation Class Support
The class ID of a Microsoft Foundation Class (MFC) control might change over time and therefore cannot
be used to generate a stable locator. To avoid generating unstable locators, Silk Test Classic uses the
following attributes for the locators:

• The MFC class name, if the Windows class name of the MFC control starts with Afx:.
• The Windows class name, if the Windows class name of the MFC control does not start with Afx:.

Silk Test Classic only supports MFC version 140, and only supports the following combinations:

• Release, x86, MBCS
• Release, x86, Unicode

Testing in Your Environment with the Open Agent | 387

• Debug, x86, MBCS
• Debug, x86, Unicode
• Release, x64, MBCS
• Release, x64, Unicode
• Debug, x64, MBCS
• Debug, x64, Unicode

Note: To execute existing tests with MFC control locators that have been generated with Silk Test
Classic 18.5 or prior, set the OPT_COMPATIBILITY option in the affected test scripts to version 18.5.0
or prior:

'VB .NET code
Agent.SetOption("OPT_COMPATIBILITY", "18.5.0")

Limitations for Testing on Microsoft Windows 8 and
Microsoft Windows 8.1

The following list lists the known limitations for testing on Microsoft Windows 8 and Microsoft Windows 8.1:

• Silk Test does not support testing Universal Windows Platform (UWP) apps (also known as Windows
Store apps or Metro-style apps) on Microsoft Windows 8 and Microsoft Windows 8.1.

388 | Testing in Your Environment with the Open Agent

Keyword-Driven Tests
This functionality is supported only if you are using the Open Agent.

Keyword-driven testing is a software testing methodology that separates test design from test development
and therefore allows the involvement of additional professional groups, for example business analysts, in
the test automation process. Silk Central and Silk Test support the keyword-driven testing methodology and
allow a very close collaboration between automation engineers and business analysts by having
automation engineers develop a maintainable automation framework consisting of shared assets in the
form of keywords in Silk Test. These keywords can then be used by business analysts either in Silk Test to
create new keyword-driven tests or in Silk Central to convert their existing manual test assets to automated
tests or to create new keyword-driven tests.

• A keyword-driven test is an executable collection of keywords. A keyword-driven test can be played back
just like any other test.

• A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce
maintenance effort and to keep your tests well-arranged.

• A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET.

There are two phases required to create keyword-driven tests:

1. Designing the test.
2. Implementing the keywords.

Advantages of Keyword-Driven Testing
This functionality is supported only if you are using the Open Agent.

The advantages of using the keyword-driven testing methodology are the following:

• Keyword-driven testing separates test automation from test case design, which allows for better division
of labor and collaboration between test engineers implementing keywords and subject matter experts
designing test cases.

• Tests can be developed early, without requiring access to the application under test, and the keywords
can be implemented later.

• Tests can be developed without programming knowledge.

Keyword-Driven Tests | 389

• Keyword-driven tests require less maintenance in the long run. You need to maintain the keywords, and
all keyword-driven tests using these keywords are automatically updated.

• Test cases are concise.
• Test cases are easier to read and to understand for a non-technical audience.
• Test cases are easy to modify.
• New test cases can reuse existing keywords, which amongst else makes it easier to achieve a greater

test coverage.
• The internal complexity of the keyword implementation is not visible to a user that needs to create or

execute a keyword-driven test.

Keywords
This functionality is supported only if you are using the Open Agent.

A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET. In Silk
Test Classic, a keyword is a method with the keyword keyword before the method name. Keywords are
saved as keyword assets.

You can define keywords and keyword sequences during the creation of a keyword-driven test and you can
then implement them as test methods. You can also mark existing test methods as keywords by adding the
keyword keyword before the method name..Keywords are defined as follows:

keyword method_name() alias "keyword_name" keyworddescription
"description_text"

You can use the alias in the definition to give a name to the keyword that is different than the method name.
The alias and the description are optional.

A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce maintenance
effort and to keep your tests well-arranged.

A keyword or a keyword sequence can have a combined total of 20 input and output parameters. Any
parameter of the test method that implements the keyword is a parameter of the keyword.

Note: You cannot use group keywords in Silk Test Classic.

Example

A test method that is marked as a keyword can look like the following:

keyword Login() alias "Login"
 ... // method implementation

or

keyword Login(string userName, string password) alias "Login"
keyworddescription "Logs in with the given name and password."
 ... // method implementation

where the keyword logs into the application under test with a given user name and
password.

Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

390 | Keyword-Driven Tests

Creating a Keyword-Driven Test in Silk Test Classic
Before you can create a keyword-driven test in Silk Test Classic, you have to select a project.

This functionality is supported only if you are using the Open Agent.

Use the Keyword-Driven Test Editor to combine new keywords and existing keywords into new keyword-
driven tests. New keywords need to be implemented as methods in a later step.

1. Click File > New. The New File dialog box opens.

2. Select Keyword-driven test from the file type list.

3. Click OK. The Keyword-Driven Test Editor opens.

4. Perform one of the following actions:

• To add a new keyword, type a name for the keyword into the New Keyword field.
• To add an existing keyword, expand the list and select the keyword that you want to add.

5. Press Enter.

6. Repeat the previous two steps until the test includes all the keywords that you want to execute.

7. Click File > Save. The Save As dialog box opens.

8. Type a name for the new test into the File name field.

9. Click Save.

10.Click Yes to add the keyword-driven test to the active project.

Continue with implementing the keywords or with executing the test, if all keywords are already
implemented.

Recording a Keyword-Driven Test in Silk Test Classic
This functionality is supported only if you are using the Open Agent.

To record a single keyword, see Recording a Keyword.

To record a new keyword-driven test:

1. In the workflow bar, click Record Testcase. The Start Recording dialog box opens.

2. Select Keyword-Driven Test.

3. Click Yes to start recording the keyword-driven test.

4. Select the application state.

During the recording of a keyword-driven test, Silk Test Classic generates a base state keyword with the
same name as the application state that you have selected in the Record Keyword-Driven Test dialog
box. By default, the application state is the DefaultBaseState. Silk Test Classic inserts this base state
keyword as the first keyword of the keyword-driven test.

5. Click Start Recording.

6. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

7. To test a standard application, select the application from the list.

8. To test a web application or a mobile web application, select one of the installed browsers or mobile
browsers from the list.

Keyword-Driven Tests | 391

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

9. To test a native mobile application (app):

a) Select the mobile device, on which you want to test the app, from the list.
b) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk Test Classic supports HTTP
and UNC formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

10.If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.

11.Depending on the dialog that is open, perform one of the following:

• In the Select Application dialog box, click OK.
• In the Select Browser dialog box, click Record.

12.If you have defined a new application configuration, specify a name and location for the new frame file.

13.In the application under test, perform the actions that you want to include in the first keyword.

For information about the actions available during recording, see Actions Available During Recording.

14.To specify a name for the keyword, hover the mouse cursor over the keyword name in the Recording
window and click Edit.

Note: Silk Test Classic automatically adds the keyword Start application to the start of the
keyword-driven test. In this keyword, the applications base state is executed to enable the test to
replay correctly. For additional information on the base state, see Base State.

15.Type a name for the keyword into the Keyword name field.

16.Click OK.

17.To record the actions for the next keyword, type a name for the new keyword into the New keyword
name field and click Add. Silk Test Classic records any new actions into the new keyword.

18.Create new keywords and record the actions for the keywords until you have recorded the entire
keyword-driven test.

19.Click Stop. The Record Keyword-Driven Test dialog box opens.

20.Click Paste to Editor. The Update Files dialog box opens.

21.Click Paste testcase and update window declaration(s). The Save Keyword Implementation dialog
box opens.

22.Select a file name and a location to save the implementation of the recorded keywords.

23.Click Save.

Silk Test Classic creates the new keyword-driven test with all recorded keywords.

392 | Keyword-Driven Tests

Setting the Base State for a Keyword-Driven Test in Silk
Test Classic

This functionality is supported only if you are using the Open Agent.

When you execute a keyword-driven test with Silk Test Classic and the keyword-driven test calls a base
state keyword, Silk Test Classic starts your AUT from the base state.

During the recording of a keyword-driven test, Silk Test Classic generates a base state keyword with the
same name as the application state that you have selected in the Record Keyword-Driven Test dialog
box. By default, the application state is the DefaultBaseState. Silk Test Classic inserts this base state
keyword as the first keyword of the keyword-driven test.

Implementing a Keyword in Silk Test Classic
Before implementing a keyword, define the keyword as part of a keyword-driven test.

This functionality is supported only if you are using the Open Agent.

To implement a keyword for reuse in keyword-driven tests:

1. Open a keyword-driven test that includes the keyword that you want to implement.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Start Recording dialog box opens.

3. Perform one of the following actions:

• To record the keyword, click Yes.
• To create an empty keyword method, click No.

4. Click Record.

For additional information on recording, see Recording a Keyword.

You can now record or manually script actions for the keyword.

Recording a Keyword in Silk Test Classic
You can only record actions for a keyword that already exists in a keyword-driven test, not for a keyword
that is completely new. To record a new keyword-driven test, see Recording a Keyword-Driven Test.

This functionality is supported only if you are using the Open Agent.

To record the actions for a new keyword:

1. Open a keyword-driven test that includes the keyword that you want to record.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Start Recording dialog box opens.

3. Click Yes. The Recording window opens and Silk Test Classic starts recording the actions for the
keyword.

4. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

5. Click Stop. The Record Actions on Open Agent dialog box opens.

6. Click Paste to Editor. The Update Files dialog box opens.

7. Click Paste script and update window declaration(s).

Keyword-Driven Tests | 393

8. Click OK. The Record Actions on Open Agent dialog box opens.

9. Click Close.

The recorded actions are displayed in the defined 4Test script.

Marking a Test Method in a Script as a Keyword
This functionality is supported only if you are using the Open Agent.

Mark an existing test method in a script as a keyword to reuse the method in keyword-driven tests.

1. Open the script which includes the test method that you want to mark as a keyword.

2. Add keyword to the start of the test method.

By default, the keyword name is the name of the test method.

3. Optional: You can set a different name for the keyword by adding alias "KeywordName" to the start
of the test method.

You can now use the test method as a keyword in a keyword-driven test.

Examples

To mark the test method TestLogin as a new keyword with the name Login, type the
following before the start of the test method:

keyword TestLogin() alias "Login"

To mark the test method TestLogin as a new keyword with the name Login and with
the two input parameters UserName and PassWord, type the following:

keyword TestLogin(string UserName, string PassWord) alias
"Login" keyworddescription "Logs in with the given name and
password."
 ... // method implementation

Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

Editing a Keyword-Driven Test
This functionality is supported only if you are using the Open Agent.

Note: In Silk Test Classic, you can edit and execute keyword-driven tests that are located in Silk Test
Classic, and you can execute keyword-driven tests that are stored in Silk Central. To edit a keyword-
driven test, which is stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test
Editor and click Edit.

To edit a keyword-driven test:

1. Open the keyword-driven test in the Keyword-Driven Test Editor.

a) Click File > Open and browse for the keyword-driven test.

If the test is included in a project, you can also expand the Keyword Tests node and double-click on
the keyword-driven test that you want to edit.

b) Click Keyword-Driven Test.

2. To add a new keyword to the keyword-driven test:

394 | Keyword-Driven Tests

a) Click into the New Keyword field.
b) Type a name for the new keyword.
c) Press Enter.

3. To edit an existing keyword, click Open Keyword to the left of the keyword.

Note: Silk Central has the ownership of any keyword that has been created in Silk Central, which
means any changes that you make to such keywords are saved in Silk Central, not in Silk Test
Classic.

4. To copy a keyword into the keyword-driven test:

a) Select the keyword.

Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.

b) Press Ctrl+C.
c) Select the row above which you want to insert the keyword.
d) Press Ctrl+V.

5. To move a keyword to another location in the keyword-driven test, click on the keyword and drag it to the
new location, or:

a) Select the keyword.

Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.

b) Press Ctrl+X.
c) Select the row above which you want to insert the keyword.
d) Press Ctrl+V.

6. To remove the keyword from the keyword-driven test, click Delete Keyword to the left of the keyword.

The keyword is still available in the Keywords window and you can re-add it to the keyword-driven test
at any time.

7. To save your changes, click File > Save.

Managing Keywords in a Test in Silk Central
This functionality is supported only if you are using the Open Agent.

The Keywords page enables you to manage the keywords of the selected keyword-driven test. The
following actions are possible:

Task Steps

Opening a test or keyword
sequence in Silk Test

Click Open with Silk Test to open the selected test or keyword sequence in Silk
Test.

Adding a keyword 1. Click New Keyword at the bottom of the keywords list, or right-click a
keyword and select Insert Keyword Above from the context menu.

Note: You can let Silk Test recommend keywords based on their
usage. Toggle the recommendations on or off with Enable
Recommendations or Disable Recommendations in the context
menu. For additional information, see Which Keywords Does Silk Test
Classic Recommend?.

2. Select a keyword from the list of available keywords or type a new name to
create a new keyword.

3. Click Save.

Keyword-Driven Tests | 395

Task Steps

Alternatively, double click an existing keyword in the All Keywords pane on the
right or drag and drop it.

Tip: You can select multiple keywords with Ctrl+Click. When dropping
them, they will be sorted in the order that you selected them in.

Deleting a keyword
Click in the Actions column of the keyword that you want to delete. Click
Save.

Changing the order of keywords Drag and drop a keyword to the desired position. Click Save.

Creating a keyword sequence (a
keyword consisting of other
keywords)

1. Select the keywords that you want to combine in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Right-click your selection and click Combine.

3. Specify a Name and Description for the new keyword sequence.

Extracting keywords from a
keyword sequence

Right-click a keyword sequence and click Extract keywords. The original
keyword sequence is then replaced by the keywords that it contained, but it is not
removed from the library. Click Save.

Copying and pasting keywords
into tests or keyword sequences

1. Select the keywords that you want to copy in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Press Ctrl+C to copy your selection, or Ctrl+X if you want to move the
keywords.

3. Open the test or keyword sequence that you want to copy the keywords to
and select the row above which the keywords will be inserted.

4. Press Ctrl+V.

Tip: You can also paste your selected keywords into Excel, and copy and
paste them from there into your tests or keyword sequences.

Defining parameters for a
keyword sequence

1. Click Parameters above the keywords list. The Parameters dialog box
appears.

2. Click Add Parameter.

3. Specify a Name for the new parameter. If the parameter is an outgoing
parameter (delivers a value, instead of requiring an input value), check the
Output checkbox.

4. Click OK.

5. Click Save.

Note: A keyword or a keyword sequence can have a combined total of 20
input and output parameters.

Editing a draft keyword 1. Click in the Actions column of the draft keyword that you want to edit.

2. Select a Group or specify a new group for the keyword.

3. Type a Description for the keyword. This information is valuable for the
engineer who will implement the keyword.

4. Click OK.

5. Optional: Click into a parameter field to add parameters for the keyword. If the
keyword is implemented with Silk Test, these parameters will appear in the
generated code stub.

6. Click Save.

396 | Keyword-Driven Tests

Task Steps

Searching for a keyword Use the search field in the Keywords window to find a specific keyword. When
you enter alphanumeric characters, the list is dynamically updated with all
existing matches. Tips for searching:

• The search is case-insensitive: doAction will find doaction and
DOAction.

• Enter only capital letters to perform a so-called CamelCase search: ECD will
find Enter Car Details, Enter Contact Details and
EnterContactDetails.

• Keyword and group names are considered: test will find all keywords that
contain test and all keywords in groups where the group name contains
test.

• ? replaces 0-1 characters: user?test will find userTest and
usersTest.

• * replaces 0-n characters: my*keyword will find myKeyword,
myNewKeyword and my_other_keyword.

• .<string> only searches in keyword names: .keyword will find all
keywords that contain keyword.

• Use quotes to search for an exact match: 'Keyword' will find Keyword
and MyKeyword, but not keyword.

Which Keywords Does Silk Test Classic Recommend?
When you add keywords to a keyword-driven test or a keyword sequence in the Keyword-Driven Test
Editor, Silk Test Classic recommends existing keywords which you might want to use as the next keyword
in your test. The recommended keywords are listed on top of the keywords list, and are indicated by a bar
graph, with the filled-out portion of the graph corresponding to how much Silk Test Classic recommends the
keyword.

Silk Test Classic recommends the keywords based on the following:

• When you add the first keyword to a keyword-driven test or a keyword sequence, Silk Test Classic
searches for similar keywords that are used as the first keyword in other keyword-driven tests or
keyword sequences. The keywords that are used most frequently are recommended higher.

• When you add additional keywords to a keyword-driven test or a keyword sequence, which already
includes other keywords, Silk Test Classic recommends keywords as follows:

• If there are keywords before the position in the keyword-driven test or the keyword sequence, to
which you add a new keyword, Silk Test Classic compares the preceding keywords with keyword
combinations in all other keyword-driven tests and keyword sequences and recommends the
keywords that most frequently follow the preceding combination of keywords.

• If there are no keywords before the position in the keyword-driven test or the keyword sequence, but
there are keywords after the current position, then Silk Test Classic compares the succeeding
keywords with keyword combinations in all other keyword-driven tests and keyword sequences and
recommends the keywords that most frequently precede the succeeding combination of keywords.

• Additionally, Silk Test Classic takes into account how similar the found keywords are. For example, if
both the name and group of two keywords match, then Silk Test Classic recommends these keywords
higher in comparison to two keywords for which only the name matches.

• If you have established a connection with Silk Central, any keywords included in keyword-driven tests,
which belong to the keyword library that corresponds to the current project, are also considered.

Keyword-Driven Tests | 397

Using Parameters with Keywords
A keyword or a keyword sequence can have a combined total of 20 input and output parameters. This topic
describes how you can handle these parameters with Silk Test Classic.

In the Keyword-Driven Test Editor, you can view any defined parameters for a keyword or a keyword
sequence and you can edit the parameter values.

In the Keywords window, you can see which parameters are assigned to a keyword or a keyword
sequence when you hover the mouse cursor over the keyword or keyword sequence.

Input parameters for simple keywords

You can define and use input parameters for keywords in the same way as for any other test method.

The following code sample shows how you can define the keyword SetUserDetails with the two input
parameters userName and password:

keyword SetUserDetails(STRING userName, STRING password)
 ...

Output parameters for simple keywords

You can define a return value or one or more output parameters for a keyword. You can also use a
combination of a return value and one ore more output parameters.

The following code sample shows how you can define the keyword GetText that returns a string:

keyword GetText()
 return "text"

The following code sample shows how you can define the keyword GetUserDetails with the two output
parameters userName and password:

keyword GetUserDetails(out STRING userName null, out STRING password)
 userName="name"
 password="password"

Parameters for keyword sequences

You can define or edit the parameters for a keyword sequence in the Parameters dialog box, which you
can open if you click Parameters in the Keyword Sequence Editor.

Example: Keywords with Parameters
This topic provides an example of how you can use keywords with parameters. A keyword or a keyword
sequence can have a combined total of 20 input and output parameters.

As a first step, create a keyword-driven test which contains the keywords that you want to use. You can do
this by recording an entire keyword-driven test, or by creating a new keyword-driven test and by adding the
keywords in the keyword-driven test editor.

In this example, the keyword-driven test includes the following keywords:

Start application This is the standard keyword that starts the AUT and sets the base state.

Login This keyword logs into the AUT with a specific user, identified by a user name and a
password.

GetCurrentUser This keyword returns the name of the user that is currently logged in to the AUT.

398 | Keyword-Driven Tests

AssertEquals This keyword compares two values.

Logout This keyword logs the user out from the AUT.

The next step is to add the parameters to the keywords. To do this, open the test scripts of the keywords
and add the parameters to the methods.

To add the input parameters UserName and Password to the keyword Login, change

keyword Login()
 ...

to

keyword Login(STRING UserName, STRING Password)
 ...

To add the output parameter UserName to the keyword GetCurrentUser, change

keyword GetCurrentUser()
 ...

to

keyword GetCurrentUser(out STRING CurrentUser)
 ...

The keyword-driven test in the Keyword-Driven Test Editor should look similar to the following:

Now you can specify actual values for the input parameters in the Keyword-Driven Test Editor. To retrieve
the value of the output parameter UserName of the keyword GetCurrentUser, provide a variable, for
example ${current user}. You can then pass the value that is stored in the variable to subsequent keywords.

Combining Keywords into Keyword Sequences
This functionality is supported only if you are using the Open Agent.

Keyword-Driven Tests | 399

Use the Keyword-Driven Test Editor to combine keywords, which you want to execute sequentially in
multiple keyword-driven tests, into a keyword sequence.
1. Open the keyword-driven test that includes the keywords that you want to combine.
2. In the Keyword-Driven Test Editor, press and hold down the Ctrl key and then click the keywords

that you want to combine.
3. Right-click on the selection and click Combine. The Combine Keywords dialog box opens.
4. Type a name for the new keyword sequence into the Name field.
5. Optional: Type a description for the new keyword sequence into the Description field.
6. Click Combine.
The new keyword sequence opens and is also displayed in the Keywords window. You can use the
keyword sequence in keyword-driven tests.

Note: Like any other keyword, you cannot execute a keyword sequence on its own, but only as part of
a keyword-driven test.

Replaying a Keyword-Driven Test with Specific Variables
Before you can set the values of variables for the execution of a keyword-driven test, you have to create the
project.

When executing keyword-driven tests that are part of an automation framework and that are managed in a
test management tool, for example Silk Central, you can set the values of any variables that are used for
the execution of the keyword-driven test in Silk Test Classic. To set the values of global variables for the
entire project, which means that these values are used whenever a Silk Test Classic user executes the
keyword-driven test assets in this project, perform the following actions:
1. Open the project that includes the keyword-driven test.
2. Right-click the folder Data of the project and select New File. A new untitled file is opened in the editor.
3. Add new lines to the file to specify the variables.

The format for a new variable is:

name=value

For example, to specify the two variables user and password, type the following:

user=John
password=john5673

4. In the menu, click File > Save.
5. Type globalvariables.properties into the File name field.
6. Click Save.
7. Open the keyword-driven test that you want to execute.
8. In theKeyword-Driven Test Editor, edit the parameters to use the new variables.

Use the following annotation:

${variable name}

For example, in the following keyword-driven test, the ${current user} parameter uses a global
variable:

400 | Keyword-Driven Tests

Whenever the keyword-driven test is executed from Silk Test Classic, the variables are used.

Note: When you replay a keyword-driven test, which is located in Silk Central, from Silk Test Classic,
the result file (.xlg) is saved into the folder of the current Silk Test Classic project.

Integrating Silk Test Classic with Silk Central
Integrate Silk Test Classic and Silk Central to enable collaboration between technical and less-technical
users.

This functionality is supported only if you are using the Open Agent.

When Silk Test Classic and Silk Central are integrated and a library with the same name as the active Silk
Test Classic project exists in Silk Central, the Keywords view under Window > Keywords displays all
keywords from the Silk Central library in addition to any keywords defined in the active Silk Test Classic
project.

Note: The Silk Central connection information is separately stored for every Silk Test Classic user,
which means every Silk Test Classic user that wants to work with keywords and keyword sequences
from Silk Central must integrate Silk Test Classic with Silk Central.

Integrating Silk Test Classic with Silk Central provides you with the following advantages:

• Test management and execution is handled by Silk Central.
• Keywords are stored in the Silk Central database (upload library) and are available to all projects in Silk

Central.
• Manual tests can be directly automated in Silk Central and the created keyword-driven tests can be

executed in Silk Test Classic from Silk Central.

Note: In Silk Test Classic, you can edit and execute keyword-driven tests that are located in Silk Test
Classic, and you can execute keyword-driven tests that are stored in Silk Central. To edit a keyword-
driven test, which is stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test
Editor and click Edit.

1. From the menu, select Options > Silk Central Configuration. The Silk Central Connection dialog
box opens.

2. Type the URL of your Silk Central server into the URL field.

For example, if the Silk Central server name is sctm-server, and the port for Silk Central is 13450, type
http://sctm-server:13450.

3. Specify the web-service token for authentication.

You can generate a web-service token in the User Settings page of Silk Central, which you can access
by clicking on the user name in the Silk Central menu.

Note: To authenticate with your Silk Central user name and password, you could select User
name and password from the Authentication list. However, for security reasons, Micro Focus
recommends using a web-service token for authentication instead of sending your user name and
password over the network.

4. Click Verify to verify if Silk Test Classic can access the Silk Central server with the specified user.

5. Click OK.

Implementing Silk Central Keywords in Silk Test Classic
Before implementing Silk Central keywords, define the keywords as part of a keyword-driven test in Silk
Central.

Keyword-Driven Tests | 401

This functionality is supported only if you are using the Open Agent.

To implement a Silk Central keyword in Silk Test Classic:

1. Create a project in Silk Test Classic with the same name as the keyword library in Silk Central, which
includes the keyword-driven test.

2. If the keyword library in Silk Central has no type assigned, click Upload Keyword Library in the toolbar
to set the library type.

3. Optional: To implement a specific keyword in Silk Test Classic from Silk Central, open the Keywords tab
of the library in Silk Central and click Implement with Silk Test in the Actions column of the keyword.

4. In Silk Test Classic, open the project and select the Keywords tab.

5. In the Keywords tab, double-click the keyword-driven test.

To update the Keywords tab with any changes from Silk Central, click Refresh.

6. In the toolbar, click Record Testcase.

7. Click Record.

For additional information on recording, see Recording a Keyword.

8. Record the actions for the first unimplemented keyword.

9. When you have recorded all the actions for the current keyword, click Next Keyword.

10.To switch between keywords in the Recording window, click Previous Keyword and Next Keyword.

11.Click Stop. The Record Keyword-Driven Test dialog box opens.

Note: You cannot delete keywords or change the sequence of the keywords in a keyword-driven test
from Silk Central, as these tests are read only in Silk Test Classic.

Uploading a Keyword Library to Silk Central
This functionality is supported only if you are using the Open Agent.

To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk Test Classic with Silk Central.

To automate manual tests in Silk Central, upload keywords that you have implemented in a Silk Test
Classic project as a keyword library to Silk Central, where you can then use the keywords to automate
manual tests.

Note: Ensure that the project does not reference files that are located outside of the project directory.

1. In Silk Test Classic, select the project in which the keyword-driven tests reside.

2. Ensure that a library with the same name exists in Silk Central (Tests > Libraries).

3. Optional: Provide a description of the changes to the keyword library.

4. Optional: Click Configure to configure the connection to Silk Central.

5. Optional: To see which libraries are available in the connected Silk Central instance, click on the link.

6. Click Upload.

Caution: If the keyword library in Silk Central is already assigned to a different automation tool or
another Silk Test client, you are asked if you really want to change the type of the keyword library.
Upload the library only if you are sure that you want to change the type.

Silk Test Classic creates a keyword library out of all the keywords that are implemented in the project. Then
Silk Test Classic saves the keyword library with the name library.zip into the output folder of the
project. The library is validated for consistency, and any changes which might break existing tests in Silk
Central are listed in the Upload Keyword Library to Silk Central dialog box. Finally, Silk Test Classic
uploads the library to Silk Central. You can now use the keywords in Silk Central. Any keyword-driven tests

402 | Keyword-Driven Tests

in Silk Central, which use the keywords that are included in the keyword library, automatically use the
current implementation of the keywords.

Uploading a Keyword Library to Silk Central from the
Command Line

Upload an external keyword library to Silk Central from a Java-based command line to integrate Silk
Central and your keyword-driven tests into your continuous integration build system, for example Jenkins.

To upload your keyword library to Silk Central from a Java-based command line:

1. Select Help > Tools in Silk Central and download the Java Keyword Library Tool.
2. Call the command line tool that is contained in the downloaded jar file with the following arguments:

• java

• -jar com.borland.silk.keyworddriven.jar

• -upload

• Library name of the library in Silk Central to be updated, or created if it does not yet exist.
• Package name of the library package (zip archive) to be uploaded.
• Hostname:port of the Silk Central front-end server.
• Web-service token of the Silk Central user. Required for authentication. You can generate a

web-service token in the User Settings page of Silk Central, which you can access by clicking on
the user name in the Silk Central menu.

Note: For security reasons, Micro Focus recommends using a web-service token for
authentication instead of sending your user name and password over the network.

• Username of the Silk Central user. Not required when using a web-service token for authentication.
• Password of the Silk Central user. Not required when using a web-service token for authentication.
• Update information, describing the changes that were applied to the library, in quotes.
• [-allowUsedKeywordDeletion], an optional flag to allow the deletion of keywords that are used

in a test or keyword sequence. By default, an error is raised if used keywords are attempted to be
deleted.

The following example outlines the command line to upload a library to Silk Central with Java 9 or later:

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

Examples

The following example outlines the command line to upload a library to Silk Central with
Java 8 or prior by using a web-service token for authentication:

java -jar com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

To upload the same library with Java 8 or prior by using user name and password for
authentication, use a command like the following:

java -jar com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

The corresponding commands with Java 9 or later are:

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload

Keyword-Driven Tests | 403

"My library" "./output/library.zip" silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

Note: When uploading a keyword-driven library with Java 9 or
later, ensure JAVA_HOME is defined on the execution servers
and points to a JDK with the corresponding Java version.

Searching for a Keyword
This functionality is supported only if you are using the Open Agent.

Use the search field in the Keywords window to find a specific keyword. When you enter alphanumeric
characters, the list is dynamically updated with all existing matches. Tips for searching:

• The search is case-insensitive: doAction will find doaction and DOAction.
• Enter only capital letters to perform a so-called CamelCase search: ECD will find Enter Car

Details, Enter Contact Details and EnterContactDetails.
• Keyword and group names are considered: test will find all keywords that contain test and all

keywords in groups where the group name contains test.
• ? replaces 0-1 characters: user?test will find userTest and usersTest.
• * replaces 0-n characters: my*keyword will find myKeyword, myNewKeyword and

my_other_keyword.
• .<string> only searches in keyword names: .keyword will find all keywords that contain keyword.
• Use quotes to search for an exact match: 'Keyword' will find Keyword and MyKeyword, but not

keyword.

Filtering Keywords
To find a specific keyword in the current project, you can filter the keywords that are displayed in the
Keywords window. If an integration with Silk Central is configured, the result includes the relevant
keywords from Silk Central.

1. In the menu, click Keywords. The Keywords window opens.

2. In the Keywords window, type the name of the keyword that you are searching for into the search field.
The Keywords window lists all keywords in the current project with the given name.

3. Optional: To edit a keyword, hover the mouse cursor over the keyword in the Keywords window and
click Go to implementation.

Troubleshooting for Keyword-Driven Testing

Why do I get the error "No application configuration present" when trying to replay a keyword-
driven test from Silk Central?

If you get this error, your keyword-driven test does not include a Start application keyword as the first
keyword. Silk Test Classic requires the Start application keyword to apply the application configuration of
your project to the keyword-driven test. When you record a new keyword-driven test, Silk Test Classic
automatically adds the Start application keyword as the first keyword to the keyword-driven test.

404 | Keyword-Driven Tests

With Silk Test Classic 19.5 or later, parallel testing is enabled by default. When you upgrade from a Silk
Test Classic version prior to Silk Test Classic 19.5 to a more recent Silk Test Classic version, previously
executing keyword-driven tests might no longer execute because each individual test is now expected to
specify the application under test (AUT).

To workaround this issue, disable parallel testing on the machine on which Silk Test Classic is running by
setting the environment variable SILKTEST_ENABLE_PARALLEL_TESTING to false.

How can I prevent my browser or mobile app from closing between tests?

When replaying multiple keyword-driven tests from Silk Central with Silk Test Classic 19.5 or later, parallel
testing is enabled by default. When you upgrade from a Silk Test Classic version prior to Silk Test Classic
19.5 to a more recent Silk Test Classic version, Silk Test Classic will by default close the browser or the
mobile app whenever a keyword-driven test is finished.

This issue does not occur when testing a browser application against Internet Explorer. To workaround this
issue, disable parallel testing on the machine on which Silk Test Classic is running by setting the
environment variable SILKTEST_ENABLE_PARALLEL_TESTING to false.

Keyword-Driven Tests | 405

Using Advanced Techniques with the Open
Agent

This section describes advanced techniques for testing you applications with Silk Test Classic and the
Open Agent.

Starting from the Command Line
This section describes how you can start Silk Test Classic from the command line.

Starting Silk Test Classic from the Command Line
You can start the Silk Test Classic executable program from the command line by:

• Clicking Run in the Start menu.
• Using the command-line prompt in a DOS window or batch file.

The syntax is:

partner [-complog filename] [-m mach] [-opt optionset.opt] [-p mess] [-proj
filename [-base filename]]
[[-q] [-query query name] [-quiet] [-r filename] [-resexport] [-resextract] [-
r] scr.t/suite.s/plan.pln/link.lnk
[args]]

The filename specified for various options expects the file to be located in the working directory. The default
location is the Silk Test Classic installation directory, C:\Program Files (x86)\Silk\SilkTest. If
you want to use a file that is located in another directory, you must specify the full path in addition to the
filename.

Options

The partner command can be called with the following options:

args Optional arguments to a script file. You can access the arguments using the GetArgs
function and use them with your scripts.

If you pass arguments in the command line, the arguments provided in the command line
are used and any arguments specified in the currently loaded options set are not used. To
use the arguments in the currently loaded options set, do not specify arguments in the
command line.

For additional information, see Passing arguments to a script.

-complog Tells Silk Test Classic to log compilation errors to a file you specify. Enter the argument as
-complog filename. For example:

partner [-complog c:\testing\logtest1.txt]

If you include this argument, Silk Test Classic checks that the specified file exists each time
that you compile. If the file does not exist, Silk Test Classic creates and opens the file. If the
file exists, Silk Test Classic opens it and adds the information. The number of errors is
written in the format n error(s), for example 0 errors, 1 error, or 50 errors.
Compilation errors are written to the error log file as they are displayed in the Errors

406 | Using Advanced Techniques with the Open Agent

window. The error log file is automatically saved and closed when Silk Test Classic finishes
writing errors to it.

-m Specifies the target machine. The default is the current machine. Call the 4Test built-in
function Connect to connect to a different machine at runtime.

In order to use the -m switch, you need to have the Network setting of the Runtime
Options dialog box set to TCP/IP or NetBIOS. If this is set to '(disabled)', the target
machine is ignored. To set the Network setting, either set it interactively in the Runtime
Options dialog box before running from the command line, or save the setting in an option
set and add the '-opt <option set>' argument to the command line.

-opt Specifies an options set. Must be followed by the path of the .opt file that you want to use.

-p Provided for use with a Windows shell program that is running Silk Test Classic as a batch
task. This option enables another Windows program to receive a message containing the
number of errors that resulted from the run. Silk Test Classic broadcasts this message
using the Windows PostMessage function, with the following arguments:

• hWnd = HWND_BROADCAST

• uiMsg = RegisterWindowMessage (mess)

• wParam = 0

• lParam = number of errors

To take advantage of the -p option, the shell program that runs Silk Test Classic should
first register the message (mess), and should look for the message while Silk Test Classic
is running.

-proj Optional argument specifying the project file or archived project to load when starting Silk
Test Classic or Silk Test Classic Runtime. For example:

partner –proj d:\temp\testapp.vtp –r agent.pln

-base is an optional argument to –proj. You use the base argument to specify the
location where you want to unpack the package contents. For example, partner –proj
d:\temp\testapp.stp –base c:\rel30\testapp unpacks the contents of the
package to the c:\rel30\testapp directory.

-q Quits Silk Test Classic after the script, suite, or test plan completes.

-query Specifies a query. Must be followed by the name of a saved query. Tells Silk Test Classic to
perform an Include > Open All, then Testplan > Mark By Named Query, then Run >
Marked Tests.

-quiet Starts Silk Test Classic in quiet mode, which prevents any pop-up dialog boxes from
displaying when Silk Test Classic starts up.

The quiet option is particularly useful if you are doing unattended testing where a user is
not available to respond to any pop-up dialog boxes that may display.

-r Must be the last option specified, followed only by the name of a Silk Test Classic file to
open. This includes files such as script (and, optionally, arguments that the script takes), a
suite, test plan, or link file. If you specify a link file, tells Silk Test Classic to resolve the link
and attempt to open the link target. Otherwise, tells Silk Test Classic to run the specified
script, suite, or test plan, optionally passing args as arguments to a script file. For example,
partner –proj d:\temp\testapp.stp –base c:\rel30\testapp –r
Agent.pln unpacks the archive from the temp subdirectory into the c:\rel30\testapp
subdirectory and then loads and executes the Agent.pln file.

Using Advanced Techniques with the Open Agent | 407

-resexport Tells Silk Test Classic to export a one line summary of the most recent results sets to .rex
files automatically. Specifying -resexport has the same effect as if each script run
invokes the ResExportOnClose function during its execution.

-resextract Tells Silk Test Classic to extract all information from the most recent results sets to a .txt
file. Both the Silk Test Classic Extract menu command and the -resextract option
create UTF-8 files.

script.t/
suite.s/
plan.pln/
link.lnk

The name of the Silk Test Classic script, suite, test plan, or link file to load, run, or open.

Examples

• To load Silk Test Classic, type the following:

partner

• To run the test.s suite, type the following:

partner -r test.s

• To run the test.t script on the system with the hostname "sys1", type the following:

partner -m sys1 -r test.t

• To run the test.t script with arguments, type the following:

partner -r test.t arg1 arg2

• To run the tests marked by the query named query3 in tests.pln, type the
following:

partner -query query3 -r tests.pln

• To run tests.pln and to export the most recent results set from tests.res to
tests.rex, type the following:

partner -q -resexport -r tests.pln

• To edit the test.inc include file, type the following:

partner test.inc

Recording a Test Frame
This section describes how you can record a test frame.

Overview of Object Files
Object files are the compiled versions of include (.inc) or script (.t) files. Object files are saved with an
"o" at the end of the extension, for example, .ino, or .to. Object files cannot be edited; the only way to
change compiled objects is to recompile the include or script file. When you save a script or include file, a
source file and an object file are saved. Object files are not platform-specific; you can use them on all
platforms that Silk Test Classic supports.

In order for Silk Test Classic to run a script or include file that is in source form, it must compile it, which
can be time-consuming. Object files, on the other hand, are ready to run.

Note: You cannot call objects that exist in the object file (.to) from a test plan; you must have the
script file (.t).

To disable saving object files during compilation, the AutoComplete options on the General Options
dialog box as well as the Save object files during compilation option on the Runtime Options dialog
box need to be unchecked.

408 | Using Advanced Techniques with the Open Agent

Silk Test Classic always uses object files if they are available. When you open a script file or an include file,
Silk Test Classic loads the corresponding object file as well, if there is one. If the object file is not older than
the source file, Silk Test Classic does not recompile the source file. The script is ready to run. If the source
file is more recent, Silk Test Classic recompiles the source file before the script is run. If you then later save
the source file, Silk Test Classic automatically saves a new object file.

If a file is loaded during compilation, that is, if you include a file in another file that is being compiled, Silk
Test Classic loads only the object file, if it exists and is newer than the corresponding source file.

Object files may not be backward-compatible, although sometimes they will be. Specifically, object files will
not work with versions of Silk Test Classic for which the list of GUI/browser types is different than for the
version used to compile the object file. The list is in 4Test.inc. For example, object files created before
'mswxp' was added as the GUI type for Windows XP cannot be used with ST5.5 SP3, which includes the
'mswxp' GUI type.

If you are using a .ino file, but during compilation Silk Test Classic displays a message that the
corresponding .inc file is missing, then you may be experiencing the object file version incompatibility
explained in the preceding paragraph.

Advantages of Object Files
Advantages of object files include:

• Because object files are ready to run, they do not need to be recompiled if the source file has not
changed. This can save you a lot of time. If your object file is more recent than your source file, the
source file does not need to be recompiled each time the file is first opened in a session; the object file
is used as is.

• You can distribute object files without having to distribute the source equivalents. So if you have built
some tests and include files that you want to distribute but don’t want others to see the sources, you can
distribute only the object files.

Since an object file cannot be run directly:

• Define the code you want to "hide" in an include file, which will be compiled into an .ino object file.
• Call those functions from an ordinary script file.
• Distribute the .t script file and the compiled .ino include file. Users can open and run the script file as

usual, through File > Run.

Here’s a simple example of how you might distribute object files so that others cannot see the code.

In file test.inc, place the definition of a function called TestFunction. When you save the file, the
entire include file is compiled into test.ino.

TestFunction ()
 ListPrint (Desktop.GetActive ())

In the file test.t use the test.inc include file. Silk Test Classic will load the .ino equivalent. Call
TestFunction, which was defined in the include file.

use "test.inc"

 main ()
 TestFunction () // call the function

Distribute test.t and test.ino. Users can open test.t and run it but do not have access to the actual
routine, which resides only in compiled form in test.ino.

Object File Locations
By default, an object file is read from and written to the same directory as its corresponding source file. But
you can specify different directories for object files.

Using Advanced Techniques with the Open Agent | 409

Specifying d:\obj in the Objfile Path text box of the Runtime Options dialog box tells Silk Test Classic to
read and write all object files in the d:\obj directory, regardless of where the source files are located.

Specifying obj in the Objfile Path text box tells Silk Test Classic to read and write an object file in the
directory obj that is a subdirectory of the directory containing the source file. In this scenario, each
directory of source files will have a different directory of object files. For example, if a source file is in d:
\src, its corresponding object file would be read from and written to d:\src\obj.

You can specify several directories in the Objfile Path text box. New files are written to the first directory
specified. Silk Test Classic searches the directories in the order in which you have specified them to find
existing files and will subsequently re-save existing files in the same directory where it found them.

Specifying where Object Files Should be Written To and Read From
By default, an object file is read from and written to the same directory as its corresponding source file. But
you can specify different directories for object files. To specify where object files are written to and read
from:

1. Click Options > Runtime.

2. Specify a directory in the Objfile Path text box.

• Leave the text box empty if you want to store object files in the same directory as their corresponding
source files.

• Specify an absolute path if you want to store all object files in the same directory.
• Specify a relative path if you want object files to be stored in a directory relative to the directory

containing the source files.

3. Click OK.

Object files are saved in the location you specify here. In addition, Silk Test Classic will try to find object
files in these locations. If it fails to find an object file, it will look in the directory containing the source file.

Declarations
This section describes declarations.

GUI Specifiers
Where Silk Test Classic can detect a difference from one platform to the next, it automatically inserts a
GUI-specifier in a window declaration to indicate the platform, for example msw.

For a complete list of the valid GUI specifiers, see GUITYPE data type.

Overview of Dialog Box Declarations
The declarations for the controls contained by a dialog box are nested within the declaration of the dialog
box to show the GUI hierarchy.

The declarations for menus are nested (indented) within the declaration for the main window, and the
declarations for the menu items are nested within their respective menus. This nesting denotes the
hierarchical structure of the GUI, that is, the parent-child relationships between GUI objects. Although a
dialog box is not physically contained by the main window, as is true for menus, the dialog box nevertheless
logically belongs to the main window. Therefore, a parent statement within each dialog box declaration is
used to indicate that it belongs to the main window of the application.

In the sample Text Editor application, MainWin is the parent of the File menu. The File menu is
considered a child of the MainWin. Similarly, all the menu items are child objects of their parent, the File
menu. A child object belongs to its parent object, which means that it is either logically associated with the
parent or physically contained by the parent.

410 | Using Advanced Techniques with the Open Agent

Because child objects are nested within the declaration of their parent object, the declarations for the child
objects do not need to begin with the reserved word window.

Classic Agent Example

The following example from the Text Editor application shows the declarations for the
Find dialog box and its contained controls:

window DialogBox Find
 tag "Find"
 parent TextEditor
 StaticText FindWhatText
 multitag "Find What:"
 "$65535"
 TextField FindWhat
 multitag "Find What:"
 "$1152"
 CheckBox CaseSensitive
 multitag "Case sensitive"
 "$1041"
 StaticText DirectionText
 multitag "Direction"
 "$1072"
 RadioList Direction
 multitag "Direction"
 "$1056"
 PushButton FindNext
 multitag "Find Next"
 "$1"
 PushButton Cancel
 multitag "Cancel"
 "$2"

Open Agent Example

The following example from the Text Editor application shows the declarations for the
Find dialog box and its contained controls:

window DialogBox Find
 locator "Find"
 parent TextEditor
 TextField FindWhat
 locator "@caption='Find What:' or @windowId='65535'"
 StaticText FindWhatText
 locator "@caption='Find What:' or @windowId='1152'"
 CheckBox CaseSensitive
 locator "@caption='Case sensitive' or @windowId='1041'"
 StaticText DirectionText
 locator "@caption='Direction' or @windowId='1072'"
 RadioList Direction
 locator "@caption='Direction' or @windowId='1056'"
 PushButton FindNext
 locator "@caption='Find Next' or @windowId='1'"
 PushButton Cancel
 locator "@caption='Cancel' or @windowId='2'"

Using Advanced Techniques with the Open Agent | 411

Main Window and Menu Declarations

The main window declaration

The main window declaration begins with the 4Test reserved word window. The term window is historical,
borrowed from operating systems and window manager software, where every GUI object, for example
main windows, dialogs, menu items, and controls, is implemented as a window.

As is true for all window declarations, the declaration for the main window is composed of a class, identifier,
and tag or locator.

Classic Agent Example

The following example shows the beginning of the default declaration for the main
window of the Text Editor application:

window MainWin TextEditor
 multitag "Text Editor"
 "$C:\PROGRAMFILES\<SilkTest install directory>\SILKTEST
\TEXTEDIT.EXE"

Part
of
Decl
arati
on

Value for TextEditor's main window.

Clas
s

MainWin

Ident
ifier

TextEditor

Tag Two components in the multiple tag:

• " Text Editor "—The application’s caption

• " executable path "—The full path of the executable file that
invoked the application

Open Agent Example

The following example shows the beginning of the default declaration for the main
window of the Text Editor application:

window MainWin TextEditor
 locator "Text Editor"

Part
of
Decl
arati
on

Value for TextEditor's main window.

Clas
s

MainWin

Ident
ifier

TextEditor

412 | Using Advanced Techniques with the Open Agent

Part
of
Decl
arati
on

Value for TextEditor's main window.

Loca
tor

" Text Editor "—The application’s caption

sCmdLine and wMainWindow constants

When you record the declaration for your application’s main window and menus, the sCmdLine and
wMainWindow constants are created. These constants allow your application to be started automatically
when you run your test cases.

The sCmdLine constant specifies the path to your application’s executable. The following example shows
an sCmdLine constant for a Windows environment:

mswnt const sCmdLine = "c:\program files\<SilkTest install directory>\silktest
\textedit.exe"

The wMainWindow constant specifies the 4Test identifier for the main window of your application. For
example, here is the definition for the wMainWindow constant of the Text Editor application on all platforms:

const wMainWindow = TextEditor

Menu declarations

When you are working with the Classic Agent, the following example from the Text Editor application shows
the default main window declaration and a portion of the declarations for the File menu:

window MainWin TextEditor
 multitag "Text Editor"
 "$C:\PROGRAM FILES\<SilkTest install directory>\SILKTEST\TEXTEDIT.EXE"
 .
 .
 .
 Menu File
 tag "File"
 MenuItem New
 multitag "New"
 "$100"

Menus do not have window IDs, but menu items do, so by default menus are declared with the tag
statement while menu items are declared with the multitag statement.

When you are working with the Open Agent, the following example from the Text Editor application shows
the default main window declaration and a portion of the declarations for the File menu:

window MainWin TextEditor
 locator "Text Editor"
 .
 .
 .
 Menu File
 locator "File"
 MenuItem New
 locator "@caption='New' or windowId='100'"

Window Declarations
A window declaration specifies a cross-platform, logical name for a GUI object, called the identifier,
and maps the identifier to the actual name of the object, which is called the tag or locator. Because

Using Advanced Techniques with the Open Agent | 413

your test cases use logical names, if the actual name of the object changes on the current GUI, on another
GUI, or in a localized version of the application, you only need to change the tag in the window
declarations. You do not need to change any of your scripts.

You can add variables, functions, methods, and properties to the basic window declarations recorded by
Silk Test Classic. For example, you can add variables to a dialog box declaration that specify what the tab
sequence is, what the initial values are, and so on. You access the values of variables at runtime as you
would a field in a record.

After you record window declarations for the GUI objects in your application and insert them into a
declarations file, called an include file (*.inc), Silk Test Classic references the declarations in the include
file to identify the objects named in your test scripts. You tell Silk Test Classic which include files to
reference through the Use Files field in the Runtime Options dialog box.

Improving Silk Test Classic Window Declarations
The current methodology for identifying window declarations in Microsoft Windows-based applications
during a recording session is usually successful. However, some applications may require an alternate
approach of obtaining their declarations because their window objects are invisible to the Silk Test
Recorder. You can try any of the following:

• Turning on Accessibility - use this if during a session started with the Recorder, Silk Test Classic is
unable to recognize objects within a Microsoft Windows-based application. This functionality is available
only for projects or scripts that use the Classic Agent.

• Defining a new window - use this if turning on Accessibility does not help Silk Test Classic to recognize
the objects. This functionality is available only for projects or scripts that use the Classic Agent.

• Creating a test case that uses dynamic object recognition - use this to create test cases that use XPath
queries to find and identify objects. Dynamic object recognition uses a Find or FindAll method to
identify an object in a test case. This functionality is available only for projects or scripts that use the
Open Agent.

Improving Object Recognition by Defining a New Window
If Silk Test Classic is having difficulty recognizing objects in Internet Explorer or Microsoft Office
applications, try enabling Accessibility. If that does not help improve recognition, try defining a new window.

How defined windows works

When you use Defined Window, you use the mouse pointer to draw a rectangle around the object that Silk
Test Classic cannot record and then assign a name to the object. When you save your work, Silk Test
Classic stores the name and the object’s coordinates in a test script. When you replay the script, Silk Test
Classic uses a Click() method on the center of the area you have specified.

Notes

• Defining a new window is only available for projects or scripts that use the Classic Agent.
• Defining a new window is not available for Java applications or applets.
• Defined Window does not support nesting of defined objects.
• Defined Window is location-based and uses pixel coordinates to locate the object in the parent window.

Thus, if the layout of your parent window changes and/or the object’s coordinates change frequently,
you may need to re-define the window in order for Silk Test Classic to correctly declare the object.

• If you draw a rectangle around an unrecognized object, but also include an object that Silk Test Classic
easily recognizes, Silk Test Classic records both and lists the easily recognized object first.

414 | Using Advanced Techniques with the Open Agent

Recording Window Declarations for the Main Window and Menu
Hierarchy

1. Start your application.

2. Click File > New in Silk Test Classic.

3. Click Test Frame and then click OK. Silk Test Classic displays the New Test Frame dialog box.

4. If you are using the Open Agent, follow the appropriate wizard to select your application, depending on
whether you want to test an application that uses a Web browser or not. When you have stepped
through the wizard, the Choose name and folder of the new frame file dialog box opens.

5. In the Frame filename (Classic Agent) or the File name (Open Agent) text box, accept the default test
frame name (frame.inc), or type a new name.

By default, Silk Test Classic names the new test frame file frame.inc, denoting it is an include file that
contains declarations. If you change the default name of the file, make sure to include the file
extension .inc in the new file name. If you do not, the file is not identified to Silk Test Classic as an
include file and Silk Test Classic will give it a .txt extension and report a compilation error when you click
OK to create the file.

6. If you are using the Classic Agent, select your application from the Application list box.

The Application list box displays all applications that are open and not minimized. If your test
application is not listed, click Cancel, open your application, and click File > New again.

7. Click OK (Classic Agent) or Save (Open Agent). Silk Test Classic creates the new test frame file.
Window declarations display in the test plan editor, which means that the declarations for individual GUI
objects can be expanded to show detail, collapsed to hide detail, and edited if necessary.

Use the member-of Operator to Access Data
Use the member-of operator (.) to reference the data defined in a window declaration. For example, if a
script needs to know which control should have focus when the Find dialog box is first displayed, it can
access this data from the window declaration with this expression:

Find.lwTabOrder[1]

Similarly, to set focus to the third control in the list:

Find.lwTabOrder[3].SetFocus ()

Overview of Identifiers
When you record test cases, Silk Test Classic uses the window declarations in the test frame file to
construct a unique identifier, called a fully qualified identifier, for each GUI object. The fully-qualified
identifier consists of the identifier of the object, combined with the identifiers of the object’s ancestors. In
this way, the 4Test commands that are recorded can manipulate the correct object when you run your test
cases.

If all identifiers were unique, this would not be necessary. However, because it is possible to have many
GUI objects with the same identifier, for example the OK button, a method call must specify as many of the
object’s ancestors as are required to uniquely identify it.

The following table shows how fully qualified identifiers are constructed:

GUI Object Fully-Qualified Identifier Example

Main Window The main window’s identifier TextEdit.SetActive ()

Dialog The dialog’s identifier Find.SetActive ()

Control The identifiers of the dialog and the
control

Find.Cancel.Click ()

Using Advanced Techniques with the Open Agent | 415

GUI Object Fully-Qualified Identifier Example

Menu item The identifiers of the main window, the
menu, and the menu item

TextEditor.File.Open.Pick ()

The fully qualified identifier for main windows and dialog boxes does not need to include ancestors
because the declarations begin with the keyword window.

An identifier is the GUI object’s logical name. By default, Silk Test Classic derives the identifier from the
object’s actual label or caption, removing any embedded spaces or special characters (such as
accelerators). So, for example, the Save As label becomes the identifier SaveAs. Identifiers can contain
single-byte international characters, such as é and ñ.

If the object does not have a label or caption, Silk Test Classic constructs an identifier by combining the
class of the object with the object’s index. When you are using the Classic Agent, the index is the object’s
order of appearance, from top left to bottom right, in relation to its sibling objects of the same class. For
example, if a text box does not have a label or caption, and it is the first text box within its parent object, the
default identifier is TextField1. When you are using the Open Agent, the index depends on the underlying
technology of the application under test.

Note: The identifier is arbitrary, and you can change the generated one to the unique name of your
choice.

Save the Test Frame
To save a test frame, click File > Save when the test frame is the active window. If it is a new file, it is
automatically named frame.inc. If you already have a frame.inc file, a number is appended to the file
name. You can click File > Save to select another name.

If you are working within a project, Silk Test Classic automatically adds the new test frame (.inc) to the
project.

When saving a file, Silk Test Classic does the following:

• Saves a source file, giving it the .inc extension. The source file is an ASCII text file, which you can
edit. For example: myframe.inc.

• Saves an object file, giving it the .ino extension. The object file is a binary file that is executable, but
not readable by you. For example: myframe.ino.

Specifying How a Dialog Box is Invoked
4Test provides two equivalent ways to invoke a dialog box:

• Use the Pick method to pick the menu item that invokes the dialog box. For example:
TextEditor.File.Open.Pick ()

• Use the Invoke method: Open.Invoke ()

While both are equivalent, using the Invoke method makes your test cases more maintainable. For
example, if the menu pick changes, you only have to change it in your window declarations, not in any of
your test cases.

The Invoke method

To use the Invoke method, you should specify the wInvoke variable of the dialog box. The variable
contains the identifier of the menu item or button that invokes the dialog box. For example:

window DialogBox Open
 tag "Open"
 parent TextEditor
WINDOW wInvoke = TextEditor.File.Open

416 | Using Advanced Techniques with the Open Agent

Improving Object Recognition with Microsoft Accessibility
You can use Microsoft Accessibility (Accessibility) to ease the recognition of objects at the class level.
There are several objects in Internet Explorer and in Microsoft applications that Silk Test Classic can better
recognize if you enable Accessibility. For example, without enabling Accessibility Silk Test Classic records
only basic information about the menu bar in Microsoft Word and the tabs that appear. However, with
Accessibility enabled, Silk Test Classic fully recognizes those objects.

Example

Without using Accessibility, Silk Test Classic cannot fully recognize a DirectUIHwnd
control, because there is no public information about this control. Internet Explorer uses
two DirectUIHwnd controls, one of which is a popup at the bottom of the browser
window. This popup usually shows the following:

• The dialog box asking if you want to make Internet Explorer your default browser.
• The download options Open, Save, and Cancel.

When you start a project in Silk Test Classic and record locators against the
DirectUIHwnd popup, with accessibility disabled, you will see only a single control. If
you enable Accessibility you will get full recognition of the DirectUIHwnd control.

Using Accessibility with the Open Agent
Win32 uses the Accessibility support for controls that are recognized as generic controls. When Win32
locates a control, it tries to get the accessible object along with all accessible children of the control.

Objects returned by Accessibility are either of the class AccessibleControl, Button or CheckBox.
Button and Checkbox are treated specifically because they support the normal set of methods and
properties defined for those classes. For all generic objects returned by Accessibility the class is
AccessibleControl.

Example

If an application has the following control hierarchy before Accessibility is enabled:

• Control

• Control
• Button

When Accessibility is enabled, the hierarchy changes to the following:

• Control

• Control

• Accessible Control
• Accessible Control

• Button
• Button

Enabling Accessibility for the Open Agent
If you are testing a Win32 application and Silk Test Classic cannot recognize objects, you should first
enable Accessibility. Accessibility is designed to enhance object recognition at the class level.

Using Advanced Techniques with the Open Agent | 417

To enable Accessibility for the Open Agent:

1. Click Options > Agent. The Agent Options dialog box opens.

2. Click Advanced.

3. Select the Use Microsoft Accessibility option. Accessibility is turned on.

Microsoft UI Automation
Microsoft UI Automation (UI Automation) is a framework that enables you to access, identify, and
manipulate UI elements of any application by providing programmatic access to these user interface
elements. When testing against Windows-based applications that have implemented UI Automation
provider interfaces, you can use UI Automation to improve the object recognition for the controls in these
applications. In this Help, we will refer to such controls as UI Automation controls.

Note: Silk Test Classic supports testing Windows-based applications that have implemented UI
Automation on machines with Microsoft Windows 8 or later.

UI Automation provides fallback support for applications that are based on the following technologies:

• Win32
• WPF
• WinForms
• Oracle JavaFX
• QT
• PowerBuilder
• Delphi
• Microsoft Office

For example, if you cannot record a test against your application because Silk Test Classic cannot
recognize the objects in the application or because Silk Test Classic recognizes all objects in the
application as Control, you could try to enable the UI Automation support.

To enable the UI Automation support during recording, stop recording, enable the option Microsoft UI
Automation, and resume recording. For additional information, see Setting Recording Options for the
Open Agent.

Note: The UI Automation support overrides the standard technology-domain-specific support. When
you are finished interacting with the controls that require UI Automation support, disable the UI
Automation support again to resume working with standard controls.

Note: If you are testing against a Java FX application, you do not have to enable the UI Automation
support, as Silk Test Classic enables this out-of-the-box for Java FX applications.

To ensure that the methods supported for a UI Automation control cover the corresponding controls in all
supported technologies, the Silk Test Classic API supports only a subset of the methods and properties
available for these controls. To call additional methods and properties that are not available in the Silk Test
Classic API for a control, use dynamic invoke.

Recording a Test Against an Application with an
Implemented UI Automation Provider Interface
Use the Interactive Recording window to record a test against a windows-based application which has
implemented UI Automation provider interfaces.

This functionality is supported only if you are using the Open Agent.

Note: Silk Test Classic supports testing Windows-based applications that have implemented UI
Automation on machines with Microsoft Windows 8 or later.

418 | Using Advanced Techniques with the Open Agent

Before you can record a Silk Test Classic test, you must have created a Silk Test Classic project.

To record a new test for a windows-based application which has implemented UI Automation provider
interfaces:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Testcase.

3. Select the test type that you want to record.

4. Click OK.

5. Type a name for the new test into the Testcase name field.

6. Click Start Recording.

7. The Interactive Recording window opens and displays the application under test. Perform the actions
that you want to record.

a) Click on the object with which you want to interact. Silk Test Classic performs the default action for
the object. If there is no default action, or if you have to insert text or specify parameters, the
Choose Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk Test Classic automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk Test Classic adds the action to the recorded

actions and replays it on the mobile device or emulator.

During recording, Silk Test Classic displays the mouse position next to the recording window. You can
toggle the location to switch between displaying the absolute mouse position on the device display and
the mouse position in relation to the active object. For additional information about the actions available
during recording, see Actions Available During Recording.

8. Click Stop. The Record Testcase dialog box opens.

9. Perform one of the following steps:

• Click Paste testcase and update window declaration(s) and then click OK. In most cases, you
want to choose this option.

• Choose Paste testcase only and then click OK. This option does not update the window
declarations in the INC file when it pastes the script to the Editor. If you previously recorded the
window declarations related to this test case, choose this option.

10.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Dynamically Invoking UI Automation Methods
To ensure that the methods supported for a UI Automation control cover the corresponding controls in all
supported technologies, the Silk Test Classic API supports only a subset of the methods and properties
available for these controls. To call additional methods and properties that are not available in the Silk Test
Classic API for a control, use dynamic invoke.

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Using Advanced Techniques with the Open Agent | 419

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk Test Classic types.

Silk Test Classic types include primitive types, for example boolean, int, and string, lists, and other
types, for example Point and Rect.

• Enum types.

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects.

Pass .NET struct and object parameters as a list. The elements in the list must match one constructor
for the .NET object in the test application. For example, if the method expects a parameter of the .NET
type System.Windows.Vector, you can pass a list with two integers. This works because the
System.Windows.Vector type has a constructor with two integer arguments.

Supported Methods and Properties

The following methods and properties can be called:

• All public methods and properties that the MSDN defines for the AutomationElement class. For
additional information, see http://msdn.microsoft.com/en-us/library/
system.windows.automation.automationelement.aspx.

• All methods and properties that MSUIA exposes. The available methods and properties are grouped in
"patterns". Pattern is a MSUIA specific term. Every control implements certain patterns. For an overview
of patterns in general and all available patterns see http://msdn.microsoft.com/en-us/library/
ms752362.aspx. A custom control developer can provide testing support for the custom control by
implementing a set of MSUIA patterns.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk Test Classic types.
• All methods that have no return value return NULL.
• A string for all other types.

To retrieve this string representation, call the ToString method on returned .NET objects in the
application under test.

Example

This example shows how you can call the scrolling methods of a UIADocument control
by using dynamic invoke. Silk Test Classic does not expose these scrolling methods in

420 | Using Advanced Techniques with the Open Agent

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx

the API, as these methods are not available for the UIADocument control in all
technologies that have implemented UI Automation provider interfaces.

To see which methods and properties are available for the control, you could use code
similar to the following:

[] WINDOW textBox = UntitledNotepad.Find("//UIADocument")
[] LIST OF STRING propertyList = textBox.GetPropertyList()
[] LIST OF STRING methodList = textBox.GetDynamicMethodList()

For this example, the propertyList that is returned by the GetPropertyList method
includes the property ScrollPattern.VerticalScrollPercent. The methodList
that is returned by the GetDynamicMethodList method includes the method
ScrollPattern.ScrollVertical.

By using dynamic invoke, you can call the method ScrollPattern.ScrollVertical
as follows:

[] textBox.DynamicInvoke("ScrollPattern.SetScrollPercent",
{ -1, 0 })

Alternatively, you can call the property ScrollPattern.VerticalScrollPercent
as follows:

[] textBox.GetProperty("ScrollPattern.VerticalScrollPercent")

Locator Attributes for Identifying Controls with UI
Automation
The supported locator attributes for controls in Windows-based applications that have implemented UI
Automation provider interfaces include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify controls in Windows-based applications that have implemented UI Automation provider
interfaces within scripts, you can specify the automationId, caption, className, name or any dynamic
locator attribute. The automationId can be set by the application developer. For example, a locator with an
automationId might look like //UIAButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
UIAButton[@automationId="okB
utton"]

Using Advanced Techniques with the Open Agent | 421

Attribute Type Description Example

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//UIAButton[@caption="Ok"]

className The class name (without namespace) of the UI
Automation control. Using the className attribute can
help to identify a custom control that is derived from a
standard UI Automation control that Silk Test Classic
recognizes.

//
UIAButton[@className='MyCust
omButton']

name The name of a control. Can be provided by the
developer of the application under test.

//
UIAButton[@name="okButton"]

During recording, Silk Test Classic creates a locator for a UI Automation control by using the automationId,
name, caption, or className attributes in the order that they are listed in the preceding table. For example,
if a control has an automationId and a name, Silk Test Classic uses the automationId, if it is unique, when
creating the locator.

To find out which additional custom attributes you could use for the UI Automation controls in your AUT, you
can use the Verify Properties dialog box. To do so, hover the mouse cursor over a UI Automation control
during recording, and click Ctrl+Alt. You can then see which properties are available for the control. For
example, for some applications, the attribute value is useful.

Scrolling in UI Automation Controls
Silk Test Classic provides two different sets of scrolling-related methods and properties, depending on the
UI Automation control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk Test Classic exists because the UI Automation controls implement scrolling in those
two ways.

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk Test Classic does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional

422 | Using Advanced Techniques with the Open Agent

information, refer to the MSUIA documentation. The final position is related to the position of the object,
which is defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.UIAVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.UIAVerticalScrollBar().ScrollToMaximum()

Limitations when Using UI Automation
The known limitations when using UI Automation are:

No support for IMEs while using UI Automation support

While the UI Automation support is enabled, Silk Test Classic provides no support for using Input Method
Editors (IMEs).

Troubleshooting when Testing with UI Automation
Support Enabled

Why does a script with UI Automation controls that is recorded on Microsoft Windows 7 not replay
on Microsoft Windows 8 or later?

When you record a script that includes UI Automation controls on Microsoft Windows 7 or prior, and then
try to replay it on Microsoft Windows 8 or later, the replay might fail. That is because Microsoft has changed
the underlying automation, and the UI Automation behave differently between those Windows versions.

For example, some UI Automation controls in an application might have a value for the automationId
attribute on Microsoft Windows 7 and no value for the same attribute on Microsoft Windows 10.

In such a case, Micro Focus recommends recording the script again against the later Microsoft Windows
version.

Why is the first action in a Microsoft Office application not replayed?

If you are recording against a Microsoft Office application, the application window needs to be active before
recording so that Silk Test Classic can replay all actions correctly. For example, if you are recording against
Microsoft Excel, and you have changed the focus to another application, the first click in Excel that is
recorded by Silk Test Classic will not do anything during replay. You will have to repeat the recorded action
and remove it from your test.

As a workaround, left-click into the title bar of the Microsoft Office application before recording any actions.
This click into the title bar is not recorded by Silk Test Classic, and you can continue recording as intended.

Calling Windows DLLs from 4Test
This section describes how you can call Windows DLLs from 4Test.

Note: The Open Agent supports DLL calling for both 32-bit and 64-bit DLL calls, while the Classic
Agent supports DLL calling only for 32-bit calls.

Silk Test Classic supports only the _stdcall calling convention.

Using Advanced Techniques with the Open Agent | 423

Note: In some versions of Silk Test Classic, you can also use the _cdecl calling convention, although
it is not officially supported. The _cdecl calling convention does not work with Silk Test 14.0 or later.
Using the _cdecl calling convention might lead to unexpected failures of previously functioning DLL
calls when migrating from the Classic Agent to the Open Agent or when upgrading Silk Test Classic to
a newer version in which _cdecl does not work. If you are facing such failing DLL calls, ensure that
you are using the _stdcall calling convention with the _stdcall naming decoration rules applied. For
additional information on the DLL calling conventions, see /Gd, /Gr, /Gv, /Gz (Calling Convention).

Aliasing a DLL Name
If a DLL function has the same name as a 4Test reserved word, or the function does not have a name but
an ordinal number, you need to rename the function within your 4Test declaration and use the 4Test alias
statement to map the declared name to the actual name.

For example, the exit statement is reserved by the 4Test compiler. Therefore, to call a function named
exit, you need to declare it with another name, and add an alias statement, as shown here:

dll "mydll.dll"
my_exit ()
alias "exit"

Calling a DLL from within a 4Test Script
A declaration for a DLL begins with the keyword dll. The general format is:

dll dllname.dll
prototype
[prototype]...

where dllname is the name of the dll file that contains the functions you want to call from your 4Test
scripts and prototype is a function prototype of a DLL function you want to call.

Environment variables in the DLL path are automatically resolved. You do not have to use double
backslashes (\\) in the code, single backslashes (\) are sufficient.

The Open Agent supports calling both 32bit and 64bit DLLs. You can specify which type of DLL the Open
Agent should call by using the SetDllCallPrecedence method of the AgentClass class. If you do not
know if the DLL is a 32bit DLL or a 64bit DLL, use the GetDllCallPrecedence function of the
AgentClass Class. The Classic Agent provides support for calling 32bit DLLs only.

Silk Test Classic supports only the _stdcall calling convention.

Note: In some versions of Silk Test Classic, you can also use the _cdecl calling convention, although
it is not officially supported. The _cdecl calling convention does not work with Silk Test 14.0 or later.
Using the _cdecl calling convention might lead to unexpected failures of previously functioning DLL
calls when migrating from the Classic Agent to the Open Agent or when upgrading Silk Test Classic to
a newer version in which _cdecl does not work. If you are facing such failing DLL calls, ensure that
you are using the _stdcall calling convention with the _stdcall naming decoration rules applied. For
additional information on the DLL calling conventions, see /Gd, /Gr, /Gv, /Gz (Calling Convention).

Prototype syntax

A function prototype has the following form:

return-type func-name ([arg-list])

where:

return-
type

The data type of the return value, if there is one.

func-name An identifier that specifies the name of the function.

424 | Using Advanced Techniques with the Open Agent

http://msdn.microsoft.com/en-us/library/46t77ak2.aspx
http://msdn.microsoft.com/en-us/library/46t77ak2.aspx

arg-list A list of the arguments passed to the function, specified as follows:

[pass-mode] data-type identifier

where:

pass-mode Specifies whether the argument is passed into the function (in), passed
out of the function (out), or both (inout). If omitted, in is the default.

To pass by value, make a function parameter an in parameter.

To pass by reference, use an out parameter if you only want to set the
parameter’s value; use an inout parameter if you want to get the
parameter’s value and have the function change the value and pass the
new value out.

data-type The data type of the argument.

identifier The name of the argument.

You can call DLL functions from 4Test scripts, but you cannot call member functions in a DLL.

Example

The following example writes the text hello world! into a field by calling the
SendMessage DLL function from the DLL user32.dll.

use "mswtype.inc"
use "mswmsg32.inc"

dll "user32.dll"
 inprocess ansicall INT SendMessage (HWND hWndParent, UINT
msg, WPARAM wParam, LPARAM lParam) alias "SendMessageA"

testcase SetTextViaDllCall()
 SendMessage(UntitledNotepad.TextField.GetHandle(),
WM_SETTEXT, 0, "hello world! ")

Passing Arguments to DLL Functions
Valid data types for arguments passed to DLL functions

Since DLL functions are written in C, the arguments you pass to these functions must have the appropriate
C data types. In addition to the standard 4Test data types, Silk Test Classic also supports the following C
data types:

• char, int, short, and long
• unsigned char, unsigned int, unsigned short, and unsigned long
• float and double

Note: Any argument you pass must have one of these data types (or be a record that contains fields
of these types).

Passing string arguments

The char* data type in C is represented by the 4Test STRING data type. The default string size is 256
bytes.

The following code fragments show how a char array declared in a C struct is declared as a STRING
variable in a 4Test record:

// C declaration
typedef struct

Using Advanced Techniques with the Open Agent | 425

{
...
char szName[32];
...
}

// 4Test declaration
type REC is record
...
STRING sName, size=32
...

To pass a NULL pointer to a STRING, use the NULL keyword in 4Test. If a DLL sets an out parameter of
type char* to a value larger than 256 bytes, you need to initialize it in your 4Test script before you pass it to
the DLL function. This will guarantee that the DLL does not corrupt memory when it writes to the
parameter. For example, to initialize an out parameter named my_parameter, include the following line of
4Test code before you pass my_parameter to a DLL:

my_parameter = space(1000)

If the user calls a DLL function with an output string buffer that is less then the minimum size of 256
characters, the original string buffer is resized to 256 characters and a warning is printed. This warning,
String buffer size was increased from x to 256 characters (where x is the length of the
given string plus one) alerts the user to a potential problem where the buffer used might be shorter than
necessary.

Passing arguments to functions that expect pointers

When passing pointers to C functions, use these conventions:

• Pass a 4Test string variable to a DLL that requires a pointer to a character (null terminated).
• Pass a 4Test array or list of the appropriate type to a DLL that requires a pointer to a numerical array.
• Pass a 4Test record to a DLL that requires a pointer to a record. 4Test records are always passed by

reference to a DLL.
• You cannot pass a pointer to a function to a DLL function.

Passing arguments that can be modified by the DLL function

An argument whose value will be modified by a DLL function needs to be declared using the out keyword.
If an argument is sometimes modified and sometimes not modified, then declare the argument as in and
then, in the actual call to the DLL, preface the argument with the out keyword, enclosed in brackets.

For example, the third argument (lParam) to the SendMessage DLL function can be either in or out.
Therefore, it is declared as follows:

// the lParam argument is by default an in argument
dll "user.dll"
LRESULT
SendMessage (HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

Then, to call the DLL with an out argument, you use the keyword out, enclosed within brackets:

SendMessage (Open.hWnd, WM_GETTEXT, 256, [out] sText)

Passing window handles to a DLL function

If a parameter takes a window handle, use the hwnd property or the GetHandle method of the AnyWin
class to get the window handle you need.

426 | Using Advanced Techniques with the Open Agent

Using DLL Support Files Installed with Silk Test
Classic
Silk Test Classic is installed with the following include files that contain all the declarations, data types, and
constants necessary for you to call hundreds of functions within the Windows API from your scripts.

msw32.inc Contains use statements for the include files that apply to 32-bit Windows:
mswconst.inc, mswtype.inc, mswfun32.inc, mswmsg32.inc, and
mswutil.inc.

By including msw32.inc in your 4Test scripts, you have access to all the information in
the other include files.

Note: The DLL functions declared in the files included in msw32.inc are aliased
to the W (wide-character) functions.

mswconst.inc Declares constants you pass to DLL functions. These constants contain style bits,
message box flags, codes used by the GetSystemMetrics function, flags used by the
GetWindow function, window field offsets for the GetWindowLong and the
GetWindowWord functions, class field offsets for the GetClassLong and
GetClassWord functions, and menu function flags.

mswfun32.inc Contains 4Test declarations for 32-bit functions in the user32.dll and
kernel32.dll files. The mswfun32.inc file provides wide character support. This
means that you no longer have to edit mswfun32.inc in order to call Windows DLL
functions. See the description of mswfun32.inc in the Dll declaration section.

mswmsg32.inc Declares 32-bit Microsoft Window messages, control messages, and notification codes.

mswtype.inc Declares many data types commonly used in the Windows API.

mswutil.inc Contains the following utility functions:

• PrintWindowDetail

• GetStyleBitList

• PrintStyleBits

Extending the Class Hierarchy
This section describes how you can extend the class hierarchy.

Classes
This section describes the 4Test classes.

Overview of Classes
The class indicates the type, or kind, of GUI object being declared.

Note: This is the 4Test class, not the class that the GUI itself uses internally. For example, although
the class might be Label on one GUI and Text on another, 4Test uses the class name StaticText to
refer to text strings that cannot be edited.

A class defines data and behavior

The class also defines methods (actions) and properties (data) that are inherited by the GUI object. For
example, if you record a declaration for a pushbutton named OK, a test case can legally use a method like

Using Advanced Techniques with the Open Agent | 427

Click on the pushbutton because the Click method is defined at the class level. In other words, the
definition of what it means to click on a pushbutton is included within the definition of the 4Test class itself,
and this definition is inherited by each pushbutton in the GUI. If this were not true, you would have to define
within each GUI object’s window declaration all the methods you wanted to use on that object.

The class as recorded cannot be changed

The one exception is that if the recorded class is CustomWin, meaning that Silk Test Classic does not
recognize the object. You can, when appropriate, map the class to one that is recognized.

Custom classes

Enable an application to perform functions specific to the application and to enhance standard class
functionality. Custom classes are also easy to maintain and can be extended easily by developers. All
custom objects default to the built-in class, CustomWin.

Custom objects fall into two general categories:

Visible
objects

Objects that Silk Test Classic knows about, but cannot identify, for example, the icon in an
About dialog box. Two further categories of visible objects include:

• Common objects are those that look and behave like standard objects, for example, a
third-party object that looks and acts like a PushButton, but is recorded as a
CustomWin.

• Uncommon objects, on the other hand, have no relation to the existing standard objects.
For example, an Icon. there is no corresponding Icon class.

Invisible
objects

Objects that Silk Test Classic cannot recognize at all.

Polymorphism
If a class defines its own version of a method or property, that method or property overrides the one
inherited from an ancestor. This is referred to as polymorphism. For example, the ListBox class has its
own GetContents method, which overrides the GetContents method inherited from the AnyWin class.

CursorClass, ClipboardClass, and AgentClass
The following three classes are not part of the AnyWin class hierarchy, because they define methods for
objects that are not windows:

CursorClass Defines the three methods you can use on the cursor: GetPosition, GetType, and
Wait.

ClipboardClass Defines the two methods you can use on the system clipboard: GetText and
SetText.

AgentClass Defines the methods you can use to set options in the 4Test Agent. The 4Test Agent
is the component of Silk Test Classic that translates the method calls in your test
cases into the appropriate GUI- specific event streams.

Predefined identifiers for Cursor, Clipboard, and Agent

You do not record declarations for the cursor, the clipboard, or the Agent. Instead, you use predefined
identifiers for each of these objects when you want to use a method to act against the object. The
predefined methods for each are:

• 4Test Agent: Agent
• clipboard: Clipboard

428 | Using Advanced Techniques with the Open Agent

• cursor (mouse pointer): Cursor

For example, to set a 4Test Agent option, you use a call such as the following:

Agent.SetOption (OPT_VERIFY_COORD, TRUE)

Defining New Classes with the Open Agent
This functionality is supported only if you are using the Open Agent.

Consider the declarations for the Open and the Save As dialog boxes of the Text Editor application, which
each contain exactly the same child windows:

window DialogBox Open
 locator "Open"
 parent TextEditor
 StaticText FileNameText
 locator "File Name:"
 TextField FileName1
 locator "File Name:"
 ListBox FileName2
 locator "File Name:"
 StaticText DirectoriesText
 locator "Directories:"
 StaticText PathText
 locator "#3"
 ListBox Path
 locator "#2"
 StaticText ListFilesOfTypeText
 locator "List Files of Type:"
 PopupList ListFilesOfType
 locator "List Files of Type:"
 StaticText DrivesText
 locator "Drives:"
 PopupList Drives
 locator "Drives:"
 PushButton OK
 locator "OK"
 PushButton Cancel
 locator "Cancel"
 PushButton Network
 locator "Network"

window DialogBox SaveAs
 locator "Save As"
 parent TextEditor
 StaticText FileNameText
 locator "File Name:"
 TextField FileName1
 locator "File Name:"
 ListBox FileName2
 locator "File Name:"
 StaticText DirectoriesText
 locator "Directories:"
 StaticText PathText
 locator "#3"
 ListBox Path
 locator "#2"
 StaticText ListFilesOfTypeText
 locator "List Files of Type:"
 PopupList ListFilesOfType
 locator "List Files of Type:"
 StaticText DrivesText

Using Advanced Techniques with the Open Agent | 429

 locator "Drives:"
 PopupList Drives
 locator "Drives:"
 PushButton OK
 locator "OK"
 PushButton Cancel
 locator "Cancel"
 PushButton Network
 locator "Network"

It is not uncommon for an application to have multiple dialogs whose only difference is the caption: The
child windows are all identical or nearly identical. Rather than recording declarations that repeat the same
child objects, it is cleaner to create a new class that groups the common child objects.

For example, here is the class declaration for a new class called FileDialog, which is derived from the
DialogBox class and declares each of the children that will be inherited by the SaveAs and Open dialog
boxes:

winclass FileDialog : DialogBox
 parent TextEditor
 StaticText FileNameText
 locator "File Name:"
 TextField FileName1
 locator "File Name:"
 ListBox FileName2
 locator "File Name:"
 StaticText DirectoriesText
 locator "Directories:"
 StaticText PathText
 locator "#3"
 ListBox Path
 locator "#2"
 StaticText ListFilesOfTypeText
 locator "List Files of Type:"
 PopupList ListFilesOfType
 locator "List Files of Type:"
 StaticText DrivesText
 locator "Drives:"
 PopupList Drives
 locator "Drives:"
 PushButton OK
 locator "OK"
 PushButton Cancel
 locator "Cancel"
 PushButton Network
 locator "Network"

To make use of this new class, you must do the following:
1. Rewrite the declarations for the Open and Save As dialog boxes, changing the class to FileDialog.
2. Remove the declarations for the child objects inherited from the new class.
Here are the rewritten declarations for the Open and Save As dialog boxes:

window FileDialog SaveAs
 locator "Save As"
window FileDialog Open
 locator "Open"

For more information on the syntax used in declaring new classes, see the winclass declaration.

The default behavior of Silk Test Classic is to tag all instances of the parent class as the new class. So, if
you record a window declaration against a standard object from which you have defined a new class, Silk
Test Classic records that standard object’s class as the new class. To have all instances declared by
default as the original class, add the following statement to the declaration of your new class: setting
DontInheritClassTag = TRUE. For example, let’s say you define a new class called FileDialog and

430 | Using Advanced Techniques with the Open Agent

derive it from the DialogBox class. Then you record a window declaration against a dialog box. Silk Test
Classic records the dialog box to be of the new FileDialog class, instead of the DialogBox class. To
have Silk Test Classic declare the class of the dialog box as DialogBox, in the FileDialog definition,
set DontInheritClassTag to TRUE. For example:

winclass FileDialog : DialogBox
 setting DontInheritClassTag = TRUE

Defining New Class Properties
You can define new properties for existing classes using the property declaration. You use these class
properties to hold data about an object; you can use class properties anywhere in a script.

DesktopWin
Because the desktop is a GUI object, it derives from the AnyWin class. However, unlike other GUI objects,
you do not have to record a declaration for the desktop. Instead, you use the predefined identifier Desktop
when you want to use a method on the desktop.

For example, to call the GetActive method on the desktop, you use a call like the following:

wActive = Desktop.GetActive ()

Logical Classes
The AnyWin, Control, and MoveableWin classes are logical (virtual) classes that do not correspond to
any actual GUI objects, but instead define methods common to the classes that derive from them. This
means that Silk Test Classic never records a declaration that has one of these classes.

Furthermore, you cannot extend or override logical classes. If you try to extend a logical class, by adding a
method, property or data member to it, that method, property, or data member is not inherited by classes
derived from the class. You will get a compilation error saying that the method/property/data member is not
defined for the window that tries to call it. Nor can you override the class, by rewriting existing methods,
properties, or data members. Your modifications are not inherited by classes derived from the class.

Class Hierarchy (Open Agent)
You can define your own methods and properties, as well as define your own classes. You can also define
your own attributes, which are used in the verification stage in test cases.

The 4Test class hierarchy defines the methods and properties that enable you to query, manipulate, and
verify the data or state of any GUI object in your application. You can define your own methods and
properties, as well as define your own classes. You can also define your own attributes, which are used in
the verification stage in test cases. The following schema shows a listing of the built-in class hierarchy for
the core classes and the Open Agent:

• AgentClass

• AnyWin

• Control

• CheckBox

• ComboBox

• Group

• Link

• ListBox

• ListViewEx

• PageList

• PushButton

• RadioList

Using Advanced Techniques with the Open Agent | 431

• Scale

• StaticText

• StatusBar

• TableEx

• TextField

• ToggleButton

• ToolBar

• TreeView

• DesktopWinOA

• Item

• SeparatorItem

• ToolItem

• CheckBoxToolItem

• DropDownToolItem

• RadioListToolItem

• PushToolItem

• ScrollBar

• HorizontalScrollBar

• VerticalScrollBar

• TableColumn

• TableRow

• Menu

• MenuItem

• MoveableWin

• DialogBox

• MainWin

• WinPart

• ClipboardClass

• ConsoleClass

• CursorClass

Verifying Attributes and Properties
This section describes how you can use attributes and properties to verify test cases.

Attribute Definition and Verification
When you record a test case, you can verify the test case using attributes.

You can choose to verify using either attributes or properties. Generally you will verify using properties,
because property verification is more flexible.

For example, the attributes for the DialogBox class are Caption, Contents, Default button,
Enabled, and Focus. The following 4Test code implements the Default Button attribute in the
winclass.inc file:

attribute "Default button", VerifyDefaultButton, QueryDefaultButton

As this 4Test code shows, each attribute definition begins with the statement, followed by the following
three comma-delimited values:

1. The text that you want to display in the Attribute panel of the Verify Window dialog box. This text must
be a string.

432 | Using Advanced Techniques with the Open Agent

2. The method Silk Test Classic should use to verify the value of the attribute at runtime.
3. The method Silk Test Classic should use to get the actual value of the attribute at runtime.

Defining a New Attribute for an Existing Class
To add one or more attributes to an existing class, use the following syntax:

winclass ExistingClass : ExistingClass...
attribute_definitions

Each attribute definition begins with the attribute statement, followed by the following three comma-
delimited values:

1. The text that you want to display in the Attribute panel of the Verify Window dialog box. This text must
be a string.

2. The method Silk Test Classic should use to verify the value of the attribute at runtime.
3. The method Silk Test Classic should use to get the actual value of the attribute at runtime.

Each attribute definition must begin and end on its own line. When you define a new attribute, you usually
need to define two new methods (steps 2 and 3 above) if none of the built-in methods suffice.

Silk Test Classic allows you to add, delete, or edit the existing functionality of a class; this applies to both
functions and variables of a class. However, we recommend that you do not override a function or a
variable by declaring a function or variable of that same name. Furthermore, you should never override a
variable that has a tag associated with it. You cannot have two variables with the same name in the same
level of an object. If you do so, Silk Test Classic will display a compile error.

Defining New Verification Properties
You can perform verifications in your test cases using properties. These verification properties are different
from class properties, which are defined using the property declaration. Verification properties are used
only when verifying the state of your application in a test case. Silk Test Classic comes with built-in
verification properties for all classes of GUI objects.

You can define your own verification properties, which will be added to the built-in properties listed in the
Verify Window dialog box when you record a test case.

Syntax for Attributes
To add one or more attributes to an existing class, use the following syntax:

winclass ExistingClass : ExistingClass...
attribute_definitions

Each attribute definition must begin and end on its own line.

When you define a new attribute, you usually need to define two new methods if none of the built-in
methods suffices.

For example, to add a new attribute to the DialogBox class that verifies the number of children in the
dialog box, you add code like this to your test frame (or other include file):

winclass DialogBox:DialogBox

 attribute "Number of children", VerifyNumChild, GetNumChild

 integer GetNumChild()
 return ListCount (GetChildren ()) // return count of children of dialog

 hidecalls VerifyNumChild (integer iExpectedNum)
 Verify (GetNumChild (), iExpectedNum, "Child number test")

As this example shows, you use the hidecalls keyword when defining the verification method for the new
attribute.

Using Advanced Techniques with the Open Agent | 433

Hidecalls Keyword
The keyword hidecalls hides the method from the call stack listed in the results. Using hidecalls allows you
to update the expected value of the verification method from the results. If you do not use hidecalls in a
verification method, the results file will point to the frame file, where the method is defined, instead of to the
script. We recommend that you use hidecalls in all verification methods so that you can update the
expected values.

An Alternative to NumChildren as a Class Property
Instead of defining NumChildren as a class property, you could also define it as a variable, then initialize
the variable in a script. For example, in your include file, you would have:

winclass DialogBox : DialogBox
INTEGER NumChild2
 // list of custom verification properties
LIST OF STRING lsPropertyNames = {"NumChild2"}

And in your script, before you do the verification, you would initialize the value for the dialog box under test,
such as:

Find.NumChild2 = ListCount(Find.GetChildren ())

Defining Methods and Custom Properties
This section describes how you can define methods and custom verification properties.

Defining a New Method
To add a method to an existing class, you use the following syntax to begin the method definition:

winclass ExistingClass : ExistingClass

The syntax ExistingClass : ExistingClass means that the declaration that follows extends the
existing class definition, instead of replacing it.

Note: Adding a method to an existing class adds the method to all instances of the class.

Example

To add a SelectAll() method to the TextField class, add the following code to your
frame.inc file:

 winclass TextField : TextField
 SelectAll()
 TypeKeys("<Ctrl+a>")

In your test cases, you can then use the SelectAll method like any other method in
the TextField class.

UntitledNotepad.TextField.SelectAll()

Defining a New Method for a Single GUI Object
To define a new method to use on a single GUI object, not for an entire class of objects, you add the
method definition to the window declaration for the individual object, not to the class. The syntax is exactly
the same as when you define a method for a class.

434 | Using Advanced Techniques with the Open Agent

To add a method to a single GUI object, for example to add the SelectAll() method to a specific
TextField object, locate the GUI object in your frame.inc file, like described in the following code
sample:

window MainWin UntitledNotepad

 ...

 TextField TextField
 locator "//TextField"

In your test cases, you can then use the SelectAll method like any other method of the TextField
object:

window MainWin UntitledNotepad

 ...

 TextField TextField
 locator "//TextField"
 SelectAll()
 TypeKeys("<Ctrl+a>")

Note: Adding a method to a single GUI object adds the method only to the specific GUI object and
not to other instances of the class.

Classic Agent Example

For example, suppose you want to create a method named SetLineNum for a dialog
box named GotoLine, which performs the following actions:

• Invokes the dialog box.
• Enters a line number.
• Clicks OK.

The following 4Test code shows how to add the definition for the SetLineNum method
to the declaration of the GotoLine dialog box.

window DialogBox GotoLine
 tag "Goto Line"
 parent TextEditor
 const wInvoke = TextEditor.Search.GotoLine

 void SetLineNum (STRING sLine)
 Invoke () // open dialog
 Line.SetText (sLine) // populate text field
 // whose identifier is Line
 Accept () // close dialog, accept values

 //Then, to go to line 7 in the dialog, you use this method
call in your testcases:
 GotoLine.SetLineNum (7)

Recording a Method for a GUI Object
If you need to perform an action on an object, which is not supported by the class of the object, you can
record or manually script a new method that performs the action. Add the new method to the class or to the
window declaration of the object to use the method in the same way as the built-in methods of the class.

You can use the Record Method dialog box to record a method for a class or window declaration.

Note: Before you can record a method, you must have recorded window declarations.

Using Advanced Techniques with the Open Agent | 435

1. Open an include file or script file.

2. Move the mouse cursor into the declaration of the GUI object to which you want to add a method.

3. Click Record > Method.

Note: This is only available when an include file or script file is the active window and the mouse
cursor is within a class or object declaration because methods are necessarily part of a class or
object definition.

The Record Method dialog box appears.

4. Type a name for the method into the Method name field.

You can also select one of the predefined methods:

• BaseState

• Close

• Invoke

• Dismiss

5. Click Start Recording. Silk Test Classic is minimized and displays the application under test.

• If you are using the Open Agent, the Recording window appears.
• If you are using the Classic Agent, the Record Status on Classic Agent dialog box appears.

6. Perform and record the actions that you require.

7. Stop recording.

• If you are using the Open Agent, click Stop Recording.
• If you are using the Classic Agent, click Done.

The Method code field in the Record Method dialog box displays the actions that you have recorded
translated into 4Test statements.

8. On the Record Method dialog box, click OK to paste the code into the file in the editor.

9. Edit the 4Test statements that were recorded, if necessary.

Note: To add a method to a class which is using the Open Agent, you can also copy the method into
the script from a recorded test case.

Deriving a New Method from an Existing One
To derive a new method from an existing method, you can use the derived keyword followed by the scope
resolution operator (::).

Use the following syntax:

new method : existing method

The following example defines a GetCaption method for WPFNewTextBox that prints the string Caption
as is before calling the built-in GetCaption method (defined in the AnyWin class) and printing its return
value:

winclass WPFNewTextBox : WPFTextBox
GetCaption ()
Print ("Caption as is: ")
Print (derived::GetCaption ())

Defining Custom Verification Properties

1. In a class declaration or in the declaration for an individual object, define the variable
lsPropertyNames as follows:

LIST OF STRING lsPropertyNames

2. Specify each of your custom verification properties as elements of the list lsPropertyNames. Custom
verification properties can be either:

436 | Using Advanced Techniques with the Open Agent

• Class properties, defined using the property statement.
• Variables of the class or individual object.

Any properties you define in lsPropertyNames will override built-in properties with the same name. With
your custom verification properties listed as elements in lsPropertyNames, when you record and run a
test case, those additional properties will be available during verification.

Redefining a Method
There may be some instances in which you want to redefine an existing method. For example, to redefine
the GetCaption method of the Anywin class, you use this 4Test code:

winclass AnyWin : AnyWin
 GetCaption ()
 // insert method definition here

Confirming the Property List
You can use the GetPropertyList method to confirm the list of verification properties for an object. For
example, the following simple test case prints the list of all the verification properties of the Find dialog to
the results file:

testcase FindDialogPropertyConfirm ()
TextEditor.Search.Find.Pick ()
ListPrint (Find.GetPropertyList ())
Find.Cancel.Click ()

Examples
This section provides examples for defining methods and custom verification properties.

Example: Adding a Method to TextField Class
This example adds to the TextField class a method that selects all of the text in the text box.

winclass TextField : TextField
 SelectAll ()
 STRING sKey1, sKey2
 switch (GetGUIType ())
 case mswnt, msw2003
 sKey1 = "<Ctrl-Home>"
 sKey2 = "<Shift-Ctrl-End>"
 case mswvista
 sKey1 = "<Ctrl-Up>"
 sKey2 = "<Shift-Cmd-Down>"
 // return cursor to 1,1
 this.TypeKeys (sKey1)
 // highlight all text
 this.TypeKeys (sKey2)

The keyword this refers to the object the method is being called on.

The preceding method first decides which keys to press, based on the GUI. It then presses the key that
brings the cursor to the beginning of the field. It next presses the key that highlights (selects) all the text in
the field.

Example: Adding Tab Method to DialogBox Class
To add a Tab method to the DialogBox class, you could add the following 4Test code to your frame.inc
file (or other include file):

winclass DialogBox : DialogBox
Tab (INTEGER iTimes optional)
if (iTimes == NULL)

Using Advanced Techniques with the Open Agent | 437

 iTimes = 1
this.TypeKeys ("<tab {iTimes}>")

Example: Defining a Custom Verification Property
Let's look at an example of defining a custom verification property. Say you want to test a dialog box.
Dialog boxes come with the following built-in verification properties:

• Caption
• Children
• DefaultButton
• Enabled
• Focus
• Rect
• State

And let's say that you have defined a class property, NumChildren, that you want to make available to the
verification system.

Here is the class property definition:

property NumChildren
INTEGER Get ()
return ListCount (GetChildren ())

That property returns the number of children in the object, as follows:

• The built-in method GetChildren returns the children in the dialog box in a list.
• The built-in function ListCount returns the number of elements in the list returned by GetChildren.

To make the NumChildren class property available to the verification system (that is, to also make it a
verification property) you list it as an element in the variable lsPropertyNames. So here is part of the
extended DialogBox declaration that you would define in an include file:

winclass DialogBox : DialogBox
 // user-defined property
 property NumChildren
 INTEGER Get ()
 return ListCount (GetChildren ())
 // list of custom verification properties
 LIST OF STRING lsPropertyNames = {"NumChildren"}

Now when you verify a dialog box in a test case, you can verify your custom property since it will display in
the list of DialogBox properties to verify.

Note: As an alternative, instead of defining NumChildren as a class property, you could also define it
as a variable, then initialize the variable in a script. For example, in your include file, you would have:

winclass DialogBox : DialogBox
 INTEGER NumChild2
 // list of custom verification properties
 LIST OF STRING lsPropertyNames = {"NumChild2"}

And in your script-before you do the verification-you would initialize the value for the dialog box under
test, such as:

Find.NumChild2 = ListCount (Find.GetChildren ())

Porting Tests to Other GUIs
This section describes how you can port tests to other GUIs.

438 | Using Advanced Techniques with the Open Agent

Handling Differences Among GUIs
This section describes how you can handle differences between GUIs when porting tests to other GUIs.

Conditionally Loading Include Files
If you are testing different versions of an application, such as versions that run on different platforms or
versions in different languages, you probably have different include files for the different versions. For
example, if your applications run under different languages, you might have text strings that display in
windows defined in different include files, one per language. You want Silk Test Classic to load the proper
include file for the version of the application you are currently testing.

Load Different Include Files for Different Versions of the Test
Application
1. Define a compiler constant.

For example, you might define a constant named MyIncludeFile.

2. Insert the following statement into your 4Test file: use constant.

For example, if you defined a constant MyIncludeFile, insert the following statement: use
MyIncludeFile. In this example, constant can also be an expression that evaluates to a constant at
compile time.

3. When you are ready to compile your 4Test files, specify the file name of the include file you want loaded
as the value of the constant in the Compiler Constants dialog box.
Be sure to enclose the value in quotation marks if it is a string.

4. Compile your code.

Silk Test Classic evaluates all compiler constants and substitutes their values for the constants in your
code. In this case, the constant MyIncludeFile will be evaluated to a file, which will be loaded through
the use statement.

Different Error Messages
The VerifyErrorBox function, shown below, illustrates how to solve the problem of different error
messages on each GUI platform. For example, if a GUI platform always adds the prefix "Error:" to its
message, while the other platforms do not, you might use or create a GUI Specifier for that platform and
then use the VerifyErrorBox function as follows:

VerifyErrorBox (STRING sMsg)
 // verifies that the error box has the correct error
 // message, then dismisses the error box

 const ERROR_PREFIX = "ERROR: "
 const ERROR_PREFIX_LEN = Len (ERROR_PREFIX)
 STRING sActMsg = MessageBox.Message.GetText ()

 // strip prefix "ERROR: " from GUI Specifier for that platform error
messages
 if (GetGUIType () == GUI Specifier for that platform)
 sActMsg = SubStr (sActMsg, ERROR_PREFIX_LEN + 1)

 Verify (sActMsg, sMsg)
 MessageBox.Accept ()

One Logical Control can Have Two Implementations
Consider the case where the same logical control in your application is implemented using different classes
on different GUIs.

Using Advanced Techniques with the Open Agent | 439

If the kinds of actions you can perform against the object classes are similar, and if Silk Test Classic uses
the same method names for the actions, then you do not have a portability problem to address.

For example, the methods for the RadioList and PopupList classes have identical names, because the
actions being performed by the methods are similar. Therefore, if a control in your application is a popup
list on one GUI and a radio list on another, your scripts are already portable.

If the two object classes do not have similar methods, or if the methods have different names, then you
need to port your scripts.

Options Sets and Porting
Options sets save all current options except General Options. Options sets can be very useful when trying
to use the same scripts on different operating systems. The primary differences between the two may be
compiler constants.

For example, you might use the compiler constant sCmdLine. Usually, the command line to invoke an
application differs between the PC operating systems. You could create a compiler constant (note that
there is a string limit on compiler constants) for use in the sCmdLine constant to differentiate between the
platforms' command lines. You might also use a compiler constant for methods that work slightly differently
on the two operating systems, such as the Pick() methods.

Specifying Options Sets
In a test plan, you can specify options sets to be used with the test plan or parts of it. You use options sets
to automatically run different tests that require different options without having to manually open options
sets.

To ensure that everyone working on a project has the same options settings (such as class mapping), do
one of the following:

• Open an Options Set.
• Set these option values at runtime.
• Specify the following statement in the test plan: optionset: filename.opt.

Dependent test cases will run with the specified options set opened. The options set will be closed when it
passes out of scope. If you don't specify a full path name, the file is considered to be in a directory relative
to the directory containing the current test plan or sub-plan.

Remember:

• Options can also be set at runtime in a test script by using the Agent method, SetOption, and
passing in the name of the option and its value.

• Many Agent options and their values are found in the Agent Options dialog box.
• Agent options can be set in a testcase/ function.
• Class map settings, set at runtime, are best set before any tests are executed (for example, in

ScriptEnter) and after each test case (for example TestcaseExit) in case any have been changed in the
course of a test case.

• Class mappings set at runtime using the Agent method SetOption are only in effect during test
execution; these settings are not available to the recorders.

Supporting Differences in Application Behavior
Although you can account for differences in the appearance of your application in the window declarations,
if the application’s behavior is fundamentally different when ported, you need to modify your test cases
themselves. To modify your test cases, you write sections of 4Test code that are platform-specific, and then
branch to the correct section of code using the return value from the GetGUIType built-in function.

This topic shows how to use the GetGUIType function in conjunction with if statements and the switch
statements.

440 | Using Advanced Techniques with the Open Agent

Switch statements

You can use GUI specifiers before an entire switch statement and before individual statements within a
case clause, but you cannot use GUI specifiers before entire case clauses.

testcase GUISwitchExample()
INTEGER i
FOR i=1 to 5
mswxp, mswnt switch(i)

// legal:
mswxp, mswnt switch (i)
 case 1
 mswxp Print ("hello")
 mswnt Print ("goodbye")
 case 2
 mswxp raise 1, "error"
 mswnt Print ("continue")
 default
 mswxp Print ("ok")

// NOT legal:
switch (i)
 mswxp case 1
 Print ("hello")
 mswnt case 1
 Print ("goodbye")

If statements

You can use GUI specifiers in if statements, as long as GUI specifiers used within the statement are
subsets of any GUI specifiers that enclose the entire if statement.

// legal because no GUI specifier
// enclosing entire if statement:
if (i==j)
 msw32, mswnt Print ("hi")
 msw2000 Print ("bye")

// legal because msw is a subset of enclosing specifier:
msw32, msw2000 if (i==j)
 mswnt Print("hi")

// legal for the same reason as preceding example:
msw32, msw2000 if (i==j)
 Print ("hi")
mswnt else
 Print ("Not the same")

// NOT legal because msw2000 is not a subset
// of the enclosing GUI specifier msw:
msw32 if (i==j)
 msw2000 Print ("bye") // Invalid GUI type

If you are trying to test multiple conditions, then you should use a select or switch block. You could use
nested if.else statements, but if you have more than two or three conditions, the levels of indentation
will become cumbersome.

You should not use an if..else if..else block. Although if..else if..else will work, it will be
difficult to troubleshoot exceptions that occur because the results file will always point to the first if
statement even if it was actually a subsequent if statement that raised the exception.

For example, in the following test case, the third string, Not a date, will raise the exception:

*** Error: Incompatible types -- 'Not a date' is not a valid date

Using Advanced Techniques with the Open Agent | 441

The exception actually occurs in the lines containing:

GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006

For the nested if..else and the select blocks, the results file points to those lines as the sources of
the exceptions. However, for the if..else if..else block, the results file points to the first if
statement, in other words to the line:

[-] if IsNull (sVal)

even though that line clearly is not the source of the exception because it does not concern DATETIME
values.

[+] testcase IfElseIfElse ()
[-] LIST OF STRING lsVals = {...}
[] "2006-05-20"
[] "2006-11-07"
[] "Not a date"
[] STRING sVal
[]
[-] for each sVal in lsVals
[-] do
[-] if IsNull (sVal)
[] Print ("No date given")
[-] else if sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] else if GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] else
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]
[-] do
[-] if IsNull (sVal)
[] Print ("No date given")
[-] else
[-] if sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] else
[-] if GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] else
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]
[-] do
[-] select
[-] case IsNull (sVal)
[] Print ("No date given")
[-] case sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] case GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] default
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]

Text Box Requires Return Keystroke
On some GUIs, the Enter/Return key must be pressed after data is entered into a text box. Suppose you
want to create a test case that enters invalid data into the text box, and then checks if the application

442 | Using Advanced Techniques with the Open Agent

detects the error. After the test case enters the invalid data, it needs to use the GetGUIType function to
determine the GUI, and then press the Return key if the GUI requires it.

For example:

// code to enter an invalid string into field
if (GetGUIType () == mswnt)
 MyTextField.TypeKeys ("<Return>")
// code to verify that application detected error

Using Cross-Platform Methods in Your Scripts
In scripts, you can use your cross-platform method names. The window declarations map the cross-
platform method names you use in your scripts to the actual methods required to carry out the actions you
want on each of the GUIs.

Continuing the example from Creating a Class that Maps to Several Silk Test Classic Classes, you use the
Select method in your code to select the control named Direction.

testcase SearchBackward ()

 LISTITEM Item
 Item = "Up"
 Find.Invoke ()
 Find.Direction.Select (Item)
 .
 .
 .
 Find.Dismiss ()

Note: The script does not indicate that anything unusual is happening. All of the steps necessary to
make the Select method work properly, regardless of the class of the object, are encapsulated in the
class and window declarations.

About GUI Specifiers
This section describes GUI specifiers.

Class Declarations
Be careful using GUI specifiers before class declarations; they can be ambiguous. Any ambiguities must be
resolvable at compile-time.

// bad style:
msw winclass myclass
mswnt winclass myclass
window myclass inst // Ambiguous. Is it an instance of
 // the msw class or the mswnt class?

The preceding example’s ambiguity can be resolved by specifying a GUI target with conditional compilation
(so that, for example, only code for msw gets compiled, in which case inst would be an instance of the msw
class or by explicitly using a GUI specifier for the window, as follows:

// good style:
msw winclass myclass
mswnt winclass myclass
msw window myclass inst

Conditional Compilation
If you have GUI-specific code in your scripts and declarations, you can have Silk Test Classic conditionally
compile your code based on the values of the GUI specifiers - only code specific to a particular GUI is
compiled (as well, of course, as all code that is not GUI-specific). This has the following two advantages:

Using Advanced Techniques with the Open Agent | 443

• The compilation is faster.
• The resulting code is smaller and requires less memory to run.

You can also cause conditional compilation by using constants, which are evaluated at compile time.

Constants are not restricted to conditional compilation. You can use constants for any value that you want
resolved at compile time.

Conditionally Compile Code
1. Prefix any 4Test statements that are GUI-specific with the appropriate GUI specifier.

2. Specify the platforms that you want to compile for by entering the appropriate GUI specifiers in the GUI
Targets field in the Runtime Options dialog box. You can specify as many GUI targets as you want;
separate each GUI specifier by a comma.

Setting a GUI target affects which classes are listed in the Library Browser.
3. To conditionalize code based on the value of constants you define, do the following:

1. Click Compiler Constants in the Runtime Options dialog box.
2. The Compiler Constants dialog box is displayed.
3. Define a constant and specify its value.
4. Use the constant in your code anywhere you can specify an expression.

4. Click OK to close the Runtime Options dialog box.

GUI with Inheritance
When using GUI specifiers for parent classes, you must explicitly use the GUI specifiers with the
descendants:

mswxp winclass newclass
mswxp winclass subclass : newclass
mswxp window subclass inst

GUI with Global Variables
Be careful when using GUI specifiers with global variables, because Silk Test Classic initializes global
variables before connecting to an Agent. This might not give you the results you want if you are doing
distributed testing.

Let’s say that you are running tests on a remote machine that is listed in the Runtime Options dialog box.
Because Silk Test Classic initializes all global variables before connecting to an Agent, any GUI specifier at
the global level will initialize to the host machine, not the target machine you want to test against.

For example, say the host machine is running a different operating system than the target machine.
Consider the following script:

mswxp STRING sVar1 = SYS_GetEnv("UserName")

mswxp STRING sVar1 = SYS_GetRegistryValue
 (HKEY_LOCAL_MACHINE, "System\CurrentControlSet\Control", "Current
User")

main()
 print(sVar1)

This script fails, with the error message:

*** Error: Registry entry 'Current User' not found

because sVar1 is initialized to the value for the host system, not the target system.

Constants behave similarly to global variables if you use a GUI specifier to initialize the variable (or
constant). It is a good idea to use GUI specifiers in the main function, under Options > Runtime or
another function that is called after the Agent is contacted.

444 | Using Advanced Techniques with the Open Agent

Marking 4Test Code as GUI Specific
Using Silk Test Classic, you can create portable test cases that will test your application on any of the
supported GUIs. The reason for this is that your test cases use logical names, called identifiers, to refer to
the GUI objects, and not actual names, called tags. Therefore, if there are differences in the ported
application’s appearance, you need only change the window declarations, not the test cases themselves.

The porting scenarios described section use 4Test keywords called GUI specifiers to indicate that portions
of include files or script files are specific to a particular GUI. Before studying these scenarios, you should
understand which GUI specifiers are available and how to use them in your include files and script files.

4Test includes a long list of GUI specifiers.

Syntax of a GUI Specifier
A GUI specifier has this syntax:

[[gui-type [,gui-type]] | [!gui-type]]

gui-type is the GUI. You can express this in one of two mutually exclusive ways. For example, you can
specify one or more GUIs separated by commas, as in:

mswxp, mswin7

Or you can specify all but one GUI, as in the following, which indicates that what follows applies to all
environments except Windows NT-based operating systems:

! mswnt

What Happens when the Code is Compiled
Only code relevant to the GUI environments specified in the GUI Targets field (plus all common code) will
be compiled. If you do not list any GUI specifiers in the GUI Targets field, all code will be compiled; at
runtime, code not relevant to the platform the application is running on will be skipped.

The constants you have defined are evaluated and used to compile the code. You can use this feature to
conditionally load include files.

Where You Use GUI Specifiers
A GUI specifier can be located before any 4Test declaration or statement except the use statement, which
must be evaluated at compile time, with the following exceptions:

• Switch statements
• If statements
• Type statements
• Do… except statements
• Class declarations
• GUI with inheritance
• GUI with global variables

If you try to use a browser specifier instead of a GUI specifier to specify a window, Silk Test Classic will
generate an error. The primary use of browser specifiers is to address differences in window declarations
between different browsers. Each Agent connection maintains its own browser type, allowing different
threads to interact with different browsers.

do...except Statements
You can use GUI specifiers to enclose an entire do...except statement before individual statements, but
you cannot use GUI specifiers before the except clause.

// legal:
do

Using Advanced Techniques with the Open Agent | 445

 mswxp Verify (expr1,expr2)
 mswin7 Verify (expr3,expr4)
except
 mswin7 reraise
 mswxp if (ExceptNum () == 1)
 Print ("err, etc.")
// NOT legal:
mswin7 do
 Verify (expr,expr)
mswxp except
 reraise

Type Statements
You can use a GUI specifier before a type type ... is enum or type ... is set statement, but not
before an individual value within the type declaration.

Supporting GUI-Specific Objects
This section describes how Silk Test Classic supports testing GUI-specific objects.

Supporting GUI-Specific Captions

Classic Agent

When you are using the Classic Agent, by default Silk Test Classic bases the tag for an object on the actual
caption or label of the object. If the captions or labels change when the application is ported to a different
GUI, you have two options:

• You can have multiple tags, each based on the platform-specific caption or label.
• You can have a single tag, using the index form of the tag, as long the relative position of the object is

the same in the ported versions of the application.

Then, in your test cases, you can use the same identifier to refer to the object regardless of what the
object’s actual label or caption is.

Open Agent

When you are using the Open Agent, Silk Test Classic creates locator keywords in an INC file to create
scripts that use dynamic object recognition and window declarations. The locator is the actual name of the
object, as opposed to the identifier, which is the logical name. Silk Test Classic uses the locator to identify
objects in the application when executing test cases. Test cases never use the locator to refer to an object;
they always use the identifier.

The advantages of using locators with an INC file include:

• You combine the advantages of INC files with the advantages of dynamic object recognition. For
example, scripts can use window names in the same manner as traditional, Silk Test Classic tag-based
scripts and leverage the power of XPath queries.

• Enhancing legacy INC files with locators facilitates a smooth transition from using hierarchical object
recognition to new scripts that use dynamic object recognition. You use dynamic object recognition but
your scripts look and feel like traditional, Silk Test Classic tag-based scripts that use hierarchical object
recognition.

• You can use AutoComplete to assist in script creation. AutoComplete requires an INC file.

Supporting GUI-Specific Executables
The command to start the application will almost always be different on each GUI. The Invoke method of
Silk Test Classic expects to find the command in the constant sCmdLine, which is defined in the main

446 | Using Advanced Techniques with the Open Agent

window declaration of your application. You should declare as many sCmdLine variables as there are GUIs
on which your application runs, beginning each declaration with the appropriate GUI specifier.

For example, the following constants specify how Silk Test Classic should start the Text Editor application
on Windows and Windows Vista:

msw32 const sCmdLine = "c:\program files\<SilkTest install directory>\silktest
\textedit.exe"
mswvista const sCmdLine = "{SYS_GetEnv(‘SEGUE_APPS’)}/SilkTest/demo/textedit"

Supporting GUI-Specific Menu Hierarchies
When an application is ported, there are two common structural differences in the menu hierarchy:

• The menu bar contains a platform-specific menu.
• A menu contains different menu items.

To illustrate the case of the platform-specific menu, consider the Microsoft Windows system menu or a
Vista menu (for example). Silk Test Classic recognizes these kinds of standard GUI- specific menus and
includes the appropriate GUI specifier for them when you record declarations.

For menus that Silk Test Classic does not recognize as platform-specific, you should preface the window
declaration with the appropriate GUI specifier.

Different menu items - example

To illustrate the case of different menu items, suppose that the Edit menu for the Text Editor application
has a menu item named Clear which displays on the Windows version only. The declaration for the Edit
menu should look like the following:

Classic Agent Open Agent

Menu Edit
 tag "Edit"
 msw32 MenuItem Clear
 tag "Clear"
 MenuItem Undo
 tag "Undo"

Menu Edit
 locator "Edit"
 msw32 MenuItem Clear
 locator "Clear"
 MenuItem Undo
 locator "Undo"

Supporting Custom Controls
This sections describes how Silk Test Classic supports custom controls.

Why Silk Test Classic Sees Controls as Custom
Controls
A control is defined by the following:

• The actual class name of the control.
• The underlying software code that creates and manipulates the control.

Whenever the definition of a control varies from the standard, Silk Test Classic defines the control as a
custom control. During recording, Silk Test Classic attempts to identify the class of each control in your GUI
and to assign the appropriate class from the built-in class hierarchy. If a control does not correspond to one
of the built-in classes, Silk Test Classic designates the control as a custom control.

• When you are using the Classic Agent, Silk Test Classic assigns custom controls to the CustomWin
class.

Using Advanced Techniques with the Open Agent | 447

• When you are using the Open Agent, Silk Test Classic assigns custom controls to the Control class or
another class.

Classic Agent Example

For example, Silk Test Classic supports the standard MFC library, which is a library of
functions that allow for the creation of controls and the mechanism of interaction with
them. In supporting these libraries, Silk Test Classic contains algorithms to interrogate
the controls based upon the standard libraries. When these algorithms do not work, Silk
Test Classic reports the control as a CustomWin.

Suppose that you see a text box in a window in your application under test. It looks like
a normal text field, but Silk Test Classic calls it a control of the class CustomWin.

Reasons Why Silk Test Classic Sees the Control as a
Custom Control
For the following reasons Silk Test Classic might recognize a control as a custom control:

• The control is not named with the standard name upon the definition of the control in the application
under test. For example, when a TextField is named EnterTextRegion. If this is the only reason why
Silk Test Classic recognizes the control as a custom control, then you can class map the control to the
standard name.

The class mapping might not work. The class mapping will work if the control is not really a custom
control, but rather a standard control with a non-standard name. Try this as your first attempt at dealing
with a custom control.

• If the class mapping does not work the control truly is a custom control. The software in the application
under test that creates and manipulates the control is not from the standard library. That means that the
Silk Test Classic algorithms written to interrogate this kind of control will not work, and other approaches
will have to be used to manipulate the control.

When you are using the Classic Agent, the support for custom controls depends on whether the control is a
graphical control, such as a tool bar, or a non-graphical control, such as a text box.

Supporting Graphical Controls
If an application contains a graphical area, for example a tool bar, which is actually composed of a discrete
number of graphical controls, Silk Test Classic records a single declaration for the entire graphical area; it
does not understand that the area contains individual controls.

Custom Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

Silk Test Classic provides the following features to support you when you are working with custom controls:

• The dynamic invoke functionality of Silk Test Classic enables you to directly call methods, retrieve
properties, or set properties on an actual instance of a control in the application under test (AUT).

• The class mapping functionality enables you to map the name of a custom control class to the name of
a standard Silk Test class. You can then use the functionality that is supported for the standard Silk Test
class in your test.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)

448 | Using Advanced Techniques with the Open Agent

• Windows Forms
• Java AWT/Swing
• Java SWT

• The Manage Custom Controls dialog box enables you to specify a name for a custom control that can
be used in a locator and also enables you to write reusable code for the interaction with the custom
control.

Note: For custom controls, you can only record methods like Click,TextClick, and TypeKeys with
Silk Test Classic. You cannot record custom methods for custom controls except when you are testing
Apache Flex applications.

Dynamic Invoke
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk Test Classic API for this control. Dynamic invoke is especially useful when you are
working with custom controls, where the required functionality for interacting with the control is not exposed
through the Silk Test Classic API.

Call dynamic methods on objects with the DynamicInvoke method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the DynamicInvokeMethods method. To retrieve a list of
supported dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.DynamicInvoke("SetTitle", {"my new title"})

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Note: You cannot dynamically invoke methods for DOM elements.

Frequently Asked Questions About Dynamic Invoke

This functionality is supported only if you are using the Open Agent.

This section includes a collection of questions that you might encounter when you are dynamically invoking
methods to test custom controls.

Which Methods Can I Call With the DynamicInvoke Method?

This functionality is supported only if you are using the Open Agent.

To get a list of all the methods that you can call with the DynamicInvoke method for a specific test object,
you can use the GetDynamicMethodList. To view the list, you can for example print it to the console or
view it in the debugger.

Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?

This functionality is supported only if you are using the Open Agent.

The DynamicInvoke method can only return simple data types. Complex types are returned as string.
Silk Test Classic uses the ToString method to retrieve the string representation of the return value. To

Using Advanced Techniques with the Open Agent | 449

call the individual methods and read properties of the complex object that is returned by the first method
invocation, use DynamicInvokeMethods instead of DynamicInvoke.

How Can I Simplify My Scripts When I Use Many Calls To DynamicInvokeMethods?

This functionality is supported only if you are using the Open Agent.

When you extensively use DynamicInvokeMethods in your scripts, the scripts might become complex
because you have to pass all method names as strings and all parameters as lists. To simplify such
complex scripts, create a static method that interacts with the actual control in the AUT instead of
interacting with the control through DynamicInvokeMethods.

Testing Apache Flex Custom Controls
Silk Test Classic supports testing Apache Flex custom controls. However, by default, Silk Test Classic
cannot record and playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk Test Classic does not expose. The developer of the custom control can also add
methods and properties to the custom control specifically for making the control easier to test. A user
can then call those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator, for example Silk Test Classic records //FlexBox
rather than //FlexSpinner.

• Only limited recording support.
• Silk Test Classic cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk Test Classic treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk Test Classic API
• Silk Test Classic uses the specific class name in the locator, for example Silk Test Classic records //

FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Managing Custom Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

450 | Using Advanced Techniques with the Open Agent

You can create custom classes for custom controls for which Silk Test Classic does not offer any dedicated
support. Creating custom classes offers the following advantages:

• Better locators for scripts.
• An easy way to write reusable code for the interaction with the custom control.

Example: Testing the tabControl Infragistics control

Suppose that a custom tab control is recognized by Silk Test Classic as the generic
class Control. Using the custom control support of Silk Test Classic has the following
advantages:

Better object
recognition
because the
custom control
class name
can be used in
a locator.

Many objects might be recognized as Control.
The locator requires an index to identify the
specific object. For example, the object might be
identified by the locator //Control[13]. When
you create a custom class for this control, for
example the class UltraTabControl, you can
use the locator //UltraTabControl. By
creating the custom class, you do not require the
high index, which would be a fragile object
identifier if the application under test changed.

You can
implement
reusable
playback
actions for the
control in
scripts.

When you are using custom classes, you can
encapsulate the behavior for getting the contents
of a grid into a method by adding the following
code to your custom class, which is the class that
gets generated when you specify the custom
control in the user interface.

Typically, you can implement the methods in a
custom control class in one of the following ways:

• You can use methods like Click, TypeKeys,
TextClick, and TextCapture. In this
example the TextClick method is used.

• You can dynamically invoke methods on the
object in the AUT.

Without using the custom classes, when you want
to select a tab in your custom tab controls, you
can write code like the following:

UltraTabControl.TextClick("<TabName>
")

When you are using custom classes, you can
encapsulate the behavior for selecting a tab into a
method by adding the following code to your
custom class, which is the class that gets
generated when you specify the custom control in
the user interface:

void SelectTab(string tabText)
 TextClick(tabText)

The custom class looks like the following:

winclass UltraTabControl : Control
 tag "[UltraTabControl]"

Using Advanced Techniques with the Open Agent | 451

 void SelectTab(string tabText)
 TextClick(tabText)

You can now use the newly created method
SelectTab in a script like the following:

UltraTabControl.SelectTab("<TabName>
")

When you define a class as a custom control, you
can use the class in the same way in which you
can use any built-in class, for example the
Dialog class.

Supporting a Custom Control

This functionality is supported only if you are using the Open Agent.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

To create a custom class for a custom control for which Silk Test Classic does not offer any dedicated
support.

1. Click Options > Manage Custom Controls. The Manage Custom Controls dialog box opens.

2. In the Frame file for custom class declarations field, type in a name or click Browse to select the
frame file that will contain the custom control.

3. Click on the tab of the technology domain for which you want to create a new custom class.

4. Click Add.

5. Click one of the following:

• Click Identify new custom control to directly select a custom control in your application with the
Identify Object dialog box.

• Click Add new custom control to manually add a custom control to the list.

A new row is added to the list of custom controls.

6. If you have chosen to manually add a custom control to the list:

a) In the Silk Test base class column, select an existing base class from which your class will derive.

This class should be the closest match to your type of custom control.
b) In the Silk Test class column, enter the name to use to refer to the class.

This is what will be seen in locators. For example: //UltraGrid instead of //Control[13].

Note: After you add a valid class, it will become available in the Silk Test base class list. You
can then reuse it as a base class.

c) In the Custom control class name column, enter the fully qualified class name of the class that is
being mapped.

For example: Infragistics.Win.UltraWinGrid.UltraGrid. For Win32 applications, you can
use the wildcards ? and * in the class name.

7. Only for Win32 applications: In the Use class declaration column, set the value to False to simply map
the name of a custom control class to the name of a standard Silk Test class.

452 | Using Advanced Techniques with the Open Agent

When you map the custom control class to the standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. Set the value to True to additionally use the class
declaration of the custom control class.

8. Click OK.

9. Only for scripts:

a) Add custom methods and properties to your class for the custom control.
b) Use the custom methods and properties of your new class in your script.

Note: The custom methods and properties are not recorded.

Note: Do not rename the custom class or the base class in the script file. Changing the generated
classes in the script might result in unexpected behavior. Use the script only to add properties and
methods to your custom classes. Use the Manage Custom Controls dialog box to make any other
changes to the custom classes.

Custom Controls Dialog Box

This functionality is supported only if you are using the Open Agent.

Options > Manage Custom Controls.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Frame file for custom class declarations, define the frame file into which the new custom classes
should be generated.

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Using Advanced Techniques with the Open Agent | 453

Option Value

Silk Test base class Control

Silk Test class UltraGrid

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

Using Clipboard Methods
If you are having trouble getting or setting information with a custom object that contains text, you might
want to try the 4Test Clipboard methods. For example, assume you have a class, CustomTextBuffer,
which is similar to a TextField, but using the GetText and SetText methods of the TextField does
not work with the CustomTextBuffer. In such a case, you can use the GetText and SetText methods
of the ClipboardClass.

Get and Set Text Sample Code
The following sample code retrieves the contents of the CustomTextBuffer by placing it on the
Clipboard, then printing the Clipboard contents:

// Go to beginning of text field
CustomTextBuffer.TypeKeys ("<Ctrl-Home>")
// Highlight it
CustomTextBuffer.TypeKeys ("<Ctrl-Shift-End>")
// Copy it to the Clipboard
CustomTextBuffer.TypeKeys ("<Ctrl-Insert>")
// Print the contents of the Clipboard
Print (Clipboard.GetText())

Setting text

Similarly, the following sample code inserts text into the custom object by pasting it from the Clipboard:

// Go to beginning of text field
CustomTextBuffer.TypeKeys ("<Ctrl-Home>")
// Highlight it
CustomTextBuffer.TypeKeys ("<Ctrl-Shift-End>")
// Paste the Clipboard contents into the text field
CustomTextBuffer.TypeKeys ("<Shift-Insert>")

You can wrap this functionality in GetText and SetText methods you define for your custom class,
similar to what was shown in supporting custom text boxes.

Using the Modified Declaration
Once you create window declarations like these for the graphical objects in your application, you can
manipulate them as you would any other object. For example, if the tool bar was contained in an
application named MyApp, to click on the FileOpen icon in the tool bar, you use the following command:

MyApp.FileOpen.Click()

You need to write this statement, and others that access the objects declared above, such as Save and
Printer, by hand. Record > Testcase and Record > Actions will not use these identifiers.

Filtering Custom Classes
This section describes how you can filter custom classes.

454 | Using Advanced Techniques with the Open Agent

Invisible Containers
Sometimes a window contains an invisible dialog box that contains controls. You can set these "dialog box
containers" to Ignore using class mapping and style-bits in order to avoid making all of the dialog boxes
disappear.

See the following examples for details.

Example: WordPad with No Class Mappings

[-] window MainWin WordPad
[+] multitag "*WordPad"
[+] Menu File
[+] Menu Edit
[+] Menu View
[+] Menu Insert
[+] Menu Format
[+] Menu Help
// toolbars seen, but are nested
[+] CustomWin BottomStatusBar
[-] CustomWin Frame
[+] CustomWin FormatBar
[+] ComboBox ComboBox1
[+] ComboBox ComboBox2
[+] CustomWin StandardBar
[+] CustomWin Ruler
[-] main ()
WordPad.Frame.FormatBar.ComboBox1.Select ("Arial")

Example: WordPad with AfxControlBar Ignored

[-] window MainWin WordPad
[+] multitag "*WordPad"
[+] Menu File
[+] Menu Edit
[+] Menu View
[+] Menu Insert
[+] Menu Format
[+] Menu Help
// toolbars, ruler, and statusbar not seen
[+] ComboBox ComboBox1
[+] ComboBox ComboBox2
[+] TextField Document
[-] main ()
WordPad.ComboBox1.Select ("Arial")

Supporting Internationalized Objects
This section describes how you can work with internationalized objects.

Overview of Silk Test Classic Support of Unicode
Content
Silk Test Classic is Unicode-enabled, which means that Silk Test Classic is able to recognize double-byte
(wide) languages. We have enabled components within the application to deal with Unicode content. The
Silk Test Classic GUI supports the display and input of wide text. The 4Test language processor has been

Using Advanced Techniques with the Open Agent | 455

enhanced to support wide text. All 4Test library functions have been widened. The extensions have been
enhanced to support the input and output of wide text.

We have added and modified 4Test functions to deal with internationalization issues. With Silk Test Classic
you can test applications that contain content in double-byte languages such as Chinese, Korean, or
Japanese (Kanji) characters, or any combination of these. You can also name Silk Test Classic files using
internationalized characters. Silk Test Classic supports three text file formats: ANSI, Unicode and UTF-8.

Silk Test Classic supports the following:

• Localized versions of Windows.
• International keyboards and native language Input Method Editors (IME).
• Passing international strings as parameters to test cases, methods, and so on, and comparing strings.
• Accessing databases through direct ODBC standard access.
• Reading and writing text files in multiple formats: ANSI, Unicode, and UTF-8.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before testing double-byte characters with Silk Test Classic

Testing an internationalized application, particularly one that contains double-byte characters, is more
complicated than testing an application that contains strictly English single-byte characters. Testing an
internationalized application requires that you understand a variety of issues, from operating system
support, to language packs, to fonts, to working with IMEs and complex languages.

Before you begin testing your application using Silk Test Classic, you must do the following:

• Meet the needs of your application under test (AUT) for any necessary localized OS, regional settings,
and required language packs.

• Install the fonts necessary to display your AUT.
• If you are testing an application that requires an IME for data input, install the appropriate IME.

Using DB Tester with Unicode Content
To use DB Tester with Unicode characters:

• You must have a Unicode-capable driver (ODBC version 3.5 or higher) associated with the data source
name you are using in your test plan.

• The database must be Unicode capable (SQL Server 7 and 2000, Oracle 8 and higher).

Issues Displaying Double-Byte Characters
When you are dealing with internationalized content, being able to display the content of your application is
critical. Carefully consider the following:

Operating
system

Your operating system needs to be capable of displaying double-byte characters in
the system dialog boxes and menus used by your application.

Silk Test Classic You need to be concerned about displaying your content in the Silk Test Editor and
the Silk Test Classic dialog boxes.

Application
under test

You need to have a font installed that is capable of displaying the content of your
application. If you have multiple languages represented in your application, you will
need a font that spans these languages.

Browser If your application is web-based, make sure that you are using a browser that
supports your content, that the browser is configured to display your content, and that
you have the necessary fonts installed to display your application.

456 | Using Advanced Techniques with the Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Complex scripts
(languages)

Silk Test Classic does not support complex scripts such as the bi-directional
languages Hebrew and Arabic. These are languages that require special processing
to display and edit because the characters are not laid out in a simple linear
progression from left to right, as are most western European characters.

Learning More About Internationalization
There are a variety of online sites that provide general information about internationalization issues. You
may find the following Web sites useful if you are learning about internationalization, localization or
Unicode. They include:

• Microsoft’s Professional Developer’s Site for Software Globalization Information (http://
www.microsoft.com/globaldev/default.asp)

• The definitive word on the W3C’s Web site (http://www.w3.org/international)
• The Unicode Consortium, a non-profit organization founded to develop, extend and promote use of the

Unicode Standard (http://www.unicode.org)
• IBM’s International Components for Unicode (http://oss.software.ibm.com/icu/userguide/index.html)
• A tutorial from Sun on how to internationalize Java applications (http://java.sun.com/docs/books/tutorial/

i18n)

Silk Test Classic File Formats
Silk Test Classic gives you the ability to specify the file format of text files and .ini files. Before Silk Test
Classic 5.5, all files were in the ANSI file format. You can create the following formats:

ANSI For Silk Test Classic purposes, ANSI is defined as the Microsoft Windows ANSI character set
from Code Page 1252 Windows Latin 1.

Unicode Is an extended form of ASCII that provides the ability to represent data in a uniform plaintext
format that can be sorted and processed efficiently. Unicode encompasses nearly all
characters used in computers today.

UTF-8 Unicode Transformation Format (UTF) Is a multi-byte encoding that can handle all Unicode
characters. It is used to compress Unicode, minimize storage consumption and maximize
transmission.

You have the ability to save text files in any of three file formats: ANSI, UTF-8, and Unicode. By default all
files are saved in UTF-8 format. The Save As dialog boxes throughout include a list box from which you
can select the file format in which you want to save your file.

• ANSI files cannot contain non ANSI characters
• The file formats available will depend on the content of your text file. If your file contains characters not

available on code page 1252, ANSI will not display in the list box. If you are working with an existing
ANSI file and add non-ANSI characters, the Save As dialog box will open when you attempt to save the
file. In order to save the changes you will need to change the file format and click Save.

• The title bar indicates the file format: When you have a file open, the format of that file is indicated on
the title bar.

• Silk Test Classic uses the Microsoft standard Byte Order Marked (BOM) to determine the file type for
UTF-8 and Unicode files. If a Unicode file does not have the BOM marker then Silk Test Classic sees
the file as an ANSI file, and the Unicode characters cannot be displayed.

Reusing Silk Test Classic Single-Byte Files as Double-Byte
If you have existing single-byte Silk Test Classic text files, such as *.pln, *.inc or *.t, that you want to
use in double-byte testing, the files must:

• Be compatible with Silk Test Classic, such as files created using the IE 5.x DOM extension for testing a
Web application.

Using Advanced Techniques with the Open Agent | 457

http://www.microsoft.com/globaldev/default.asp
http://www.microsoft.com/globaldev/default.asp
http://www.w3.org/international
http://www.unicode.org
http://oss.software.ibm.com/icu/userguide/index.html
http://java.sun.com/docs/books/tutorial/i18n
http://java.sun.com/docs/books/tutorial/i18n

• Be recompiled in Silk Test Classic because the object files, *.ino and *.to, are not compatible.

Opening an existing Silk Test Classic file as a double-byte file

Choose one of the following:

• Copy the file you want to re-use to a new directory. Do not copy the associated object (*.ino or *.to)
files. In Silk Test Classic, open this new file.

• In the existing directory, delete the object files associated with the file you want to re-use. In Silk Test
Classic, open the desired file.

When the Silk Test Classic file is compiled, new objects files are created. If you enter double-byte content
into the file, when you try to close the file you will be prompted to save the file in a compatible file format,
Unicode or UTF-8.

Specifying File Formats for Existing Files with Unicode Content
If you want to save an existing file in a different file format, choose one of the following:

Overwriting the file

If the file is already referenced from other files, you may want to change the format without changing the
name or its location. As you cannot have two files with the same name saved in the same directory, even in
different formats, the only option is to overwrite the file.

1. Make sure the file is the active window. Click File > Save As and select the file from the list.
2. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
3. Click Save. A dialog box displays asking if you want to overwrite the file.
4. Click Yes.

Saving in the same directory

If you want to have versions of a file in various formats within the same directory, you must save each file
with a different name.

1. Make sure the file is the active window. Click File > Save As.
2. In the File name text box, enter the new name of the file.
3. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
4. Click Save.

Saving in a different directory

If you would like to keep the name of the file but change the format, you must save the file in a different
directory.

1. Make sure the file is the active window. Click File > Save As and select the file from the list.
2. Navigate to the directory in which you want to save the file.
3. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
4. Click Save.

If you modify an ANSI text file and the modifications include characters outside of the ANSI characters set,
when you try to save your changes, the Save As dialog box will open and you need to either overwrite the
ANSI file with a file of the same name but in a different format, or rename the file and save in Unicode or
UTF-8 format .

458 | Using Advanced Techniques with the Open Agent

Specifying File Formats for New Files with Unicode content
This topic contains instructions on specifying the file format for:

With the exception of test frames, to specify the file format of a new file:

1. Click File > New.
2. On the New dialog box, select the file type.
3. Click OK. The untitled file opens.
4. Click File > Save As. The Save As dialog box opens.
5. Navigate to where you want to store the file and enter the name of the file in the File name text box.
6. Select a file format (UTF-8 is the default) from the Save as format list box. ANSI is not available if the

file contains characters outside of the ANSI character set.
7. Click Save.

To specify the file format for a new test frame:

1. Click File > New.
2. On the New dialog box, select the file type Test Frame and click OK. The New Test Frame dialog box

opens.
3. To select a file format, click Browse. The Save As dialog box opens. The default file format for test

frames is UTF-8. If you simply type the path and file name in the File name text box of the New Test
Frame dialog box and click OK, the file is saved in UTF-8.

4. Navigate to where you want to store the file and enter the name the file in the File name text box.
5. Select the file format from the Save as format list box. If you select ANSI and if the file contains

characters outside of the ANSI character set, when you try to save the file you will need to change the
file format to a compatible format, Unicode or UTF-8.

6. Click Save. The New Test Frame dialog box regains focus.
7. On the New Test Frame dialog box, select the application and proceed as normal.

If you modify an ANSI text file and the modifications include characters outside of the ANSI characters set,
when you try to save your changes, the Save As dialog box will open and you need to either overwrite the
ANSI file with a file of the same name but in a different format, or rename the file and save in Unicode or
UTF-8 format .

Working with Bi-Directional Languages
Silk Test Classic supports bi-directional languages to the extent that the operating system does. Silk Test
Classic captures static text in all Unicode languages. However, scripting, playback and many string
functions are not fully supported for complex languages, the most common of these being the bi-directional
languages Hebrew and Arabic. The problems you may encounter are discussed below.

Silk Test Classic with bi-directional languages on Windows XP

Windows XP is a multi-lingual operating system and is capable of handling bi-directional languages when
configured properly.

On Windows XP if you input characters from RIGHT to LEFT (CBA) provided that the default system
locale is set for a bi-directional language, Silk Test Classic will correctly record and playback the characters
as they were entered and display, from RIGHT to LEFT. When you use a 4Test string function such as
StrPos (string position) to return the third element, 4Test correctly counts from right to left and returns
"C"

Once you have set a default system locale, the operating system continues to be able to read and write
that language properly, even after another locale has been set as the default. This works only if the
language is not unchecked from the Language Settings area after another default is set. Once a language
is unchecked, the ability to read and write in that language will be gone when you reboot your system. You
would need to reset it as the default to restore the capability.

Using Advanced Techniques with the Open Agent | 459

Configuring Your Environment
This section describes how you can configure your environment for internationalized objects.

Configuring Your Microsoft Windows XP PC for Unicode Content
If you have already configured your Windows XP PC to run your internationalized application, you may be
able to disregard this topic and see Recording Identifiers for International Applications.

On Microsoft Windows XP you may need to do all or some of the following:

• Install language support required by your application through modifications in the Regional and
Language Options dialog box.

• If your application contains content that is in a large-character-set language, such as simplified Chinese,
you may need to install an Input Method Editor (IME) if you want to input data in this language. For
additional information about IMEs, refer to the Microsoft support site.

Fonts

To display the content of your application in Silk Test Classic you will need to have an appropriate font
installed and specify this font in the system registry and in the Silk Test Classic Options/Editor Font.

Installing Language Support

You must have administrator privileges to install language packs or set the system default locale.

Microsoft Windows XP provides built-in support for many double-byte languages. Enabling this support can
be done at the time of install or after setup through the Regional and Language Options dialog box. If
you enable language support after setup, you may need files from the Microsoft Windows XP installation
CD. Configurations will vary depending on your needs and how your system has been configured
previously. The following instructions are intended only to be general information to get you started:

1. Click Start > Settings > Control Panel > Regional and Language Options.

2. If you are testing East Asian languages, select the Languages tab, and then check the Install files for
East Asian languages check box.

You may be prompted to insert the Microsoft Windows XP CD for the necessary files.

3. Click the Advanced tab on the Regional and Language Options dialog box.

4. Select the language that matches the language of the non-Unicode programs you want to use.

For example Chinese (PRC).

5. Click OK.

6. Reboot your computer for the changes to take effect.

After you restart your computer, if you want to input data in a language other than the default language,
you must click the Language bar icon in your system tray and select the language from the multi-lingual
indicator.

Setting Up Your Input Method Editor

If you want to use an Input Method Editor (IME) to input data in the language you selected, you may need
to set up your IME.

1. Click Start > Settings > Control Panel > Regional and Language Options.

2. Click the Languages tab.

3. Click Details in the Text Services and Input Language area.

4. In the Settings tab on the Text Services and Input Language dialog box, select the language you
want to use as your default input language.

460 | Using Advanced Techniques with the Open Agent

5. In the Preferences section of the Settings tab, click Language Bar, make sure the Show the
Language Bar on the desktop check box is checked, and then click OK on the Settings tab.

This default will enable your system to display this language in dialog boxes and menus. We
recommend setting the default to the language of the AUT.

Displaying Double-Byte Characters
While Silk Test Classic can process Unicode, displaying double-byte characters is not automatic. Keep the
following in mind:

• Is your operating system configured to display your content?
• Is Silk Test Classic configured to display double-byte content in its dialog boxes?
• Do you have the right font set to display your content in the Editor?

Displaying Double-Byte Characters in Dialog Boxes

If Silk Test Classic is rendering squares or pipes in dialog boxes where you expect double-byte characters,
you may need to make a simple modification to Silk Test Classic using a script we have provided. This
script is located in <SilkTest Installation directory>\Tools.

1. In Silk Test Classic, click File > Open.

2. In the Tools directory, open font.t.

3. Click Run > Testcase. The Run Testcase dialog box opens.

4. In the arguments area, type the name of the font in quotes.

For example, Arial Unicode MS. It is not necessary to include the type of font, for example Arial
Unicode MS (True Type).

5. Click Run.

6. Reboot your computer for the changes to take effect.

Displaying Double-Byte Characters in the Editor

In order for the Editor to display double-byte characters, such as those captured in your test frame, you
must select a font that is able to display these characters.

1. In Silk Test Classic, click Options > Editor Font.

2. From the available fonts, select one that is able to display the language of your application.

If your application contains multiple languages, make sure that you have a font installed that is capable of
rendering all the languages, as the Editor does not display multiple fonts. Licensed Microsoft Office 2000
users can freely download the Arial Unicode MS font from Microsoft.

Using an IME with Silk Test Classic
Silk Test Classic supports IMEs. The IME is enabled only after you have installed an Asian language
package. The IME will work once you have installed it, enabled it, and are in an application with IME
support. In Silk Test Classic, the IME is only available when a file, such as an include or script, is active.

For additional information about IMEs and for downloads, see the Microsoft support site.

Troubleshooting Unicode Content
This section contains topics to help troubleshoot unicode content.

Display Issues
This section describes how you can troubleshoot display issues in Unicode contents.

Using Advanced Techniques with the Open Agent | 461

Why Are My Window Declarations Recording Only Pipes?

If your window declarations record only pipes (|), You’ve probably forgotten to set the Options > Font
Editor to a font that can display the language of your AUT.

What Are Pipes and Squares Anyway?

The pipes and squares, or even question marks (?), display in place of characters which the system has
not yet been configured to display. A font that does not support the language is being used in the dialog
boxes and menus. Whether or not you see pipes or squares depends on what font is used and what
language you are trying to display.

Why Can I Only Enter Pipes Into a Silk Test Classic File?

If you can only enter pipes into a file, for example a frame file or an include file, the Silk Test Classic Editor
font is not set to display the language of your AUT.

Why Do I See Pipes and Squares in the Project Tab?

Pipes, squares, and questions marks (?) display in place of characters which the system has not yet been
configured to display. A font that does not support the language is being used in the dialog boxes and
menus. Whether or not you see pipes or squares depends on what font is used and what language you are
trying to display.

You must configure your system and make sure that you have set the regional settings.

Why Cannot My System Dialog Boxes Display Multiple Languages?

If you are testing an application whose content contains multiple languages, meaning that it has several
character sets represented, you may need to:

• Make sure that you have a font installed on your machine that can display all the languages.
• Configure Silk Test Classic to use a font that can display your content.

Why Do I See Pipes and Squares in My Win32 AUT?

If you start up your application under test and see pipes and squares in the title bar, menus, or dialog
boxes, it may mean that the operating system cannot support your application or that your system is not
properly configured to display your content.

Why Do the Fonts on My System Look so Different?

Fonts that display in your menus, title bars and so on, are controlled by the registry settings and the
Display Properties > Appearance settings of your computer.

If your fonts display too large or too small, you may have incorrectly set the appearance for an item:

1. Navigate to Start > Settings > Control Panel > Display.
2. Navigate to the Appearance tab and select Windows standard in the Scheme field.
3. Click OK.

Your desktop should now display normal.

Why Do Unicode Characters Not Display in the Silk Test Project Explorer

To view Unicode characters in the Silk Test Project Explorer, you must have installed a language pack with
Unicode characters.

462 | Using Advanced Techniques with the Open Agent

Why Is My Web Application Not Displaying Characters Properly?

If your Web application is not displaying the characters properly, or strange symbols or character are mixed
in with your content, you may need to change a setting in your browser.

Internet Explorer Users

Check the settings for Encoding:

1. In Internet Explorer, click View > Encoding.
2. Select one of the following:

• From the listed encodings, select one that meets the requirements of your application.
• Click More, then select an encoding that meets the requirements of your application.
• Click Auto-Select.

Mozilla Firefox Users

Check the settings for Character Coding:

1. In Mozilla Firefox, click Settings > Content.
2. In the Fonts & Colors section, click Advanced.
3. Select a character coding that meets the requirements of your application.

If you still have problems, ensure that your system locale is set for the language of your application under
test.

File Formats
This section describes how you can troubleshoot issues with file formats in Unicode contents.

Why Am I Getting Compile Errors?

You may be trying to compile a file with an incompatible file format. Silk Test Classic supports three file
formats: ANSI, UTF-8, and Unicode. If you try to compile files in Silk Test Classic that are in other formats,
such as DBCS, you will get compile errors.

Workaround: In a Unicode-enabled text editor, save the file in one of the Silk Test Classic supported file
formats: ANSI, UTF-8 or Unicode.

Why Does Silk Test Classic Open Up the Save As Dialog Box when I Try to Save an Existing File?

You have likely added content to the file that is incompatible with the file’s existing file format. For example,
you could have added Japanese characters to a frame file that was previously saved in ANSI format.

You must save the existing file in a compatible format.

Working with Input Method Editors
This section describes how you can troubleshoot issues when working with Input Method Editors (IMEs).

Why is English the Only Language Listed when I Click the Language Bar Icon?

You must be running an application, or area within the application, that supports an IME for a language
other than English to be displayed in the Language bar icon. Applications that support IME include
elements of Silk Test Classic such as include files and script files, Outlook, and Internet Explorer.

Why Does This IME Look so Different from Other IMEs I Have Used

IMEs can look different, depending on the operating system you are using and the particular IME you have
accessed. For more information about IMEs, see Microsoft’s support site.

Using Advanced Techniques with the Open Agent | 463

Using Autocomplete
This section describes how you can automatically complete functions, members, application states, and
data types.

Overview of AutoComplete
AutoComplete makes it easier to work with 4Test, significantly reducing scripting errors and decreasing the
need to type text into your 4Test files by automatically completing functions, members, application states,
and data types. There are four AutoComplete options:

Option Description

Function Tip Provides the function signature in a tooltip.

MemberList Displays window children, properties, methods, and variables available to your 4Test file.

AppStateList Displays a list of the currently defined application states.

DataTypeList Displays a list of built-in and user-defined data types.

AutoComplete works with both Silk Test Classic-defined and user-defined 4Test files.

If you create a new 4Test file, you must name and save it as either a .t , .g.t, or .inc file in order for
AutoComplete to work. After a 4Test file is saved, AutoComplete recognizes any changes you make to this
file in the 4Test Editor and includes files that you reference through a 4Test use statement or the Use Files
text box on the Runtime Options dialog box. When working with an existing 4Test file, you do not need to
save or compile in order to access newly defined functions, methods, or members.

AutoComplete only works with 4Test files, which are .t, .g.t, and .inc files, that use hierarchical object
recognition or dynamic object recognition with locator keywords.

AutoComplete does not work on comment lines or within plan, suite, or text files. AutoComplete does not
support global variables of type window. However, AutoComplete supports Unicode content.

AutoComplete does not distinguish between Silk Test Classic Agents. As a result, AutoComplete displays
all methods, properties, variables, and data types regardless of the Silk Test Classic Agent that you are
using. For example, if you are using the Open Agent, functions and data types that work only with the
Classic Agent are also displayed when you use AutoComplete. For details about which methods are
supported for each Silk Test Classic Agent, review the corresponding .inc file, such as the winclass.inc
file.

Customizing your MemberList
The members that you see in the MemberList depend on the MemberList options that you select. You can
specify which members display in your MemberList. The members are window children, methods,
properties, and variables. You can also determine how much detail is displayed in the MemberList by
specifying the inheritance level and deciding whether you want to view class, data type, and function return
type for methods in your MemberList.

All member options are enabled by default and the default inheritance level is below AnyWin class,
meaning that methods for any class derived from the AnyWin class display in the MemberList. For
additional information about the inheritance level, see the General Options Dialog Box.

Note: Methods that are defined in and above the AnyWin class, such as Click and Exist, which
are defined in the Winclass, will not display in the MemberList. You can type these methods into
your script, but they will not display in the MemberList unless you change the inheritance level to All.

To customize your MemberList:

464 | Using Advanced Techniques with the Open Agent

1. Open Silk Test Classic and choose Options > General.

2. In the AutoComplete area of the General Options dialog box, make sure MemberList is selected.

3. In the MemberList Options area, select the members that you want to display in your MemberList. For
example, if you want to view only properties and variables, uncheck the Methods and Window
Children check boxes.

4. Select the appropriate Inheritance Level for the selected methods.

You can choose one of the following:

Below AnyWin
Class

Displays methods for any class derived from the AnyWin class. Below AnyWin
Class is the default.

All Displays the complete inheritance for members all the way up through AnyWin and
the control classes, including the Winclass.

None Displays only those members defined in the class of the current object and window
declaration.

5. If you want to view attributes for the selected members, such as the class for window children, the data
type for properties and variables, and the return type for method functions in your MemberList, check
the Member Type check box.

Member Type is not checked by default. The following is a sample MemberList with and without
Member Type checked.

Default MemberList MemberList with Member Type Selected

6. Click OK on the General Options dialog box to save your changes.

Frequently Asked Questions about AutoComplete

Why isn’t AutoComplete working?

AutoComplete only works with 4Test files with extension .t, .g.t, and .inc. If (untitled) is displayed in the title
bar of your 4Test file, the file has not been saved yet. Save the file as .t, .g.t, or .inc.

After a 4Test file is saved, AutoComplete recognizes any changes you make to this file in the 4Test Editor
and include files that you reference through a 4Test use statement or the Use Files text box on the
SilkTest Runtime Options dialog box. Once you save a new file as a .t, .g.t, or .inc, you do not need to
save or compile in order to access newly defined functions, methods, or members.

AutoComplete does not work on comment lines or within plan, suite, or text files.

Why doesn't a member display in my MemberList?

There a few reasons you may not see a member in your MemberList. Here's what you should do:

1. On the General Options dialog box, make sure that you chose to show members of this type in the
MemberList Options section. For additional information, see Customizing your MemberList.

Using Advanced Techniques with the Open Agent | 465

2. Make sure the member you want to see is included in the inheritance level you selected. Below AnyWin
class is the default; you might need to change your inheritance level to All. For additional information,
see Customizing your MemberList.

3. Name and save your file with a .t, .g.t, or .inc extension.
4. Compile your file and fix any scripting errors. Anything following a compile error is not displayed in the

MemberList or FunctionTip.

What happens if there is a syntax error in the current file?

Everything, based on the AutoComplete options you have selected, prior to the syntax error will display in
your MemberList and/or FunctionTip. Anything following the syntax error will not display in your MemberList
and/or FunctionTip. For additional information, see Customizing your MemberList.

What if I type something and AutoComplete does not find a match?

AutoComplete might not find a match for a number of reasons, for example because of the AutoComplete
options you have specified or because of a compile error in your file. For information about fixing some of
these issues, see Customizing your MemberList and Turning AutoComplete Options Off.

When AutoComplete does not find a match in the MemberList, focus remains on the first item in the list.

Note: If you perform any of the selection methods, which means if you press Return, Tab, or click, the
item will be pasted to the Editor.

You can simply type any function, method, or member in your 4Test files; AutoComplete does not restrict
you in any way from typing in 4Test files.

Note: You must dismiss the MemberList or FunctionTip before you can type in the Editor.

If you plan to use AutoComplete extensively, we recommend that you rename your identifiers in your
window declarations. Knowing your identifier names helps, especially when working with long lists.

Why doesn’t list of record type display in the FunctionTip?

This is a known limitation. FunctionTip does not support list of record types.

Why does AutoComplete show methods that are not valid for a 4Test class?

When using AutoComplete, the member list occasionally may reveal methods that are not valid for the
4Test class. The compiler will not catch these usage problems, but at Runtime the following exception is
raised when the script is played back: Error: Function <invalid method> is not defined
for <window class>.

Why does AutoComplete show methods, properties, variables, and data types that are not
supported for the Silk Test Agent that I am using?

AutoComplete does not distinguish between Silk Test Agents. As a result, AutoComplete displays all
methods, properties, variables, and data types regardless of the Silk Test Agent that you are using. For
example, if you are using the Open Agent, functions and data types that work only with the Classic Agent
are also displayed when you use AutoComplete. For detailed information about which methods are
supported for each Silk Test Agent, review the corresponding .inc file, such as the winclass.inc file.

Turning AutoComplete Options Off
This topic contains instructions on how to disable AppStateList, DataTypeList, FunctionTip, and
MemberList.

To turn off AutoComplete options:

466 | Using Advanced Techniques with the Open Agent

1. Open Silk Test Classic and click Options > General.

2. In the AutoComplete area of the General Options dialog box, uncheck the check box for each of the
AutoComplete options that you want to disable, and then click OK.

Using AppStateList
To display a list of currently defined application states:

1. Within your script, .t or .g.t, or within the include file, type your test case declaration, followed by the
keyword appstate and then press space.

For example testcase foo () appstate .

A list of currently defined application states displays. You can also type the keyword basedon followed
by a space. For example appstate MyAppState () basedon .

2. Use one of the following methods to select the appropriate member and paste it to the Editor.

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

Using DataTypeList
To display a list of built-in and user-defined data types:

1. Within your script, .t or .g.t, or include file, type array or varargs, as appropriate, followed by the of
keyword and a space.

For example, list of.

The current list of built-in and user-defined data types appears. You can also view the list of data types
by pressing F11.

2. Use one of the following methods to select the appropriate member and paste it to the Editor:

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

Using FunctionTip
To display the function signature for a function, test case, or method.

1. Within your script, .t or .g.t, or include file, type the function, test case, or method name, followed by an
open parenthesis " (".

For example SetUpMachine(. The function signature displays in a tooltip with the first argument, if
any, in bold text. The function signature includes the return argument type, pass-mode, data type, name
of the argument, and null and optional attributes, as they are defined.

2. Type the argument.

The FunctionTip containing the function signature remains on top and highlights the argument you are
expected to enter in bold text. As you enter each argument and then type a comma, the next argument
that you are expected to type is highlighted. The expected argument is always indicated with bold text; if
you backspace or delete an argument within your function, the expected argument is updated
accordingly in the FunctionTip. The FunctionTip disappears when you type the close parenthesis ") " to
complete the function call.

If you want to dismiss the FunctionTip, press Escape. FunctionTip is enabled by default. See Turning
AutoComplete Options Off if you want to disable FunctionTip.

Using Advanced Techniques with the Open Agent | 467

Using MemberList
This topic contains instructions on how to use MemberList to view and select a list of members.

To view a list of members:

1. Customize the member list so that it displays the information you require.

You can choose to display any or all of the following members:

Member Description

Window
children

Displays all window objects of type WINDOW that are defined in window
declarations in the referenced .t, .g.t, and .inc files. Indicated in the MemberList with
a yellow icon.

Methods Displays all methods defined in the referenced .t, .g.t, and .inc files. Indicated in the
MemberList with a blue icon.

Properties Displays all properties defined in the referenced .t, .g.t, and .inc files. Indicated in
the MemberList with a red icon.

Variables Displays all defined variables in the referenced .t, .g.t, and .inc files, including native
data types, data, and records. Fields defined for records and nested records also
display in the list. Indicated in the MemberList with a red icon.

2. Within your script or include file, type the member name and then type a period (.).

For example Find..

The MemberList displays. Depending on the MemberList Options and the Inheritance Level you select,
the types of members that display in the MemberList will vary.

3. Use one of the following methods to select the appropriate member and paste it to the Editor:

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

The MemberList is case sensitive. If you type the correct case of the member, it is automatically highlighted
in the MemberList; press Enter or Tab once to paste it to the Editor. If you do not type the correct case, the
member has focus, but is not highlighted; press Enter or Tab twice to select the member and paste it to the
Editor. To dismiss the MemberList, press Escape.

Overview of the Library Browser
Click Help > Library Browser to access the Library Browser. It provides online documentation for:

• Built-in 4Test methods, properties, and functions: the Library Browser shows the name and class of
the method, one line of descriptive text, syntax, and a list of parameters, including a description.

• User-defined methods: the Library Browser shows the name and class of the method, syntax, and a
list of parameters. It displays User defined as the method description and displays the data type for
each parameter.

• User-defined Properties: As with user-defined methods, the description for user-defined properties by
default is User defined.

The Library Browser does not, by default, provide documentation for your user-defined functions. You can
add to the contents of the Library Browser to provide descriptive text for your user-defined methods,
properties, and functions.

468 | Using Advanced Techniques with the Open Agent

Library Browser Source File
The core contents of the Library Browser are based on a standard Silk Test Classic text file, 4test.txt,
which contains information for the built-in methods, properties, and functions.

You can edit 4test.txt to include your user-defined information, or define your site-specific information in
one or more separate files, and then have Silk Test Classic compile the file (creating 4test.hlp) to make
it available to the Library Browser. Information about methods in 4test.hlp is also used in the Verify
Window dialog box for methods.

Silk Test Classic does not update 4test.txt with user-defined information; instead it populates the
Library Browser from information it receives when include files are compiled in memory. You modify
4test.txt to override the default information displayed for user-defined objects.

Simply looking through 4test.txt should give you all the help you need about how to structure the
information in the file. The following table lists all the keywords and describes how they are used in
4test.txt. You should edit a copy of 4test.txt to add the information you want.

Keywords

Keywords are followed by a colon and one or more spaces.

class Name of the class.

function Name of the function.

Specify the full syntax. If the function returns a value, specify: return_value =
function_name (parameters)

Otherwise, specify: function_name (parameters)

group Name of the function category.

method Description of the method.

Specify the full syntax. If the method returns a value, specify: return_value =
method_name (parameters)

Otherwise, specify: method_name (parameters)

notes Description of the method, property, or function, up to 240 characters. Do not split the
description into multiple notes fields, since only the first one is displayed.

parameter Name and description of a method or function parameter. Each parameter is listed on its own
line.

Specify the name, followed by a colon, followed by the description of the parameter.

property Name of the property.

returns Type and description of the return value of the method or function.

Specify the name, followed by a colon, followed by the description of the return value.

Comment.

Adding Information to the Library Browser
1. Make a backup copy of the default 4test.txt file, which is in the directory where you installed Silk

Test Classic, and store your backup copy in a different directory.
2. In an ASCII text editor, open 4test.txt in your Silk Test Classic installation directory and edit the file.

See examples for methods, properties, and functions, if necessary.

Using Advanced Techniques with the Open Agent | 469

3. Quit Silk Test Classic.

4. Place your modified 4test.txt file in the Silk Test Classic installation directory.

5. Restart Silk Test Classic. Silk Test Classic sees that your source file is more recent than 4test.hlp
and automatically compiles 4test.txt, creating an updated 4test.hlp. If there are errors, Silk Test
Classic opens a window listing them and continues to use the previous 4test.hlp file for the Library
Browser. If there were errors, fix them in 4test.txt and restart Silk Test Classic. Your new definitions
are displayed in the Library Browser (assuming that the files containing the declarations for your
custom classes, methods, properties, and functions are loaded in memory).

There is another approach to updating the Library Browser: maintain information in different source files.

If the Library Browser isn’t displaying your user-defined objects, close the Library Browser, recompile
the include files that contain your user-defined objects, then reopen the Library Browser.

Add User-Defined Files to the Library Browser with Silk
Test Classic
1. Create a text file that includes information for all your custom classes and functions, using the formats

described in the Library Browser source file. If you have added methods or properties to built-in
classes, you should add that information in the appropriate places in 4test.txt, as described above.
Only document your custom classes and functions in your own help file.

2. Click Options > General and add your help file to the list in the Help Files For Library Browser field.
Separate the files in this list with commas.

3. Click OK. Silk Test Classic recompiles 4test.hlp to include the information in all the files listed in the
Help Files For Library Browser field. If there are errors, Silk Test Classic opens a window listing them
and continues to use the previous 4test.hlp file for the Library Browser. If you had errors, fix them
in your source file, then quit and restart Silk Test Classic. Silk Test Classic recompiles 4test.hlp
using your modified source file.

Viewing Functions in the Library Browser
To view information about built-in 4Test functions in the Library Browser:

1. Click Help > Library Browser, and then click the Functions tab.

2. Select the category of functions you want in the Groups list box. To see all built-in 4Test functions,
check the Include all check box.

Functions are listed in the Functions list box.

3. Select the function for which you want information.

Viewing Methods for a Class in the Library Browser
4Test classes have methods and properties. When you select the Methods or Properties tabs in the
Library Browser, you see a list of all the built-in and user-defined classes in hierarchical form.

To see the methods or properties for a class:

1. Click Help > Library Browser, and then click the Methods or Properties tab.

2. Select the class in the Classes list box.

Double-click a + box to expand the hierarchy. Double-click a – box to collapse the hierarchy. The
methods or properties for the selected class are displayed. By default, only those methods or properties
that are defined by the class are displayed. To see all methods or properties that are available to the
class (that is, methods or properties also defined by an ancestor of the class), select the Include
inherited check box. To see all methods or properties (even those not available to the selected class),
select the Include all check box.

470 | Using Advanced Techniques with the Open Agent

3. Select a method or property. Information about the selected method or property is displayed.

If the Library Browser is not displaying your user-defined objects, close the Library Browser, recompile
the include files that contain your user-defined objects (Run > Compile), and then re-open the Library
Browser.

Examples of Documenting User-Defined Methods
This topic contains examples of adding user-defined methods, properties, and functions to the Library
Browser.
#**
class: DialogBox
...
#** custom method
method: VerifyNumChild (iExpectedNum)
parameter: iExpectedNum: The expected number of child objects (INTEGER).
notes: Verifies the number of child objects in a dialog box.

Documenting user-defined properties: Add the property descriptions to the
appropriate class section in 4test.txt, such as:
#***
class: DialogBox
...

#** custom property
property: iNumChild
notes: The number of child objects in the dialog box.

Documenting user-defined functions: Create a group called User-defined
functions and document your functions, such as:
group: User-defined functions

function: FileOpen (sFileName)
parameter: sFileName = "myFile": The name of the file to open.
notes: Opens a file from the application.

function: FileSave (sFileName)
parameter: sFileName = "myFile": The name of the file to save.
notes: Saves a file from the application.

Web Classes Not Displayed in Library Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

The class hierarchy in the Library Browser does not include the Web classes, which are BrowserChild,
HtmlText, and so on.

Possible Causes and Solutions

No browser extension is
enabled.

Make sure that at least one browser extension is enabled.

Enhanced support for Visual
Basic is enabled.

Disable Visual Basic by un-checking the ActiveX check box for the
Visual Basic application in the Extension Enabler and Extensions
dialog boxes.

Using Advanced Techniques with the Open Agent | 471

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Library Browser
Use Library Browser to quickly look up documentation for built-in and user-defined 4Test methods,
properties, and functions.

Click Help > Library Browser.

Methods tab

Click the Methods tab to display information about the built in and user-defined 4test methods.

Classes list Click the class to display. A list of methods for the class is displayed.

Include all Check to view all the 4Test methods available for the selected class.

Methods list Click the method to display. Detailed information is displayed about the selected
method and class.

Include inherited Check to view the inherited 4Test methods available for the selected class.

Properties tab

Click the Properties tab to display information about the built-in and user-defined properties.

Classes list Click the class to display. A list of properties for the class is displayed.

Include all Check to view all of the 4Test properties available.

Properties list Click the property to display. Detailed information is displayed about the selected
property and class.

Include inherited Check to view the inherited 4Test properties available for the selected class.

Functions tab

Click the Functions tab to display information about the built-in and user-defined functions.

Groups list Click the group to display. A list of functions for the selected group is displayed.

Include all Check to view all of the 4Test methods available.

Functions list Click the function to display. Detailed information is displayed about the selected group
and function.

Text Recognition Support
Text recognition methods enable you to conveniently interact with test applications that contain highly
customized controls, which cannot be identified using object recognition. You can use text clicks instead of
coordinate-based clicks to click on a specified text string within a control.

For example, you can simulate selecting the first cell in the second row of the following table:

Specifying the text of the cell results in the following code:

table.TextClick("Brian Miller")

472 | Using Advanced Techniques with the Open Agent

Text recognition methods are supported for the following technology domains:

• Win32.
• WPF.
• Windows Forms.
• Java SWT and Eclipse.
• Java AWT/Swing.

Note: For Java Applets, and for Swing applications with Java versions prior to version 1.6.10, text
recognition is supported out-of-the-box. For Swing applications with Java version 1.6.10 or later,
which do not support Direct3D, you have to add the following command-line element when starting
the application:

-Dsun.java2d.d3d=false

For example:

javaw.exe -Dsun.java2d.d3d=false -jar mySwingApplication.jar

Text recognition is not supported for Java Applets and Swing applications that support Direct3D.
• Internet Explorer.
• WebDriver-based browsers.

Note: Text recognition does not work with controls that are not visible on the screen. For example, you
cannot use text recognition for a text that is scrolled out of view.

Note: Text recognition might not work if the font that is used in the target text is not installed on the
machine on which the test is executed.

WebDriver-based browsers

The text recognition methods can be applied to BrowserWindow and DomElement objects.

Note: Text recognition does not work for text that is drawn in <canvas> elements.

Note: Text recognition does not work for content added by CSS pseudo-elements like ::before
and ::after.

Text recognition methods

Silk Test Classic offers the following methods to drive testing through interacting with the text that the AUT
renders on the screen:

TextCapture Returns the text that is within a control. Also returns text from child controls.

TextClick Clicks on a specified text within a control. Waits until the text is found or the Object
resolve timeout, which you can define in the synchronization options, is over.

TextRectangle Returns the rectangle of a certain text within a control or a region of a control.

TextExists Determines whether a given text exists within a control or a region of a control.

The text recognition methods prefer whole word matches over partially matched words. Silk Test Classic
recognizes occurrences of whole words previously than partially matched words, even if the partially
matched words are displayed before the whole word matches on the screen. If there is no whole word
found, the partly matched words will be used in the order in which they are displayed on the screen.

The methods TextClick, TextRectangle, and TextExists internally use TextCapture to grab the
visible text from the application and allow for further processing of that text. The underlying TextCapture
method is implemented in two different ways. Silk Test Classic decides which implementation to use
depending on the type of the application under test.

Using Advanced Techniques with the Open Agent | 473

• For native windows applications, including WPF, WinForms, and Java applications, but also Internet
Explorer, Silk Test Classic hooks into the text rendering functions of the Windows API to extract the text
that the application draws on the screen.

• For Google Chrome, Mozilla Firefox, Microsoft Edge, and Apple Safari, Silk Test Classic uses a
JavaScript-based approach to retrieve the text after it was rendered by the browser.

Note: Because of the different nature of these two implementations, Silk Test Classic might return
different text for the same web application, depending on which browser is used.

Example

The user interface displays the text the hostname is the name of the host. The following
code clicks on host instead of hostname, although hostname is displayed before host on
the screen:

control.TextClick("host")

The following code clicks on the substring host in the word hostname by specifying the
second occurrence:

control.TextClick("host", 2)

Slowing Down Tests
This functionality is supported only if you are using the Open Agent.

Some applications under test might require extensive loading of application data in the UI, and might not be
finished on time with loading objects that are required for replaying a test. To successfully replay tests on
such an AUT, you can check for the existence of an object before performing an action on it, or you can add
sleeps before performing an action.

Note: Micro Focus does not recommend generally adding sleeps to tests, because in most cases Silk
Test Classic will automatically detect if an object is available, and sleeps might severely reduce the
performance of tests.

1. To check if an object is available in the AUT, use the Exists method.

For example, to wait for six seconds for the button INPUT to become available, add the following line to
your test script:

WebBrowser.BrowserWindow.Input.Exists(6)

2. To add a sleep before performing an action on a control, use the method.

For example, to sleep for six seconds, add the following line to your test script:

Sleep(6)

Testing Applications in Multiple UI Sessions on a Single
Machine

This functionality is supported only if you are using the Open Agent.

To test applications in multiple UI sessions on a single machine or to test multiple agents on a single
machine, connect to multiple Open Agent instances on the machine. Every agent runs in its own UI-
session. A UI session can be a Remote Desktop Protocol (RDP) connection or a Citrix-based connection.

1. Create the UI sessions.

2. Open a command line window.

474 | Using Advanced Techniques with the Open Agent

3. Navigate to the folder /ng/agent in the Silk Test installation directory.

For example, the default folder path might look like the following: C:\Program Files (x86)\Silk
\SilkTest\ng\agent.

4. In each UI session, execute the following command: openAgent.exe -infoServicePort=<port>.

Note: Use a unique port number, because this port will be used in your Silk Test Classic script to
identify the Open Agent and the UI session in which the agent is running.

5. Change your Silk Test Classic scripts to connect to the Open Agent instances.

To connect to an Open Agent instance, add the following line to the script:

HMACHINE hAgent = Connect("hostname:port")

Where hostname is the name of the machine on which the agent is running, and port is the unique port
that you have specified.

The resulting objects are independent of each other and can be used either in one thread or in multiple
threads.

Note: If you want to launch an application in multiple UI sessions, you have to execute the base state
for each UI session.

Note: To use TrueLog when testing applications in multiple UI sessions on a remote machine, you
need to manually copy any generated TrueLog files from the remote machine to your local machine.

Example

Assume that the server machine that is hosting the UI sessions is named ui-srv. You
can create three UI sessions by using the ports 22903, 22904, and 22905.

In the first session, open the command line window, navigate to the agent directory,
and type the following:

openAgent.exe -infoServicePort=22903

Do the same for the other two sessions with the respective ports 22904 and 22905.

To connect to the Open Agent instances, add the following code to your script:

HMACHINE hAgent1 = Connect("ui-srv:22903")
HMACHINE hAgent2 = Connect("ui-srv:22904")
HMACHINE hAgent3 = Connect("ui-srv:22905")

The following sample script prints a simple text to each of the three UI sessions:

[-] main()
 [] HMACHINE hAgent1 = Connect("ui-srv:22903")
 [] HMACHINE hAgent2 = Connect("ui-srv:22904")
 [] HMACHINE hAgent3 = Connect("ui-srv:22905")

 [] hAgent1->FindWindow("//Window").TypeKeys("Hello to
session 1!")
 [] hAgent2->FindWindow("//Window").TypeKeys("Hello to
session 2!")
 [] hAgent3->FindWindow("//Window").TypeKeys("Hello to
session 3!")

Encrypting Passwords
Encrypt password sensitive strings that are plain text to avoid security issues.

1. In the menu, select Tools > Password Encoder. The Password Encoder dialog appears.

Using Advanced Techniques with the Open Agent | 475

2. Type the string to be encrypted into the Password field. The encrypted password is displayed in the
Encoded string field.

3. Click Copy and Close to copy the encrypted password to the clipboard and to close the Password
Encoder dialog.

4. Change the appropriate code lines in your test scripts.

Note: You can also encrypt a string in code by using the Encrypt method. Encrypted strings can be
decrypted using the Decrypt method.

476 | Using Advanced Techniques with the Open Agent

Running Tests and Interpreting Results
This section describes how you can run your tests and interpret the generated results.

Running Tests
This section describes how you can run your tests with Silk Test Classic.

Creating a Suite
After you have created a number of script files, you might want to collect them into a test suite. A suite is a
file that names any number of scripts. Instead of running each script individually, you run the suite, which
executes in turn each of your scripts and all the test cases they contain. Suite files have a .s extension.

1. Click File > New.
2. Select the Suite radio button and click OK. An untitled suite file is displayed.
3. Enter the names of the script files in the order you want them executed. For example, the following suite

file executes the find.t script first, the goto.t script second, and the open.t script third:

find.t
goto.t
open.t

4. Click File > Save to save the file.
5. If you are working within a project, you are prompted to add the file to the project. Click Yes if you want

to add the file to the open project, or No if you do not want to add this file to the project.

Passing Arguments to a Script
You can pass arguments to a script. For example, you might want to pass in the number of iterations to
perform or the name of a data file.

Arguments in 4Test are declared in the following two ways:

• Explicitly, as a list of arguments for a test case. Only the test case has access to an explicit argument,
not the entire script. For example:

testcase MyTest1(STRING arg1, STRING arg2)
 Print("{arg1} {arg2}")

• Implicitly, by using the GetArgs method inside a function or test case. GetArgs returns a list of strings
with each string being one of the passed arguments. All functions and test cases in the script have
access to these implicit arguments by calling GetArgs. For example:

testcase MyTest2()
 LIST OF STRING args = GetArgs()
 ListPrint(args)

All arguments are passed in as strings, separated by spaces, such as: Bob Emily Craig

If an argument is more than one word, enclose it with quotation marks. For example, the following passes
in three arguments: "Bob H" "Emily M" "Craig J"

You can specify arguments explicitly in one of the following ways:

• In the Arguments field in the Run Test Case dialog box.
• In Silk Central. Select the Properties tab of a Silk Test Classic test and specify the arguments by

adding the Test data property with the arguments to the Test Properties section.

Running Tests and Interpreting Results | 477

• When you invoke Silk Test Classic from the command line.

You can specify arguments implicitly in one of the following ways:

• In the Arguments field in the Runtime Options dialog box. To open the dialog box, click Options >
Runtime in the menu bar.

• After a script name in a suite file, for example find.t arg1 arg2.
• When you invoke Silk Test Classic from the command line.

Note: If you pass arguments in the command line, the arguments provided in the command line are
used and any arguments specified in the currently loaded options set are not used. To use the
arguments in the currently loaded options set, do not specify arguments in the command line.

Example: Implicitly passed arguments

The following test case prints a list of all the implicitly passed arguments:

testcase ProcessArgs ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
ListPrint (lsArgs)

//You can also process the arguments individually. The following test case
prints the second argument passed:
testcase ProcessSecondArg ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
Print (lsArgs[2])

//The following testcase adds the first two arguments:
testcase AddArgs ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
NUMBER nArgSum

nArgSum = Val (lsArgs[1]) + Val (lsArgs[2])
Print (nArgSum)

You can use the Val function to convert the arguments, which are always passed as strings, into numbers.

When the arguments script 10 20 30 are passed to the scr_args.t script, the test result is:

Script scr_args.t (10, 20, 30) - Passed
Passed: 1 test (100%)
Failed: 0 tests (0%)
Totals: 1 test, 0 errors, 0 warnings

Testcase AddArgs - Passed

30

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

478 | Running Tests and Interpreting Results

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

Running a Test Plan
Before running a test plan, make sure that the window declarations file for the test plan is correctly
specified in the Runtime Options dialog box and that the test plan is in the active window.

• To run the entire test plan, click Run > Run All Tests. Silk Test Classic runs each test case in the plan
and generates a results file.

• To run only tests that are marked, click Run > Run Marked Tests. Silk Test Classic runs each marked
test and generates a results file.

You can also run a single test case without marking it.

If your test plan is structured as a master plan and associated sub-plans, Silk Test Classic automatically
opens any closed sub-plans before running. Silk Test Classic always saves the suite, script, or test plan
before running it if you made any changes to it since the last time you saved it. By default, Silk Test Classic
also saves all other open modified files whenever you run a script, suite, or test plan. To prevent this
automatic saving of other open modified files, uncheck the Save Files Before Running check box in the
General Options dialog box.

To stop the execution of a test plan, press both Shift keys at the same time.

Running Tests and Interpreting Results | 479

Running the Currently Active Script or Suite
1. Make sure the script or suite you want to run is in the active window.

2. Choose Run > Run.

Silk Test Classic runs all the test cases in the script or suite and generates a results file.

Running Tests in Parallel
This functionality is supported only if you are using the Open Agent.

You can use multiple Partner processes to execute tests in parallel against multiple browsers or mobile
devices. For example, you can use this functionality when executing test from a continuous integration
server, or from Silk Central.

Silk Testby default supports parallel testing for the following browsers and platforms:

• Google Chrome.
• Mozilla Firefox.
• Web, native, and hybrid apps on the following platforms:

• Physical Android devices.
• Android Emulators.
• Physical iOS devices.

To disable parallel test replay, set the environment variable SILKTEST_ENABLE_PARALLEL_TESTING to
false.

Note: Enabling parallel testing causes the Open Agent to handle each test-executing process
separately. Applications which have been tested in one Silk Test client cannot be tested from another
client, while the initial client is running. For example, you cannot test the same application alternating
between Silk4J and Silk4NET.

Note: You cannot execute multiple test runs on the same mobile device at the same time. Before
running tests in parallel, ensure that enough devices or emulators are available. Any test runs that get
no mobile device or emulator assigned will fail.

Each parallel test run starts as a separate partner.exe or runtime.exe, which corresponds to one browser or
mobile device. You can specify the browser or mobile device that you want to associate with a specific
partner.exe or runtime.exe through the connection string. For additional information, see Connection String
for a Mobile Device or Connection String for a Remote Desktop Browser .

The following image shows testing multiple browsers in parallel:

The following image shows testing multiple devices in parallel:

480 | Running Tests and Interpreting Results

Multiple processes starting simultaneously might each try to start the Open Agent on the machine on which
Silk Test Classic is running. Running the Open Agent multiple times on the same machine is not possible
and will cause Silk Test Classic to throw an exception. To avoid this, ensure that the Open Agent is running
before starting the parallel test runs.

The test results are stored in multiple TrueLog files, one for each test run. To ensure that the TrueLog files
are not overwritten, you can add placeholders to the TrueLog file name. For additional information, see
Setting TrueLog Options.

Note: If you are experiencing high memory consumption during testing, ensure that test results are
saved in the compressed TLZ file format, and not in the XLG format. Silk Test Classic does not
support the TrueLog API for parallel testing.

Example: Running a Test in Parallel
Use two separate Partner processes to run a test in parallel on Google Chrome and Mozilla Firefox.

1. Create a new Silk Test Classic project.
For example, name the new project Demo.

2. Record a simple script in the browser of your choice against the Insurance Company sample web
application.

For example, record something like the following:

[-] testcase TestQuote ()
 [-] recording
 [] WebBrowser.BrowserWindow.DemoApplication.Click()
 []
WebBrowser.BrowserWindow.LoginFormEmail.SetText("john.smith@gmail.com")
 [] WebBrowser.BrowserWindow.LoginFormPassword.SetText("john")
 [] WebBrowser.BrowserWindow.LoginFormLogin.Click()
 [] WebBrowser.BrowserWindow.QuickLinkJumpMenu.Select("Auto Quote")
 [] WebBrowser.BrowserWindow.QuickLinkJumpMenu.Select("Agent Lookup")
 [] WebBrowser.BrowserWindow.Home.Click()
 [] WebBrowser.BrowserWindow.LogoutFormLogout.Click()
 [] WebBrowser.BrowserWindow.Navigate("demo.borland.com")

3. Save the recorded script, for example in a file named tests.t.

4. For each browser that you want to run the test on perform the following:

a) In the menu, select Options > Save New Options Set to create a new option set.
b) Type a name for the file, for example Chrome.opt or Firefox.opt.
c) Click Save.
d) In the new file, replace the values for the TrueLog file path, the results path, and the browser type.

For example, use the following values for Google Chrome:

OPT_TRUELOG_FILEPATH=Chrome.tlz
ResultsPath=.\Chrome.res
BrowserType=GoogleChrome

Running Tests and Interpreting Results | 481

And the following for Mozilla Firefox:

OPT_TRUELOG_FILEPATH=Firefox.tlz
ResultsPath=.\Firefox.res
BrowserType=Firefox

5. Start the test runs in parallel using the runtime.exe and specifying the different option sets.
For example, use the following commands to run command-line window to run the test in parallel on
Google Chrome and Mozilla Firefox:

c:\Users\<user>\Documents\Silk Test Classic Projects\Demo> runtime.exe -opt
Chrome.opt -q -r tests.t
c:\Users\<user>\Documents\Silk Test Classic Projects\Demo> runtime.exe -opt
Firefox.opt -q -r tests.t

6. Collect the results.

Locate the files Chrome.tlz, Chrome.res, Firefox.tlz, and Firefox.res respectively.

Setting Replay Options for the Open Agent
This functionality is supported only if you are using the Open Agent.

You can set the replay options to optimize replaying tests with the Open Agent.

1. Click Options > Agent. The Agent Options dialog box appears.

2. Click the Replay tab.

3. Select a Replay mode from the list.

• Default: Use this mode for the most reliable results. Each control uses the best method for the
control type, by using either the mouse and keyboard (low level) mode or the API (high level) mode.

• High level: Use this mode to replay each control using the API.
• Low level: Use this mode to replay each control using the mouse and keyboard.

4. To ensure that the window is active before a call is executed, check the Ensure window is active check
box.

5. Click OK.

Stopping a Running Test Case Before it Completes
To stop running a test case before it completes:

• If your test application is on a target machine other than the host machine, click Run > Abort.
• If your test application is running on your host machine, press Shift+Shift.

Setting a Test Case to Use Animation Mode
To slow down a test case during playback so that it can be observed, set the test case to use animation
mode. For instance, if you want to demonstrate a test case to someone else, you might want to use
animation mode.

You can specify the animation mode when you run a test case, or you can specify the animation mode in
the Runtime Options dialog.

To specify the animation mode using the Runtime Options dialog:

1. From the main menu, click Options > Runtime.

2. In the Runtime Options dialog, check the Animated Run Mode (Slow-Motion) check box.

3. Click OK.

482 | Running Tests and Interpreting Results

Run Application State Dialog Box
Use the Run Application State dialog box to run or debug an application state defined in your test frame
file or active script file.

Click Run > Application State.

Application state Displays the application states defined in the active frame or script file.

Run Runs the selected application state.

Debug Opens the file in which the application state resides and enters debugging mode.
Debugging mode makes all the debugging commands available on the Breakpoint,
Debug, and View menus.

Cancel Closes the dialog box.

Run Testcase Dialog Box
Use the Run Testcase dialog box to run or debug a test case accessible from the active script file. This
dialog box is only available when the active window contains either a test case or a results file in which the
current line is a test case or a data-driven test case. Data-driven test cases begin with "DD_". You cannot
run a test case with both arguments and rows.

Click Run > Testcase or Testplan > Detail > Specify Rows.

Testcase Displays all the test cases accessible from the current script.

Arguments Allows you to enter arguments to pass to the selected test case.

Animated
Run Mode
(Slow-
Motion)

Check to wait one second after each interaction with the application under test is
executed. Typically, you will only use this check box if you want to watch the test case run.
For instance, if you want to demonstrate a test case to someone else, you might want to
check this check box. Executions of the default base state and functions that include one
of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

Use Sample
Data from
Script

Check to run the test case once using the sample record for each table used by the test
case. This is available only if the selected test case is a data-driven test case.

Enable
TrueLog

To view results using the TrueLog Explorer, check the Enable TrueLog check box. This
check box enables you to enable or disable TrueLog Explorer each time you run a test
case. You can also check this check box in the TrueLog Options dialog box. When you
enable or disable TrueLog Explorer in the Run Test Case dialog box, the same changes
are made in the TrueLog Options dialog box. Likewise, when you enable or disable

Running Tests and Interpreting Results | 483

TrueLog Explorer in the TrueLog Options dialog box, the same changes are made in the
Run Testcase dialog box.

TrueLog
Options

Click to set the TrueLog options you want to record. By default, Silk Test Classic uses the
options that were most recently specified in the TrueLog Options dialog box. Check the
Enable TrueLog check box to enable this button.

Run Runs the selected test case. For data-driven test cases, the argument must be in the test
case record format. If the Arguments text box is empty, Run causes the test case to run
all combinations of all rows in all tables used by the test case.

Debug Opens the file in which the test case resides, enters debugging mode, and places a
breakpoint at the first line of the test case. Debugging mode makes available all the
debugging commands on the Breakpoint, Debug and View menus. If the Arguments list
is empty, Debug runs the data-driven test case using all rows, but in debug mode. Since
the default breakpoint is the testcase statement, by default the debugger skips
DefaultRunDataDrivenTestCase() and stops at the test case with the first set of
rows as input. The debugger acts as described for Debug in Run > Testcase, but with
data-driven test cases only sets of selected rows are passed to the test case.

Cancel Closes this dialog box.

Specify
Rows

Opens the Specify Rows dialog box where you can select the rows you want to run from
the tables for this data-driven test case. This is available only if you have selected Use
Sample Data from Script for a data-driven test case.

Runtime Status Dialog Box
By default, this dialog box automatically appears on the partner machine while executing a test case, script
or test plan. To keep this status dialog box automatically hidden at runtime, click Options > Runtime and in
the Execution area clear the Show Detailed Status Window check box. This dialog box is for status
purposes only.

If you are running a script, test case or test plan on a target machine other than the host machine, you can
safely close the Runtime Status dialog box once execution begins. To reopen this dialog box after closing
it, or if it is hidden by default, click Run > Show Status. This menu option is available only if running a
script, test case, or test plan.

This dialog box is display only.

Program Lists the recent tasks the agent executed as defined in the script. As Silk Test Classic
executes the plan the list will change. Only the first item listed will remain constant. That
is, if a test plan is executed the name of that file will always appear at the top of the
Program list. If you are running a test plan that is a masterplan, which means it includes
other test plans, the masterplan name will always be the first item listed, not the sub-
plans.

Elapsed Lists how long it took to execute the corresponding task listed under Program. The first
item in the list is the current cumulative time elapsed for the entire execution.

Errors Lists how many errors occurred while executing the corresponding task listed in Program.
The first item in the list is the current cumulative number of errors for the entire execution.

Current
agent call

Displays the current function the agent is executing against the AUT.

Last error Displays the last error encountered.

484 | Running Tests and Interpreting Results

Analyzing Test Results
To enable you to analyze your tests after executing them, for example to find out why and how a test has
failed, Silk Test Classic generates test reports during test execution.

By default, Silk Test Classic writes both a TrueLog and an HTML report when running a test. You can select
which result formats Silk Test Classic should generate under Options > TrueLog.

HTML Reports
By default, Silk Test Classic creates an HTML report and a TrueLog report when running tests. Both report
formats include summary information about the test run and detailed information about the executed
actions.

When a test run is finished, you can access the HTML report from the Playback Complete dialog.

By default, the HTML report is created in the <project name>-report sub-folder of the project folder.
You can change the location under Options > TrueLog > TrueLog location.

Analyzing Results with the Silk TrueLog Explorer
This section describes how you can analyze results with the Silk TrueLog Explorer (TrueLog Explorer).

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer Help for Silk Test.

TrueLog Explorer
The TrueLog Explorer helps you analyze test results files and can capture screenshots before and after
each action, and when an error occurs. TrueLog Explorer writes the test result files and screenshots into a
TrueLog file.

You can additionally use the Difference Viewer to analyze results for test cases that use the Open Agent.

You can enable or disable TrueLog Explorer:

• For all test cases using the TrueLog Options dialog box.
• Each time you run a specific test case using the Run Testcase dialog box.
• At runtime using the test script.

When you enable or disable TrueLog Explorer in the Run Testcase dialog box, Silk Test Classic makes the
same change in the TrueLog Options dialog box. Likewise, when you enable or disable TrueLog Explorer
in the TrueLog Options dialog box, Silk Test Classic makes the same change in the Run Testcase dialog
box.

Note: By default, TrueLog Explorer is enabled when you are using the Open Agent, and disabled
when you are using the Classic Agent. When TrueLog Explorer is enabled, the default setting is that
screenshots are only created when an error occurs in the script and only test cases with errors are
logged.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer Help for Silk Test.

TrueLog Limitations and Prerequisites
When you are using TrueLog with Silk Test Classic, the following limitations and prerequisites apply:

Remote agents When you are using a remote agent, the TrueLog file is also written on the remote
machine.

Suites TrueLog is not supported when you are executing suites.

Running Tests and Interpreting Results | 485

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf

Mixed-agent
scripts

TrueLog is not supported when you are executing mixed-agent scripts, which are
scripts that are using both agents.

Multiple-agent
scripts

TrueLog is supported only for one local or remote agent in a script. When you are
using a remote agent, the TrueLog file is also written on the remote machine.

Open Agent
scripts

To use TrueLog Explorer with Open Agent scripts, set the default agent in the
toolbar to the Open Agent.

Classic Agent
scripts

To use TrueLog Explorer with Classic Agent scripts, set the default agent in the
toolbar to the Classic Agent.

Why is TrueLog Not Displaying Non-ASCII Characters Correctly?

TrueLog Explorer is a MBCS-based application, meaning that to be displayed correctly, every string must
be encoded in MBCS format. When TrueLog Explorer visualizes and customizes data, many string
conversion operations may be involved before the data is displayed.

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system code page. In such cases, TrueLog Explorer will replace the non-convertible
characters, which are the non-ASCII characters, with a configurable replacement character, which usually
is '?'.

To enable TrueLog Explorer to accurately display non-ASCII characters, set the system code page to the
appropriate language, for example Japanese.

Opening the TrueLog Options Dialog Box
Use the TrueLog options to enable the TrueLog Explorer and to customize the test result information that
TrueLog collects.

• To open the TrueLog Options dialog box from the main menu, click Options > TrueLog.
• To open the TrueLog Options dialog box from a test case, click Run Testcase on the Basic Workflow

bar. If the workflow bar is not visible, click Workflows > Basic to enable it. In the Run Testcase dialog
box, check the Enable TrueLog check box and then click TrueLog Options.

Setting TrueLog Options
You can enable TrueLog reports and HTML reports to capture bitmaps and to log information for test runs
with Silk Test Classic.

Logging bitmaps and controls might adversely affect the performance of Silk Test Classic. Because
capturing bitmaps and logging information can result in large TrueLog files, you may want to log test cases
with errors only and then adjust the TrueLog options for test cases where more information is needed.

The results of test runs can be examined in the TrueLog Explorer, in the case of TrueLog reports, or in a
browser, in the case of HTML reports. For additional information on the TrueLog Explorer, refer to the Silk
TrueLog Explorer Help for Silk Test.

Note: To reduce the size of TrueLog files with Silk Test 17.5 or later, the file format for TrueLog files
has changed from .xlg to the compressed .tlz file format. Files with a .xlg suffix are
automatically appended with a .tlz suffix. To parse result data from a .tlz file, you can unzip
the .tlz file and parse the data from the included .xlg file.

To enable creating result data and to customize the information that Silk Test Classic collects, perform the
following steps:

1. Click Options > TrueLog. The TrueLog Options dialog box opens.

2. In the Basic Settings area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

486 | Running Tests and Interpreting Results

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf

• Click Testcases with errors to log activity for only those test cases with errors.

3. Select the result format:

• Select TrueLog Report (.tlz) to generate visual execution logs that can be viewed in TrueLog
Explorer.

• Select HTML Report to generate an HTML-based report that can be viewed in a browser.
• Select Both to generate both a TrueLog report and an HTML-based report.

4. In the TrueLog location field, type the name of and optionally the path to the TrueLog file, or click
Browse and select the file.

The path is relative to the machine on which the agent is running. The default path is the path of the Silk
Test Classic project folder, and the default name is the name of the suite class, with a .tlz suffix. To
ensure that TrueLog files are not overwritten, for example when you perform parallel testing, you can
add placeholders to the TrueLog file name. These placeholders are replaced with the appropriate data
at execution time.

Note: The path is validated at execution time. Tests that are executed by Silk Central set this value
to the Silk Central results directory to enable the screenshots to be shown in the result view.

5. Select the Screenshot mode.

Default is On Error.

6. Optional: Set the Delay.

This delay gives the operating system time to draw the application window before a bitmap is taken. You
can try to add a delay if your application is not drawn properly in the captured bitmaps.

7. Click OK.

Toggle TrueLog at Runtime Using a Script
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Toggle the TrueLog Explorer at runtime to analyze test results, capture screen-shots before and after each
action, and capture screen-shots when an error occurs.

Use the test script to toggle TrueLog Explorer multiple times during the execution of a test case. For
example, if you run a single test case to test multiple user interface menus, you can turn TrueLog on and
off several times during the script to capture bitmaps for only a portion of the menus.

1. Set the TrueLog Explorer options to define what you want the TrueLog Explorer to capture.

2. Create or open the script that you want to modify.

3. Navigate to the portion of the script that you want to turn on or off.

4. To turn TrueLog off, type: SetOption(OPT_PAUSE_TRUELOG, TRUE).

5. To turn TrueLog on, type: SetOption(OPT_PAUSE_TRUELOG, FALSE).

6. Click File > Save to save the script.

Viewing Results Using the TrueLog Explorer
Use the TrueLog Explorer to analyze test results files, capture screenshots before and after each action,
and capture screenshots upon error.

1. Set the TrueLog Explorer options.

2. Run a test case.

3. Choose one of the following:

• Click Results > Launch TrueLog Explorer.
• Click the Explore Results button on the Basic Workflow or the Data Driven Workflow bars.

4. On the Results Files dialog box navigate to the file name that you want to review and click Open.

Running Tests and Interpreting Results | 487

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .tlz file. To review a Silk Test Classic results file in Silk Test Classic, open
a .res file.

Interpreting Results in Result Files
Describes how you can interpret the results in a .res file.

In addition to creating an HTML report and a TrueLog for each test run, Silk Test Classic creates a .res
results file during the execution of a test. Once the test run is finished, Silk Test Classic automatically
opens the result file in the editor.

Overview of the Results File
A results file provides information about the execution of the test case, script, suite, test plan, or keyword-
driven test. By default, the results file has the same name as the executed script, suite, test plan, or
keyword-driven test, but with a .res extension. For example, find.res.

Whenever you run tests, Silk Test Classic generates a results file, which indicates how many tests passed
and how many failed, describes why tests failed, and provides summary information. You can invoke
comparison tools from within the results file that pinpoint exactly how the runtime results differ from your
known baselines. Test-plan results files offer additional features, such as the ability to compare different
runs of the test plan. When Silk Test Classic displays a results file, on the menu bar it includes the Results
menu, which allows you to manipulate the results file and locate errors. The Results menu appears only
when the active window displays a results file.

TrueLog Explorer

Silk Test Classic also provides the TrueLog Explorer to help you analyze test results files. You must
configure Silk Test Classic to use the TrueLog Explorer and specify what you want to capture.

Multiple User Environments

A .res file can be opened by multiple users, as long as no test is in process. This means you cannot have
two users run tests at the same time and write to the same results file. You can run a test on the machine
while the file is open on the other machine. However, you must not add comments to the file on the other
machine, or you will corrupt the .res file and will not be able to report the results of the test. If you add
comments to the file on both machines, the comments will be saved only for the file that is closed (and
therefore saved) first.

Default Settings

By default, the results file displays an overall summary at the top of the file, including the following:

• The name of the script, suite, test plan, or keyword-driven test.
• The machine on which the tests were executed.
• The amount of tests that were executed.
• The amount of errors and warnings that were generated during the execution.
• The actual errors that were generated.
• Timing information.

To hide the overall summary, click the summary and click Results > Hide Summary. For a script or suite
results file, the individual test summaries contain timing information and errors or warnings. For a test plan
results file, the individual test summaries contain the same information as in the overall summary plus the
name of the test case and script file.

While Silk Test Classic displays the most current version of the script, suite, or test plan, by default Silk Test
Classic saves the last five sets of results for each script, suite, or test plan executed. To change the default

488 | Running Tests and Interpreting Results

number, use the Runtime Options dialog. As results files grow after repeated testing, a lot of unused
space can accumulate in the files. You can reduce the size of a results file with the Compact menu option.

The format for the rest of a test plan results file follows the hierarchy of test descriptions that were present
in the test plan. Test statements in the test plan that are preceded by a pound sign (#) as well as
comments, which are using the comment statement, are also printed in the results file, in context with the
test descriptions.
comment

To change the default name and directory of the results file, edit the Runtime Options dialog.

Note: If you provide a local or remote path when you specify the name of a results file in the
Directory/Field field on the Runtime Options dialog, the path cannot be validated until script
execution time.

Viewing Test Results
Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.

2. On the Results Files dialog box, navigate to the file that you want to review and click Open.

Silk Test Classic provides the following result files:

• .res files, which include information about the execution of the test case, script, suite, test plan, or
keyword-driven test.

• .tlz files, which include a TrueLog with optional screenshots before and after each action.
• .htm for HTML reports with summary information about the test run and detailed information about the

executed actions.

By default, Silk Test Classic writes both a TrueLog and an HTML report when running a test. You can select
which result formats Silk Test Classic should generate under Options > TrueLog.

By default, a results file has the same name as the executed script, suite, or test plan.

Errors And the Results File
You can expand the text of an error message or have Silk Test Classic find the error messages for you. To
navigate from a test plan test description in a results file to the actual test in the test plan, click the test
description and select Results > Goto Source.

Navigating to errors in the script

There are several ways to move from the results file to the actual error in the script:

• Double-click in the margin next to an error line to go to the script file that contains the 4Test statement
that failed.

• Click an error message and select Results > Goto Source.
• Click an error message and press Enter.

What the box icon means

Some expanded error messages are preceded by a box icon and three asterisks.

If the error message relates to an application’s behavior, as in Verify selected text failed, Silk
Test Classic opens the Difference Viewer. The Difference Viewer compares actual and expected values
for a given test case.

Running Tests and Interpreting Results | 489

Application appearance errors

When you click a box icon followed by a bitmap-related error message, the bitmap tool starts, reads in the
baseline and result bitmaps, and opens a Differences window and Zoom window.

Bitmap tool

In the Bitmap Tool:

• The baseline bitmap is the bitmap that is expected, which means the baseline for comparison.
• The results bitmap is the actual bitmap that is captured.
• The Differences window shows the differences between the baseline and result bitmap.

The Bitmap Tool supports several comparison commands, which let you closely inspect the differences
between the baseline and results bitmaps.

Finding application logic errors

To evaluate application logic errors, use the Difference Viewer, which you can open by clicking the box
icon following an error message relating to an application’s behavior.

The Difference viewer

Clicking the box icon opens the Difference Viewer’s double-pane display-only window. It lists every
expected (baseline) value in the left pane and the corresponding actual value in the right pane.

All occurrences are highlighted where expected and actual values differ. On color monitors, differences are
marked with red, blue, or green lines, which denote different types of differences, for example, deleted,
changed, and added items.

When you have more than one screen of values or are using a black-and-white monitor, use Results >
Next Result Difference to find the next difference. Use Update Expected Values, described next, to
resolve the differences.

Updating expected values

You might notice upon inspecting the Difference Viewer or an error message in a results file that the
expected values are not correct. For example, when the caption of a dialog changes and you forget to
update a script that verifies that caption, errors are logged when you run the test case. To have your test
case run cleanly the next time, you can modify the expected values with the Update Expected Value
command.

Note: The Update Expected Value command updates data within a test case, not data passed in
from the test plan.

Debugging tools

You might need to use the debugger to explore and fix errors in your script. In the debugger, you can use
the special commands available on the Breakpoint, Debug, and View menus.

Marking failed test cases

When a test plan results file shows test case failures, you might choose to fix and then rerun them one at a
time. You might also choose to rerun the failed test cases at a slower pace, without debugging them, simply
to watch their execution more carefully.

To identify the failed test cases, make the results file active and select Results > Mark Failures in Plan.
All failed test cases are marked and test plan file is made the active file.

490 | Running Tests and Interpreting Results

Viewing Differences
If a verification fails, because the actual value is different to the expected value, you can use the
Difference Viewer from the results file to compare the expected value with the actual value.

You can use Results > Next Result Difference to find the next difference and update the values using
Results > Update Expected Value.

Note: The Difference Viewer does not work for remote agent tests, because the compared values
must be available on the local machine.

1. Move the mouse cursor over the error in the results file.

2. Click Results > View Differences.

You can also click on the red square that precedes the error message in the results file.

The Difference Viewer appears, listing every expected (baseline) value in the left pane and the
corresponding actual value in the right pane. Differences are marked with red, blue, or green lines,
which denote different types of differences, for example deleted, changed, and added items.

3. Compare the values in the Expected value and Actual value fields.

4. If the error was caused by a wrong expected value, click Results > Update Expected Value to modify
the expected value in the test case.

5. Click Results > Next Result Difference in the menu to find the next difference.

Note: If the error message on which you click relates to the appearance of the application under test,
for example when bitmaps have different sizes, Silk Test Classic opens the Bitmap Tool to compare
the baseline and results bitmaps.

Merging Test Plan Results
You can use the Merge Results dialog box to merge another result into the active test-plan result file.

A results file consists of a series of results sets, one set for each test plan run. Merging such results sets is
useful when:

• Sections of the test plan are run separately, either by one person or by several people, and you need to
create a single report on the testing process. For example, let’s say that yesterday you ran a section of
the test plan consisting of 20 tests and today you ran a different section of the test plan consisting of 10
tests. The merged results set would have today's date and would consist of the results of 30 tests.

• A newer version of a test plan is updated with new tests or sub-plans and you want a single results set
to reflect the execution of the original test plan along with the additional tests or sub-plans. For example,
if yesterday you ran a test plan consisting of 20 tests and another test plan with 10 tests, and today you
added the second test plan to the first test plan as a sub-plan, the merged results set of yesterdays runs
would have yesterday's date and would consist of the results of 30 tests.

1. Click Results > Merge.

Note: This command is only available in the menu when a results file produced by running a test-
plan is active in the editor.

The Merge Results dialog box appears.

2. Select the test plan result that you want to merge into the test plan results file. The selected result is
merged into the active test plan results file. The date and time of the altered results set reflect the more
recent test run.

How Does Silk Test Classic Synchronize Tests?
This functionality is supported only if you are using the Open Agent.

Running Tests and Interpreting Results | 491

Many unexpected test failures are related to synchronization issues. Weak synchronization during test
replay might generate false negative results, making it difficult to detect actual application problems.
Synchronization errors are timing issues that heavily depend on the test environment, making these errors
difficult to reproduce and solve. For example, a synchronization error that occurs in a specific test
environment might never be reproduced in the development environment. Weak synchronization is one of
the most common reasons for an automation project to get unmanageable with a growing set of automated
tests.

Silk Test Classic provides automated test synchronization for all supported technologies, enabling you to
build robust and manageable test sets. During the replay of a test, Silk Test Classic ensures that the test
always waits until the AUT is ready to perform the next action. For a verification step in a test, Silk Test
Classic ensures that any preceding actions in the test are completed before performing the verification.

To adapt your tests to the specific behavior of your AUT, you can change the values of the following
synchronization timeouts:

Synchronization timeout
(OPT_SYNC_TIMEOUT)

The maximum time in seconds that Silk Test Classic
waits for the AUT to become ready during playback. The
default value is 300 seconds.

Window timeout (OPT_WINDOW_TIMEOUT) The maximum time in seconds that the Find method
searches for a window. The default value is 5 seconds.

Window retry interval
(OPT_WINDOW_RETRY)

If Silk Test Classic cannot immediately find a window,
Silk Test Classic will retry to find the window until the
window timeout expires. The window retry interval
specifies the time in seconds that Silk Test Classic waits
before retrying to find the window. The default value is
0.5 seconds.

Timeout to wait for an enabled window
(OPT_OBJECT_ENABLED_TIMEOUT)

The maximum time in seconds that Silk Test Classic
waits for a window to become enabled during playback.
The default value is 1 second.

Note: The timeouts do not overlap.

For detailed information about the automated synchronization that Silk Test Classic provides specifically for
Web applications, see Page Synchronization for xBrowser. For detailed information about the
synchronization that Silk Test Classic provides specifically for Ajax applications, see How to Synchronize
Test Automation Scripts for Ajax Applications.

In addition to the automated synchronization, Silk Test Classic also enables you to manually add wait
functions to your scripts. Silk Test Classic provides the following wait functions for manual synchronization:

WaitForObject Waits for an object that matches the specified locator. Works with an
xPath locator or an object map identifier.

WaitForProperty Waits until the specified property gets the specified value or until the
timeout is reached.

WaitForPropertyNotEquals Waits until the value of the specified property no longer equals the
specified value or until the timeout is reached.

WaitForDisappearance Waits until the object does not exist or until the timeout is reached.

WaitForChildDisappearance Waits until the child object specified by the locator parameter does not
exist or until the timeout is reached.

WaitForScreenshotStable Waits until the object is visually stable and does not change its position.

If a test randomly fails with an ObjectNotFoundException, increase the Window timeout, for example
to 30 seconds. For very specific long running operations, for example a click on an object that displays after
a long calculation with a progress dialog, manually add the WaitForObject method to the test script, to

492 | Running Tests and Interpreting Results

http://community.microfocus.com/borland/test/silk_test/b/weblog/archive/2012/06/15/how-to-synchronize-test-automation-scripts-for-ajax-applications.aspx
http://community.microfocus.com/borland/test/silk_test/b/weblog/archive/2012/06/15/how-to-synchronize-test-automation-scripts-for-ajax-applications.aspx

wait until the object is found, or add the WaitForDisappearance method to the test script, to wait until
the progress dialog is no longer displayed.

Automated synchronization example

Consider the following code sample, where Silk Test Classic tries to click on a button
with the caption Ok:

WINDOW button = Desktop.Find("//PushButton[@caption='ok'")
button.Click()

To replay the actions in this code sample, Silk Test Classic performs the following
synchronization actions:

1. Silk Test Classic tries to find the button. If the Window timeout runs out, Silk Test
Classic stops the replay and throws an exception.

2. Silk Test Classic waits until the application under test (AUT) is ready. If the
Synchronization timeout runs out before the AUT is ready, Silk Test Classic stops the
replay and throws an exception.

3. Silk Test Classic waits until the button is enabled. If the Timeout to wait for an
enabled window runs out before the button is enabled, Silk Test Classic stops the
replay and throws an exception.

4. Silk Test Classic clicks the button.
5. Silk Test Classic waits until the application under test (AUT) is ready again.

Selecting which Results to Display
By default, Silk Test Classic saves the results of the last five executions of a script, suite, or test plan. You
can use the Select Results dialog box to select which of these results to display.

Click Results > Select.

Note: To change the default number of results that are saved, click Options > Runtime to open the
Runtime Options dialog box and edit the History Size option.

1. Click Results > Select.

Note: The Results menu is only available when the active window is a results window.

2. Select the result that you want to display from the Results to view list.

3. Optional: Add a comment to the selected result by typing the comment into the Comment field.

4. Click OK.

Export Results Dialog Box
Use the Export Results dialog box to export your results to a structured file that is suitable for further
processing by an application, such as a spreadsheet. This is only available when the active window is a
results window.

Click Results > Export.

Filename area Displays the path and name of the file to be created. The default path is based on the
current directory and the default file name is based on the name of the .res file. Click
Browse to open the Export Results File Name dialog box if you need help choosing a
new path or name.

Fields to export
area

Specifies all the fields available for export. Select the fields you want to export.

Running Tests and Interpreting Results | 493

Export format
area

Specifies how the fields are delimited in the file. Select a built-in delimited style in the
Export Format list or select Custom and specify your own delimiters. If you select
custom specify your delimiters in the appropriate boxes: Delimiter, Quote, Escape
delimiter, and Escape quote. Default is Comma Delimited, Quoted Strings.

Write header If checked, the following header information is included in the file: name of the results
file, which fields were exported, and how the fields were delimited. Default is checked.

Write paths
relative to
results file

If checked, the name of the directory and file that stores the results file is included in
the file. Silk Test Classic always assigns the extension .res to all results files.

Results to
export area

Specifies which results to export. Click to select the results you want exported. To
select more than one set, press the Ctrl key, then click each file you want to export.
Default is the set currently displayed in the results window.

View Options Dialog Box
Use the View Options dialog box to specify which information you want displayed in the results window.

Click Results > View Options.

You must check the Log elapsed time, thread, and machine for each output line check box in the
Runtime dialog box in order to use these options. Click Options > Runtime to set the option.

Display options area select the information you want to display in the results window. You can select
Elapsed time, Thread number, or Current machine.

Sort lines by area Select how you want the results sorted. You can specify Elapsed time, Thread
number, or Current machine.

When you click OK, the current results file displays the options that you specified.

Compare Two Results Dialog Box
Use to see results that have changed from a previous run of the testplan. Available only when a results file
produced by running a testplan is the active window.

Click Results > Compare Two Results.

Analyzing Bitmaps
This section describes how you can analyze bitmaps with the Bitmap Tool.

Overview of the Bitmap Tool
This topic contains a brief overview of the Bitmap Tool. To access more information about the Bitmap
Tool, launch it and press F1 or choose Help > Help Topics.

The Bitmap Tool is an application that allows you to test and correct your Windows application’s
appearance by comparing two or more bitmaps and identifying the differences between them. It is
especially useful for testing inherently graphical applications, like drawing programs, but you can also
check the graphical elements of other applications. For example, you might want to compare the fonts you
expect to see in a dialog with the fonts actually displayed, or you might want to verify that the pictures in
toolbar buttons have not changed.

It can be used as a stand-alone product, in which you create and compare bitmaps of entire windows,
client areas, the desktop, or selected areas of the screen. More commonly, however, you use the tool in

494 | Running Tests and Interpreting Results

conjunction with Silk Test Classic. Bitmaps captured can be opened in the Bitmap Tool where you can
compare them using the tool’s comparison features. Conversely, bitmaps captured by the bitmap tool can
be compared by Silk Test Classic bitmap functions.

You can compare a baseline bitmap captured in the Bitmap Tool with one captured in a Silk Test Classic
test case of your application.

• If you write test cases by hand, you can use Silk Test Classic built-in bitmap functions.
• If you prefer to record test cases through Record > Testcase, the Verify Window dialog box allows you

to record a bitmap-related verification statement.

The Bitmap Tool can only recognize an operating system's native windows. In the case of the Abstract
Windowing Toolkit (AWT), included with Sun Microsystems Java Development Kit (JDK), each control has
its own window, since AWT controls are native Microsoft windows. As a result, the Bitmap Tool will only
see the top level dialog box.

When to use the Bitmap Tool
You might want to use the Bitmap Tool in these situations:

• To compare a baseline bitmap against a bitmap generated during testing.
• To compare two bitmaps from a failed test.

For example, suppose during your first round of testing you create a bitmap using one of Silk Test Classic’s
built-in bitmap functions, CaptureBItmap. Assume that a second round of testing generates another
bitmap, which your test script compares to the first. If the testcase fails, Silk Test Classic raises an
exception but cannot specifically identify the ways in which the two images differ. At this point, you can
open the Bitmap Tool from the results file to inspect both bitmaps.

Capturing Bitmaps with the Bitmap Tool
You can capture bitmaps by embedding bitmap functions and methods in a test case or by using the
Bitmap Tool. This section explains how to capture bitmaps in the Bitmap Tool.

Use the Capture menu to capture a bitmap for any of the following in your application:

• A window.
• The client area of a window, which means the working area, without borders or controls.
• A selected rectangular area of the screen. This is especially useful for capturing controls within a

window.
• The desktop.

Capturing a Bitmap with the Bitmap Tool

1. Start the application in which you want to capture bitmaps and set up the window or area to capture.

2. Start the Bitmap Tool.

3. If you want to change the current behavior of the tool window, click Capture > Hide Window on
Capture.

By default, the tool window is hidden during capture.

4. Choose a window or screen area to capture:

Window Choose Capture > Window. Click the window you want to capture.

Client area Choose Capture > Client Area. Click the client area you want to capture.

Selected
rectangular area

Choose Capture > Rectangle.

1. Move the mouse cursor to desired location to begin capture.

Running Tests and Interpreting Results | 495

2. While pressing and holding the left mouse button, drag the mouse to outline a
rectangle, and then release the mouse button to capture it. During outlining,
the size of the rectangle is shown in pixels.

Desktop Click Capture > Desktop.

The Bitmap Tool creates a new MDI child window containing the newly captured bitmap. The title bar
reads Bitmap - (Untitled) and the status line at the bottom right of the window gives the dimensions of
the bitmap (height by width), and the number of colors.

5. Repeat steps 3 and 4 to capture another bitmap. Alternatively, open an existing bitmap file.

6. Save the bitmap.

Now you are ready to compare the two bitmaps or create a mask for the baseline bitmap.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Capturing a Bitmap During Recording

1. Open the dialog box by pointing at the object you want to capture and pressing Ctrl+Alt.

2. Click the Bitmap tab.

3. Enter a file name in the Bitmap File Name field. Use the Browse button to select a directory name.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Choose whether to copy the Entire Window, Client Area of Window, or Portion of Window, and click
OK.

To capture a portion of the window, move the mouse cursor to the location where you want to begin.
While pressing the left mouse button, drag the mouse to outline a rectangle, and then release the
mouse button to capture the bitmap.

Silk Test Classic always adds a bitmap footer to the bitmap file. This means that the physical size of the
bitmap will be slightly bigger than if you capture the bitmap in the Bitmap Tool. The bitmap footer always
contains the window tag for a given bitmap.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Capturing All or Part of the Zoom Window in Scan Mode

1. Make sure the Capture > Hide Window is unchecked.

If necessary, select the item to uncheck the check mark.

2. Click Next or Previous until the Zoom window contains the difference you want to capture.

3. Perform one of the following actions to capture the desired part of the Zoom window:

Entire Zoom window Press Ctrl+W and select the Zoom window.

496 | Running Tests and Interpreting Results

Client area of Zoom
window

Press Ctrl+A and select the Zoom window.

Selected area of Zoom
window

Press Ctrl+R. Move the mouse cursor to desired location to begin
capture. While pressing and holding the left mouse button, drag the mouse
to the screen location to end capture, and release the mouse button.

4. Optionally, you can fit the bitmap in its window, resize it, and save it.

Saving Captured Bitmaps
You can, if you want, save the bitmaps you have captured in the Bitmap Tool. You should adopt a naming
convention that helps you distinguish between the first bitmap in the comparison, called the baseline
bitmap, and the second bitmap, called the result bitmap. You can make the distinction in the file name itself,
for example, by appending or prefixing a b or r to the name and using the same file extension for all bitmap
files. Or you might use the same file name for both baseline and result bitmaps and add a unique file
extension.

Example

You save baseline and result bitmaps of the Open dialog box as open.bmp and
open.rmp. Alternatively, you might name them openbase.bmp and openres.bmp,
respectively.

The following table lists the file extensions supported by the Bitmap Tool. We recommend that you
use .bmp for baseline bitmaps and .rmp for result bitmaps.

If you are saving And you want the file name to be Then use this extension

Baseline bitmap Identical to the result bitmap’s .bmp

Result bitmap Identical to the baseline bitmap’s .rmp

Either baseline or
result bitmap

Unique .bmp or .dib (Device Independent
Bitmap)

Note: Silk Test Classic uses .rmp for bitmaps that are captured within a test case and fail verification.

Comparing Bitmaps
The Bitmap Tool can create and graphically locate the differences between two bitmaps. You can use all
Windows functionality to resize, save, and otherwise manipulate bitmaps, in addition to the special
comparison features included in the tool.

Using the Bitmap Tool, you can:

• Show the areas of difference.
• Zoom in on the differences.
• Jump from one zoomed difference to the next.
• View on-line statistics about the bitmaps.
• Edit (copy and paste), print, and save bitmaps.
• Create masks.

The Bitmap Tool has the following major comparison commands:

Running Tests and Interpreting Results | 497

Command Description

Show Creates a Differences window, which is a child window containing a black-and-white
bitmap. Black represents areas with no differences and white represents areas with
differences.

Zoom Creates a special, not sizable, Zoom window with three panes and resizes and stacks
the Baseline, Differences, and Result windows.

• The top pane of the Zoom window contains a zoomed portion of the Baseline
window.

• The middle pane shows a zoomed portion of the Differences window.
• The bottom pane shows a zoomed portion of the Result window.

All three zoomed portions show the same part of the bitmap. When you move the
mouse within any of the three windows, the Bitmap Tool generates a simultaneous and
synchronized real-time display in all three panes of the Zoom window.

While in scan mode, you can capture the Zoom window to examine a specific bitmap
difference.

Scan The tool indicates the location of the first difference it finds by placing a square in the
same relative location of the Baseline, Result, and Differences windows. The three
panes of the Zoom window also show the difference.

Comparison
Statistics

Provides statistics about the bitmaps.

You can also compare bitmaps by creating and applying masks.

Rules for Using Comparison Commands
You should be familiar with the following rules before using the commands:

• If you are comparing two new bitmaps captured in the tool, designate one bitmap as the baseline, the
other as the result bitmap.

• If you are comparing two existing, saved bitmaps, open first the bitmap that you consider the baseline.
The tool automatically designates the first bitmap you open as the baseline, and the second as the
result.

• The commands must be used in this order: Show, Zoom, and Scan.

Bitmap Functions
CaptureBitmap, SYS_CompareBitmap, WaitBitmap, and VerifyBitmap are built-in bitmap-related
4Test functions. In particular, VerifyBitmap is useful for comparing a screen image during the execution
of a test case to a baseline bitmap created in the Bitmap Tool. If the comparison fails, Silk Test Classic
saves the actual bitmap in a file. In the following example, the code compares the test case bitmap (the
baseline) against the bitmap of TestApp captured by VerifyBitmap:

TestApp.VerifyBitmap ("c:\sample\testbase.bmp")

Baseline and Result Bitmaps
To compare two bitmaps, you must designate one bitmap in the comparison as the baseline and the
second bitmap as the result. While you may have many bitmap files open in the Bitmap Tool, at any one
time only one bitmap can be set as the baseline and one as the result. If you want to set new baseline and
result bitmaps, you must first un-set the current assignments.

These designations are temporary and at any time you can set and reset a bitmap as a baseline, result, or
neither.

498 | Running Tests and Interpreting Results

Designating a Bitmap as a Baseline
To designate a bitmap as a baseline:

In the Bitmap Tool, click Bitmap > Set Baseline. The Set Baseline menu item is checked. The title
bar of the child window changes to Baseline Bitmap -- filename.bmp.

Designating a Bitmap as a Results File
To designate a bitmap as a results file:

In the Bitmap Tool, click Bitmap > Set Result. The Set Result menu item is checked. The title bar of
the child window changes to Result Bitmap -- filename.rmp.

Un-Setting a Designated Bitmap
Uncheck the menu item. For example, to un-set a baseline bitmap, uncheck Bitmap > Set Baseline. The
check mark is removed.

Uncheck the menu item.

For example, to un-set a baseline bitmap, uncheck Bitmap > Set Baseline.

The check mark is removed.

Zooming the Baseline Bitmap, Result Bitmap, and
Differences Window
Choose Differences > Show and then Differences > Zoom.

The tool arranges the Baseline Bitmap on top, the Result Bitmap on the bottom, and the Differences
window in the middle. To the right of these, the tool creates a Zoom window with three panes, arranged like
the bitmap windows

Looking at Statistics
The Differences > Comparison Statistics command displays information about the baseline and result
bitmaps, with respect to width, height, colors, bits per pixel, number of pixels, and the number and
percentage of differences (in pixels).

Viewing Statistics by Comparing the Baseline Bitmap and the Result
Bitmap
To view statistics by comparing the baseline bitmap and the result bitmap:

Click Differences > Comparison Statistics. The Bitmap Comparison Statistics window opens.

Note: The number of colors is derived from the following formula: number of colors = 2 ^ (bits per
pixel).

Exiting from Scan Mode
To exit from the scan mode:

Click Differences > Scan. Exiting scan leaves the tool in zoom mode.

Running Tests and Interpreting Results | 499

Starting the Bitmap Tool
This section lists the locations from which you can start the Bitmap Tool.

Starting the Bitmap Tool from its Icon and Opening Bitmap Files
1. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Bitmap Tool or

(in Microsoft Windows 10) Start > Silk > Silk Test Bitmap Tool. The Bitmap Tool window displays.
2. Do one of the following:

Open an existing bitmap
file

Click File > Open and specify a file in the Open dialog box. See
Overview of Comparing Bitmaps.

Capture a new bitmap See Capturing a Bitmap in the Bitmap Tool.

Starting the Bitmap Tool from the Results File
When the verification of a bitmap fails in a test case, Silk Test Classic saves the actual result in a bitmap
file with the same name as the baseline bitmap but with the extension .rmp. So, if the bitmap file
testbase.bmp fails the comparison, Silk Test Classic names the result bitmap file testbase.rmp. It also
logs an error message in the results file.

Note: In some cases this error message does not reflect an actual error. In particular, when Silk Test
Classic compares a bitmap it captured with one captured in the Bitmap Tool, the comparison fails
because Silk Test Classic stores footer information in its bitmap. The bitmaps might in fact be identical
in all ways except for this information.

To compare the actual bitmap generated by the test case against the baseline bitmap generated by the
bitmap tool or one of Silk Test Classic’s built-in functions, click the box icon preceding the error message.

Silk Test Classic opens the bitmap tool, opens both the baseline bitmap, which is the expected bitmap as
a .bmp file, and the result bitmap, which is the actual bitmap as a .rmp file, creates a Results/View
Differences and places it in between the baseline bitmap and the result bitmap. The right portion of the
tool displays a three-paned Zoom window.

Starting the Bitmap Tool from the Run Dialog Box
1. Click Start > Run. The Run dialog box displays.
2. Type the pathname of the tool’s executable file and any parameters in the Command Line field and

click OK. The Bitmap Tool starts. Any bitmaps you specified on the command line are opened.
3. See Overview of Comparing bitmaps.
4. If you did not specify any files in the command line, go to the next step.

You can now open existing bitmaps created in Silk Test Classic or in the tool, or you can capture new
bitmaps.

5. Do one of the following:

Open an existing bitmap
file

Click File > Open and specify a file in the Open dialog box. See
Overview of Comparing Bitmaps.

Capture a new bitmap See Capturing a Bitmap in the Bitmap Tool.

Using Masks
A mask is a bitmap that you apply to the baseline and result bitmaps in order to exclude any part of a
bitmap from comparison by the Bitmap Tool. For example, if you are testing a custom object that is
painted on the screen and one part of the object is variable, you might want to create a mask to filter out
the variable part from the bitmap comparison.

500 | Running Tests and Interpreting Results

You might consider masking any differences that you decide are insignificant or that you know will vary in
an effort to avoid test case failure. For example, suppose a test case fails because one bitmap includes a
flashing area of a dialog box. In the Bitmap Tool you can block the flashing area from the two bitmaps by
creating and applying a mask to them. Once a mask is applied and the masked bitmaps are saved, the
mask becomes a permanent part of the baseline bitmaps you are comparing. Masks can also be saved in
separate files and used in test cases.

You can create a mask in two ways:

• By converting the Differences window to a mask. A mask created this way filters out all differences.
• By opening a new mask window and specifying rectangular areas to mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Prerequisites for the Masking Feature
Before using the masking feature, you must:

• Capture or open two bitmaps to compare. Set baselinesetbaseline and resultsetresult
bitmaps, if currently un-set.

• Determine which sections you need to mask. Use one or more comparison
featurescomparisoncmds, if necessary, to locate bitmap differences.

Applying a Mask
1. Open the mask bitmap file and click Bitmap > Set Mask.

2. Click Edit > Apply Mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Editing an Applied Mask
You can edit a mask after it has been applied:

• To add to the mask, place the mouse cursor in the baseline bitmap window at the position where you
want to begin adding to the mask. Click and drag the mouse cursor to outline a rectangle. Then release
the left mouse button.

• To delete part of the mask, place the mouse cursor in the baseline bitmap window at the position where
you want to begin deleting part of the mask. While pressing and holding the Shift key, drag the mouse
cursor over the area of the existing map that you want to delete, and then release the Shift key and the
left mouse button.

Creating and Applying a Mask that Excludes Some Differences or Just
Selected Areas
1. Click Edit > New Mask. The bitmap tool creates an empty Mask Bitmap child window that is the same

size as the baseline bitmap.

Running Tests and Interpreting Results | 501

2. Using the Differences window to help you locate differences, place the mouse cursor in the baseline
bitmap window at the position where you want to begin creating the mask. As you press and hold the
left mouse button, drag the mouse cursor to outline a rectangle. Then release the left mouse button.
The rectangular outline in the baseline map changes to a filled-in rectangle. The mask bitmap window
also contains a like-sized rectangle in the same relative location.

3. Repeat step the previous step until you have completed the mask.

4. If you want to delete a portion of the mask, place the mouse cursor in the baseline bitmap window at the
position where you want to begin editing. While pressing the Shift key and then the left mouse button,
drag the mouse cursor over the area of the existing map that you want to delete, and then release the
Shift key and the left mouse button.

The area of the mask overlapped by the rectangle outline disappears in both the baseline and mask
bitmap window.

5. Choose Edit > Apply Mask. The bitmap tool applies the mask to the result bitmap and closes the
Differences window.

6. Choose one of the following actions:

Keep the baseline and result
bitmaps with the mask applied

Save the bitmap files. The mask is now a permanent part of the
bitmap files.

Unapply the mask Close the mask bitmap window. Saving is optional.

Keep the mask as it is Save the mask file.

Edit the mask Choose File > Save and close the mask bitmap window. This
un-applies the mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Creating and Applying a Mask that Excludes All Differences

1. Click Differences > Show to open a Differences window, if one is not already open.

2. Click Differences > Convert to Mask. A message is displayed: Bitmaps are now identical on
screen.

3. Click OK.

The bitmap tool creates an untitled mask bitmap from the Differences window, swapping black and
white, and applies the mask to the baseline and result bitmaps.

4. Choose one of the following actions:

Keep the baseline and result
bitmaps with the mask applied

Save the bitmap files. The mask is now a permanent part of the
bitmap files.

Unapply the mask Close the mask bitmap window. Saving is optional.

Keep the mask as it is Save the mask file.

Edit the mask Choose File > Save and close the mask bitmap window. This
un-applies the mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you

502 | Running Tests and Interpreting Results

capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Saving a Mask
Masks can be saved in a file, applied to the baseline and result bitmaps for you to examine on screen only,
or applied to and saved in the baseline and result bitmap files. Once masks are applied and saved, they
become a permanent part of the baseline and result bitmaps. The advantage of saving the mask alone is
that later you can read in the mask file and apply it to the bitmap on screen, thus allowing you to keep the
bitmap in its original state.

You can supply the name of a mask bitmap file (as well as its associated baseline bitmap file) as an
argument to bitmap functions.

The Bitmap Tool supports the .msk file extension for mask files. Alternatively, you can designate a mask
in the file name and use the generic .bmp extension. We recommend, however, that you use the .msk
extension.

The following bitmap-related functions accept mask files as arguments:

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Analyzing Bitmaps for Differences
This section describes how you can analyze bitmaps for differences.

Scanning Bitmap Differences
To scan the differences between the baseline and result bitmaps:

Click Differences > Scan or Differences > Next. The tool indicates the location of the first difference it
finds by placing a square in the same relative location of the Baseline, Result, and Differences
windows. The three panes of the Zoom window also show the difference.

Showing Areas of Difference
The Show command creates a Differences window which is a child window containing a black-and-white
bitmap. Black represents areas with no differences and white represents areas with differences.

Graphically Show Areas of Difference Between a Baseline and a Result
Bitmap
To graphically show the differences between a baseline and a result bitmap:

Click Differences > Show. The Bitmap Tool displays a Differences window along with the source
baseline and result bitmaps from which it was derived.

Running Tests and Interpreting Results | 503

Moving to the Next or Previous Difference
You must first create a Differences window and a Zoom window using Differences > Show and
Differences > Zoom.

The Scan command on the Differences menu automates zoom mode and causes the bitmap tool to scan
for differences from left to right and top to bottom. When the first difference is found, a small square, 32 x
32 pixels, is shown in the Baseline Bitmap, Result Bitmap, and Differences Bitmap windows in the
same relative location. In addition, that location is shown in all three panes in the Zoom window.

Click Differences > Next or Differences > Previous.

Zooming in on the Differences
The Zoom command creates a special, not sizable, Zoom window with three panes and resizes and
stacks the Baseline, Differences, and Result windows.

• The top pane of the Zoom window contains a zoomed portion of the Baseline Bitmap window.
• The middle pane shows a zoomed portion of the Differences window.
• The bottom pane shows a zoomed portion of the Result Bitmap window.

All three zoomed portions show the same part of the bitmap. When you move the mouse within any of the
three windows, the bitmap tool generates a simultaneous and synchronized real-time display in all three
panes of the Zoom window.

While in scan mode, you can capture the Zoom window to examine a specific bitmap difference.

Working with Result Files
This section describes how you can use result files to interpret the results of your tests.

Attaching a Comment to a Result Set
You can attach comments to individual result sets to record useful information about the test run:

1. Open the result file.

2. Click Results > Select to display the Select Results dialog.

3. Select the result set to which you want to attach a comment.

4. Type the comment in the Comment text field at the bottom of the dialog. The comment displays in the
Comment column in the Select Results dialog.

5. Click OK.

Silk Test Classic displays the comments in the various dialogs that list results sets, such as the Extract
Results and Delete Results dialogs.

Comparing Result Files
The Compare Two Results command allows you to quickly note only the results that have changed from a
prior run without having to look at the same errors over again. The command identifies differences based
on the following criteria:

• A test passes in one test plan run and fails in the other.
• A test fails in both runs but the error is different.
• A test is executed in one test plan run but not in the other.

504 | Running Tests and Interpreting Results

Silk Test Classic uses the test descriptions as well as the test statements to identify and locate the various
cases in the test plan. Therefore, if you change the descriptions or statements between runs, Silk Test
Classic will not be able to find the test when you run Compare Two Results.

1. Open two results files.

2. Make the results set you want to compare to another results set the active window.

3. Choose Results > Compare Two Results.

4. On the Compare Two Results dialog, select a results set from the list box and click OK.

5. When the results set is displayed again, a colored arrow is positioned in the left margin for every test
that is different.

A red arrow indicates that the difference is due to the pass/fail state of the test changing.

A magenta arrow indicates that the difference is due to the addition or removal of the test in the
compared test run.

6. Click Results > Next Result Difference to search for the next difference or choose Results > Next
Error Difference to search for the next difference that is due to the change in a pass/fail state of a test.

Silk Test Classic uses the test descriptions as well as the script, testcase, and testdata statements to
identify and locate the various cases in the test plan and in the results set. When test results overlap in the
two results set that were merged, the more recent run is used. If you change a test description between
runs or modify the statements, Silk Test Classic might be unable to find the test when you try to merge
results. Silk Test Classic places these orphaned tests at the top of the results set.

Customizing results
You can modify the way that results appear in the results file as follows:

• Change the colors of elements in the results file
• Change the default number of results sets
• Display a different set of results
• Remove the unused space in a results file

You can also view an individual summary.

Deleting Results
You can use the Delete Results dialog box to delete results.

1. Click Results > Delete.

Note: This menu is only available when a results file is active.

Silk Test Classic displays the Delete Results dialog box.

2. Select the result that you want to delete from the list.

The most current results set displayed first.

3. Click OK.

Change the default number of result sets
1. Click Options > Runtime. The Runtime Options dialog box displays.

2. In the History Size field, change the number to the number of results files you want.

Note: By default, five result sets are kept.

Running Tests and Interpreting Results | 505

Changing the Colors of Elements In the Results File
1. In Silk Test Classic, click Options > Editor Colors to display the Editor Colors dialog.

2. Select an element from the Editor Item list box.

3. Select one of the 16 colors from the palette or modify the RGB values of the selected color. To modify
RGB value, select the color. Slide the bar to the left or right, click the spin buttons, or type specific RGB
values until you get the color you want.

4. When you are satisfied with the color, click OK.

To revert to the default colors, click Reset. By default, these results file elements are displayed in the
following colors:

Results file element Default color/icon

Error messages and
warnings

Red plus sign (bold on black-and-white monitor)

Warnings only Purple plus sign

Test descriptions of
executed tests

Dark blue

Test descriptions of
unexecuted tests

Grayed out

Other descriptive lines Black

Fix incorrect values in a script
1. Make the results file active.

2. Click Results > Update Expected Value.

3. Optionally, select Run > Testcase in order to run the test and confirm that it now passes. The expected
values in the script are replaced with the actual values found at runtime.

Marking Failed Test Cases
When a test plan results file shows test case failures, you might choose to fix and then rerun them one at a
time. You might also choose to rerun the failed test cases at a slower pace without debugging them to
watch their execution more carefully.

Make the results file active and click Results > Mark Failures in Plan.

All failed test cases are marked and the test plan is made the active file.

Merging Test Plan Results
You can use the Merge Results dialog box to merge another result into the active test-plan result file.

A results file consists of a series of results sets, one set for each test plan run. Merging such results sets is
useful when:

• Sections of the test plan are run separately, either by one person or by several people, and you need to
create a single report on the testing process. For example, let’s say that yesterday you ran a section of
the test plan consisting of 20 tests and today you ran a different section of the test plan consisting of 10
tests. The merged results set would have today's date and would consist of the results of 30 tests.

• A newer version of a test plan is updated with new tests or sub-plans and you want a single results set
to reflect the execution of the original test plan along with the additional tests or sub-plans. For example,
if yesterday you ran a test plan consisting of 20 tests and another test plan with 10 tests, and today you

506 | Running Tests and Interpreting Results

added the second test plan to the first test plan as a sub-plan, the merged results set of yesterdays runs
would have yesterday's date and would consist of the results of 30 tests.

1. Click Results > Merge.

Note: This command is only available in the menu when a results file produced by running a test-
plan is active in the editor.

The Merge Results dialog box appears.

2. Select the test plan result that you want to merge into the test plan results file. The selected result is
merged into the active test plan results file. The date and time of the altered results set reflect the more
recent test run.

Navigating to errors
To find and expand the next error or warning message in the results file, choose Edit > Find Error. To skip
warning messages and find error messages only, in the Runtime Options dialog, uncheck the check box
labeled Find Error stops at warnings.

You can also use the Find, Find Next, and Go to Line commands on the Edit menu to navigate through a
results file.

To expand an error message to reveal the cause of an error, click the red plus sign preceding the message.
In addition to the cause, you can see the call stack which is the list of 4Test functions executing at the time
the error occurred.

There are several ways to move from the results file to the actual error in the script:

• Double-click the margin next to an error line to go to the script file that contains the 4Test statement that
failed.

• Click an error message and choose Results > Goto Source.
• Click an error message and press Enter.

To navigate from a testplan test description in a results file to the actual test in the testplan, click the test
description and click Results > Goto Source.

Viewing an individual summary
1. Click a testcase line in a suite or script results file, or click a test description in a testplan results file.

2. Click Results > Show Summary.

Storing and Exporting Results
You can store and export results in the following ways:

• Store results in an unstructured ASCII format.
• Export results to a structured file for further manipulation.

Storing results
Silk Test Classic allows you to extract the information you want in an unstructured ASCII text format and
send it to a printer, store it in a file, or look at it in an editor window.

To store results in an unstructured ASCII format

1. Click Results > Extract.

2. In the Extract To group box on the Extract Results dialog, select the radio button for the destination of
the extracted output: Window (default), File, or Printer.

Running Tests and Interpreting Results | 507

3. In the Include group box, check one or more check boxes indicating which optional text, if any, to
extract. (This optional text is in addition to the output selected in the Expand group box.) The choices
are:

4. Select a radio button in the Expand group box indicating which units to extract information about. Select
Scripts, Scripts and Testcases (default), or Anything with Errors.

5. Select one or more results sets from the Results to Extract group box.

6. Click OK.

Extracting Results
Use the Extract Results dialog box to extract results in an unstructured ASCII text format.

1. Click Results > Extract. This menu is only available if the active file is a results file.

2. Select the destination of the extracted output.

• To view the extracted results in a new editor window, select Window.
• To store the extracted results in a new file, select File.
• To send the extracted results to a printer, select Printer.

The default setting is Window.

3. Select which information you want to extract.

• To extract only script information, select Scripts.
• To extract script and test case information, select Scripts and testcases.
• To extract all error information, select Anything with errors.

The default setting is Scripts and testcases.

4. Optional: Specify which optional text to extract.

• Check the Output text check box to extract the output of sprint statements.
• Check the Error text check box to extract text generated by the LogError and ExceptLog

functions.
• Check the Summary text check box to extract the description of which tests passed and failed and

the number of errors that were produced by failed tests.

5. Select the results that you want to extract from the Results to extract list.

To select more than one result, press Ctrl and click each file you want to extract. The default result is
the result that is currently displayed in the results window.

6. Click OK.

Exporting Results
You can use the Export Results dialog box to export your results to a structured file that is suitable for
further processing by an application, such as a spreadsheet.

Write header If checked, the following header information is included in the file: name of the results
file, which fields were exported, and how the fields were delimited. Default is checked.

Write paths
relative to
results file

If checked, the name of the directory and file that stores the results file is included in
the file. Silk Test Classic always assigns the extension .res to all results files.

Results to
export area

Specifies which results to export. Click to select the results you want exported. To
select more than one set, press the Ctrl key, then click each file you want to export.
Default is the set currently displayed in the results window.

508 | Running Tests and Interpreting Results

1. Click Results > Export.

This menu is only available when the active window is a results window.

The Export Results dialog appears.

2. Specify the file name.

The default path is based on the current directory and the default file name is based on the name of
the .res file. To select a file, click Browse and navigate to the file in the Export Results File Name
dialog box.

3. Optional: Check the corresponding check boxes in the Fields to export area to specify the fields that
you want to export to the file.

4. Optional: In the Export format area, specify how you want the fields delimited in the file.

The default is to comma delimit the fields and to put quotation marks around strings. Select Custom to
specify your own delimiters.

5. Optional: To include header information in the file, check the Write header check box.

Header information contains the name of the results file, which fields were exported, and how the fields
were delimited.

6. Optional: To include the directory and file that stores the results file in the file, check the Write paths
relative to the results file check box.

7. Select the results that you want to export from the Results to export list.

By default, the results set that is currently displayed in the results window is extracted.

8. Click OK. The information is saved in a delimited text file. You can import that file into an application that
can process delimited files, such as a spreadsheet.

Displaying a different set of results
1. Click Results > Select. Silk Test Classic displays the Select Results dialog with the most current

results set displayed first.

2. Select the set of results you want to see and click OK.

Removing the Unused Space from a Result File
1. Open a result file.

2. Click Results > Compact. The file size is reduced.

Logging Elapsed Time, Thread, and Machine
Information
Using the Runtime Options dialog box, you can specify that you want to log the elapsed time, the thread
number, and the current machine information during execution. This information is then written to the
results file where you can display and sort it. For example, if you encounter nested test cases in the results
files because you use multi-threading, check this check box to record thread number information in your
results file. Then, you can sort the lines in your results file by the thread numbers to better navigate within
the nested test cases.

1. Click Options > Runtime to open the Runtime Options dialog box.

2. In the Results area, check the log elapsed time, thread, and machine for each output line check
box.

3. Click OK.

Running Tests and Interpreting Results | 509

Debugging Test Scripts
Errors encountered during playback can be caused by a variety of factors, such as changes in the
application under test (AUT), improper test step flow, or environmental changes. Quickly diagnosing and
fixing these errors using debugging features minimizes test maintenance and allows a more efficient team
testing effort.

Silk Test Classic automatically raises an exception in response to many of errors or inconsistencies in your
scripts and your keyword-driven tests. However, some problems might cause a script or a keyword-driven
test to work in unexpected ways without generating an exception. To solve such problems, use the
debugger.

Debugging enables you to manage, examine, reset, or step through the actions in a script or keyword-
driven test. While debugging, you can specify breakpoints to stop the execution before or after a specific
action, and you can examine the values of any local and global variables. You can also enter expressions
to evaluate. This lets you identify exactly where an error might be occurring.

You can also use the debugger to find problems in your application under test (AUT). Use the debugging
facilities to step through the application and to determine the exact location where a problem occurs.

To start debugging, open the test script or the keyword-driven test script in the editor and click Run >
Debug in the Silk Test Classic menu. You can also click Debug in the toolbar.

The debugger enables you to view the results of your testing in the following ways:

• View the debugging transcript when you debug a script. For additional information, see Viewing the
Debugging Transcripts. Silk Test Classic records the error information and the output of any print
statements in the transcript instead of into a results file.

• Examine the debugging variables while you are debugging a test script. For additional information, see
Viewing Variables.

• View the call stack. The call stack is a description of all function calls that are currently active in the
script which you are debugging. By viewing the call stack, you can trace the flow of execution, which
might uncover errors generated by an erroneous flow of control in the script. To view the current call
stack, choose View > Call Stack in the Silk Test Classic menu. Silk Test Classic displays the call stack
in a new window. To return to the script being debugged, press F6 or choose View > Module and select
the script from the list.

You cannot use the debugger from plan (*.pln) files, however, you could call test cases from a main()
function and debug the test cases from there.

Note: You cannot modify files while you are using the debugger. To fix a problem in a file, stop the
debugger by clicking Debug > Exit in the Silk Test Classic menu.

Designing and Testing with Debugging in Mind
Designing and testing a script to facilitate debugging might significantly reduce test maintenance costs. The
following suggestions might help you create debuggable scripts:

• Plan for debugging and robustness when you are designing a script, by having your functions check for
valid input and output, and by performing operations in the script that inform you if a problem occurs.

• Test each function while you write it, by building it into a small script that calls the function with test
arguments and performs some functional validation. When you have finished the coding of a script, you
can use the debugger to step through the execution of each function in the script.

• To find errors in control loops, test each routine with the full range of valid data values, including the
highest and lowest valid values.

510 | Debugging Test Scripts

• Test each routine with invalid values to ensure that the routine rejects such values without crashing.
• Test each routine with null (empty) values. Depending on the purpose of the script, it might be useful to

provide default values if the input is incomplete.

Executing a Script in the Debugger
Once you have set one or more breakpoints in your test script or your keyword-driven test script, perform
the following actions to execute the script:

1. In the Silk Test Classic menu, click Debug > Run. Silk Test Classic executes the script until it reaches
the line in which the first breakpoint is located, until an error occurs, or until the script ends. A blue
arrow marks the line where Silk Test Classic stopped running the script.

2. Click Debug > Continue. Silk Test Classic executes the script until it reaches the line in which the first
breakpoint is located, until an error occurs, or until the script ends.

3. Perform the following actions as required:

• Click Debug > Step Into to execute the current line in the active script or in a file that is called by the
active script. This action is available only if the execution has stopped at a breakpoint. If the current
line contains a function call, control passes into the function and the execution stops at the first
statement in the function.

• Click Debug > Step Over to execute the current line of code in the active script or in a file that is
called by the active script, without stepping into any functions called by the current line. The
execution stops at the next statement. This action is available only if the execution has stopped at a
breakpoint.

• Click Debug > Run to Cursor to execute the script until the line containing the cursor.
• Click Debug > Finish Function to execute the script until the current function returns.

Debugging a Test Script
Start the debugger to debug your test scripts.

Note: You cannot modify files while you are using the debugger. To fix a problem in a file, stop the
debugger by clicking Debug > Exit in the Silk Test Classic menu.

1. To debug a script that is not currently active in the editor, click File > Debug.

• To debug the active script, click Run > Debug. Silk Test Classic enters the debugger and pauses
without setting a breakpoint.

• To debug a specific test case from the active script, click Run > Testcase. Then select a test a test
case from the Run Testcase dialog, and click Debug. Silk Test Classic enters the debugger and
sets a breakpoint at the first line of the test case.

• To debug an application state, click Run > Apllication State. Then select an application state from
the Run Application State dialog box, and click Debug. Silk Test Classic enters the debugger and
sets a breakpoint at the first line of the application state definition.

• To debug a plan file, call the test cases in the plan file from a main() function and debug the plan
file from there from there. You cannot use the debugger from plan files (*.pln).

2. If you want to debug a script that is not currently active in the editor, select the script file from the Debug
dialog box. Silk Test Classic enters the debugger and pauses without setting a breakpoint.

3. Click Open. Silk Test Classic performs the following actions:

• Opens the selected script file in debugging mode.
• Marks the current line, which is the next line to be executed, with a triangle.
• Changes the menu item from Run to Continue.

Debugging Test Scripts | 511

• When script execution completes, a message box displays indicating that the script has terminated.

During script execution, Silk Test Classic displays a transcript window, which is similar to the results
window. Unlike the results file, however, the output from debugging a script is not saved in a file, there are
no statistics, and all the information is expanded automatically. The transcript window contains the script
name, the test case names, and a list of the errors encountered and their line numbers. At the bottom of
the transcript window is a text field in which you can enter any statement to execute. The results of each
statement you execute appear in the transcript window.

Special debugging commands are available.

Debugger Menus
In debugging mode, the menu bar includes the following three additional menus:

• The commands in the Debug menu enable you to control the flow of the script.
• The commands in the Breakpoint menu enable you to add or remove breakpoints.
• The commands in the View menu enable you to view various elements of the running script, for

example local and global variables, the call stack, and breakpoints, and to evaluate expressions.

Stepping Into and Over Functions
To locate a bug in your code you can divide the script into discrete functions and debug each function
separately. One way to do this is with the following commands on the Debug menu:

Step Into Step through the function one line at a time, executing the current line in the active script or
in a file that is called by the active script. This action is available only if the execution has
stopped at a breakpoint. If the current line contains a function call, control passes into the
function and the execution stops at the first statement in the function.

Step Over Speed up debugging if you know a particular function is bug-free, executing the current line
of code in the active script or in a file that is called by the active script, without stepping into
any functions called by the current line. The execution stops at the next statement. This
action is available only if the execution has stopped at a breakpoint.

Finish
Function

Execute the script until the current function returns. Silk Test Classic sets the focus at the
line where the function returns. Try using Finish Function in combination with Step Into to
step into a function and then run it.

Working with Scripts During Debugging
To run the script you are
debugging

Click Debug > Run. The script runs until a breakpoint is hit, an error occurs,
or it terminates.

To reset a script Click Debug > Reset. This frees memory, frees all variables, and clears the
call stack. The focus will be at the first line of the script.

To stop execution of a
running script

Press Shift+Shift when running a script on the same machine or
choose Debug > Abort when running a script on a different machine.

Exiting the Debugger
You can leave the debugger whenever the execution is stopped.

To exit the debugger, click Debug > Exit in the Silk Test Classic menu.

512 | Debugging Test Scripts

Breakpoints
A breakpoint is a line in the script where execution stops so that you can check the script’s status. The
debugger lets you stop execution on any line by setting a breakpoint. A breakpoint is denoted as a large
red bullet.

One useful way to debug a script is to pause it with breakpoints, observe its behavior and check its state,
then restart it. This is useful when you are not sure what lines of code are causing a problem.

During debugging, you can:

• Set breakpoints on any executable line where you want to check the call stack.
• Examine the values in one or more variables.
• See what a script has done so far.

You cannot set breakpoints on blank lines or comment lines.

Setting Breakpoints
During debugging, you can set breakpoints on most lines in the script except for blank lines or comment
lines.

Setting a breakpoint on the first line of a function or test case

1. In the Silk Test Classic menu, click Breakpoint > Add.
2. Double-click a module name to list the functions, which are declared in the module, in the Function list.
3. Double-click a function name in the Function list to set a breakpoint on the first line of that function.

Setting a breakpoint on a line in a function or test case

Do one of the following:

• Double-click in the left margin of the line.
• Click on the line where you want to set a breakpoint, right-click, and select Toggle Breakpoint.
• Place the cursor on the line where you want to set a breakpoint and choose Breakpoint > Toggle in the

Silk Test Classic menu.

Setting a breakpoint on a specific line in a script

1. In the Silk Test Classic menu, click Breakpoint > Add.
2. In the Breakpoint field, type the number of the line on which you want to set a breakpoint. For example

entering 8 sets a breakpoint on the eighth line of the script.
3. Click OK.

Setting temporary breakpoints

Click Debug > Run To Cursor to set a temporary breakpoint, which is indicated by a hollow red circle in
the left margin of the line where the cursor is located. When the script is executed the next time in
debugging mode, the script execution stops at the marked line and the breakpoint is cleared.

Viewing Breakpoints
To view a list of all the breakpoints in a script, click View > Breakpoints.

Debugging Test Scripts | 513

Deleting Breakpoints
You can delete breakpoints in any of the following ways:

All breakpoints

1. Click Breakpoint > Delete All.
2. Click Yes.

An individual breakpoint

Place the cursor on the line where the breakpoint is set and click Breakpoint > Toggle .

or

Double-click in the left margin of the line

One or more breakpoints

1. Click Breakpoint > Delete.
2. Select one or more breakpoints from the list box and click OK.

Add Breakpoint Dialog Box
Use to add a breakpoint at any executable line of a function. This is available only in debugging mode.

Click Breakpoint > Add.

Breakpoint Type the name of a new breakpoint.

Module Displays all currently loaded scripts and include files. Click on an item from this list and a list
of the file’s functions and test cases display in the Function list.

Function Displays all functions and test cases from the module you selected at the Module field.
Select the function that you want to enter a breakpoint into.

Delete Breakpoint Dialog Box
Use the Delete Breakpoint dialog box to delete one or more breakpoints. This is available only in
debugging mode.

Click Breakpoint > Delete.

Breakpoints Lists all breakpoints from the current file by name. Select a breakpoint and then click OK to
delete it.

Breakpoint Dialog Box
Use to view breakpoints in the current script file. You must be in debug mode to access this option.

Click View > Breakpoints.

Viewing Variables
To view a list of all the local variables that are in scope (accessible) from the current line, including their
values, choose View > Local Variables.

514 | Debugging Test Scripts

To view a list of global variables, choose View > Global Variables. The variables and their values are listed
in a new window.

If a variable is uninitialized, it is labelled <unset>.

If a variable has a complex value, like an array, Silk Test Classic might need to display its result in collapsed
form. To expand or collapse the display, click View > Expand Data and View > Collapse Data in the Silk
Test Classic menu or double-click the plus (+) icon.

To return to the script being debugged, press F6 or choose View > Module and select the script from the
list.

Changing the Value of a Variable
To change the value of an active variable, select the variable and type its new value in the Set Value field.

While viewing variables, you can also change their values to test various scenarios.

When you resume execution, Silk Test Classic uses the new values.

Globals Dialog Box
Use to view all global variables that are in scope (accessible) from the current source line and their current
values. This is available only while Silk Test Classic is in debugging mode.

Click View > Global Variables.

Set Value Type a new value for the selected variable. A script must be running for the value to be
set.

List of
variables

Appears in alphabetical order. If a variable is uninitialized, Silk Test Classic labels it
<unset>. If a variable has a complex value, like an array, Silk Test Classic may display
its result in collapsed form.

Click View > Expand Data or View > Collapse Data to manipulate the display or double-
click on the plus/minus symbols.

Locals Dialog Box
Use the Locals window to view all local variables that are in scope (accessible) in the current function
declaration and their current values.

Click View > Local Variables.

You can set a new value for the variable in the Set Variable text field. This is available only while Silk Test
Classic is in debugging mode.

If a variable is uninitialized, it is labeled <unset>. If a variable has a complex value, like an array, its result
is displayed in collapsed form. Use View > Expand Data or View > Collapse Data to manipulate the
display, or double-click on the plus (+) and minus (-) symbols.

Expressions
If you type an identifier name, the result is the value which that variable currently has in the running script.
If you type a function name, the result is the value that the function returns. Any function that you specify
must return a value, and must be in scope at the current line.

Debugging Test Scripts | 515

Properties and methods for a class are valid in expressions, as long as the declaration for the class they
belong to is included in one of the modules used by the script being debugged.

If an expression evaluates to a complex value, like an array, Silk Test Classic might display its result in
collapsed form. To expand or collapse the display, click View > Expand Data and View > Collapse Data in
the Silk Test Classic menu or double-click the plus (+) icon.

When a script reaches a breakpoint, you can evaluate expressions.

Evaluating Expressions
You can use the Expressions window to evaluate an expression during debugging and to check the result.
A script must be running in order for the evaluation to occur.

1. Click View > Expression.

The View menu item is available only while Silk Test Classic is in debugging mode.

2. Type an expression into the input field in the top of the window.

• If you type an expression into the input field, the result is the value of that expression.
• If you type an variable name into the input field, the result is the value that the variable currently has

in the running script.
• If you type a function name into the input field, the result is the value that the function returns. Any

function that you specify must return a value, and must be in scope at the current line.

Properties and methods for a class are valid in expressions, as long as the declaration for the class they
belong to is included in one of the modules used by the script being debugged.

3. Press Enter. The Expression window displays the result of the evaluation directly beneath the
expression.

If an expression evaluates to a complex value, like an array, Silk Test Classic might display its result in
collapsed form. To expand or collapse the display, click View > Expand Data and View > Collapse Data in
the Silk Test Classic menu or double-click the plus (+) icon.

Enabling View Trace Listing
When you run a script, Silk Test Classic can record all the methods that the script invoked into a transcript.
Each entry in the transcript includes the method name and the arguments passed into the method. You can
use this information to debug the script, because you can see exactly which functions were actually called
by the running script.

1. Click Options > Runtime to display the Runtime Options dialog box.

2. Check the Print Agent Calls and the Print Tags with Agent Calls check boxes.

3. Run the script.

The transcript contains error information and the output from print statements, and additionally lists all
methods that are called by the script.

4. To check the agent trace during debugging, when execution pauses, click View > Transcript.

Viewing a List of Modules
1. Click View > Module. Silk Test Classic displays a list of modules in the View Module dialog. The list

includes all the modules loaded at startup, which means all modules which are loaded by
startup.inc, including winclass.inc, so that you can set breakpoints in functions, window class
declarations, and so on.

516 | Debugging Test Scripts

2. Double-click the name of a module to view the module in a debug window.

View Module Dialog Box
Use the View Module dialog box to view the modules used by the script being debugged. This is available
only while in debugging mode.

Click View > Modules.

Double-click on a module name to view it in a debugging window. The list includes all the modules that
loaded by startup.inc, so you can set breakpoints in GUI functions, classes, and so forth.

Viewing the Debugging Transcripts
To see the error information in the debugging transcripts during debugging:

1. Wait until the execution is stopped.
2. In the Silk Test Classic menu, click View > Transcript. Silk Test Classic displays the transcript in a new

window.
3. To save the contents of the transcript to a text file, choose File > Save.
4. To send commands to the application under test, use the Execute field in the Transcript window. Type

a valid command into the field and click Execute.
For example, you might want to print the value of a variable or the contents of a window.

Transcript Dialog Box
Use the Transcript dialog box to view the debugging transcript. This dialog contains the script name and
the test case names and lists error information, output from print commands, and all methods called by the
script. You must be in debug mode to access this option. The contents of the transcript window are not
written to disk. To save its contents to a text file, choose File > Save.

Click View > Transcript.

At the bottom of the transcript window is a text field in which you can enter any statement to execute. The
results of each statement you execute appear in the transcript window.

Call Stack Dialog Box
Use to view the current call stack. This is available only in debugging mode.

Click View > Call Stack.

Debugging Tips
This section provides tips that might help you in debugging your tests.

Checking the Precedence of Operators
The order in which 4Test applies operators when it evaluates an expression may not be what you expect.
To ensure that an expression works as expected, use parentheses or break the expression down into
intermediate steps. To evaluate an expression and to check the result of the expression, click View >
Expression in the Silk Test Classic menu.

Debugging Test Scripts | 517

Checking for Code that Never Executes
To check for code that never executes, step through the script with Debug > Step Into. For additional
information, see Stepping Into and Over Functions.

Global and Local Variables with the Same Name
It is usually not a good programming practice to give different variables the same names. If a global and a
local variable with the same name are in scope, which means accessible, at the same time, your code can
access only the local variable.

To check for identical names, click View > Local Variables and View > Global Variables in the Silk Test
Classic menu to see if two variables with the same name are in scope simultaneously.

Handling Global Variables with Unexpected Values
When you write a function that uses global variables, ensure that each variable has an appropriate value
when the function exits. If another function uses the same variable later, and the variable has an
unexpected value on entry to the function, an error could occur.

During debugging, to check that a variable has a reasonable value on entry to a function, set a breakpoint
on the line that calls the function and click View > Global Variables in the Silk Test Classic menu to check
the value of the variable.

Incorrect Usage of Break Statements
A break statement transfers control of the script out of the innermost nested for, for each, while,
switch, or select statement only. Break exits from a single loop level, not from multiple levels. To
ensure that the flow of control works as you expect, click Debug > Step Into in the Silk Test Classic menu
to step through the script one line at a time. For additional information, see Stepping Into and Over
Functions.

Incorrect Values for Loop Variables
When you write a for loop or a while loop, be sure that the initial, final, and step values for the variable
that controls the loop are correct. Incrementing a loop variable one time more or less than you really want
is a common source of errors.

To ensure that a control loop works as you expect, click Debug > Step Into in the Silk Test Classic menu to
step through the execution of the loop one statement at a time, and watch how the value of the loop
variable changes using View > Local Variables. See Stepping Into and Over Functions.

Infinite loops
To check for infinite loops, click Debug > Step Into in the Silk Test Classic menu to step through the script
one line at a time. For additional information, see Stepping Into and Over Functions.

Typographical Errors
It is easy to make typographical errors that the 4Test compiler cannot catch. If a line of code does nothing,
a typographical error might be the problem.

518 | Debugging Test Scripts

Uninitialized Variables
Silk Test Classic does not initialize variables for you. So if you have not initialized a variable on entry to a
function, it will have the value <unset>. It is better to explicitly give a value to a variable than to trust that
another function has already initialized it for you. Also, 4Test does not keep local variables after a function
exits. The next time the function is called, the local variables could be uninitialized.

If you are in doubt about whether a variable has a reasonable value at a particular point, set a breakpoint
there and click View > Global Variables or ViewLocal Variables in the Silk Test Classic menu to check
the value of the variable.

Debugging Test Scripts | 519

Setting Silk Test Classic Options
This section describes the Silk Test Classic options.

Setting General Options
You can use the general options to configure aspects of the general system behavior, such as the editor
and your workspace. Options that you set in the General Options dialog box are written to the
partner.ini file.

1. Click Options > General. The General Options dialog box appears.

2. Check the Create backups check box to create a backup file each time you save a file.

The backup file has an underscore _ appended to the extension. By default, this check box is checked.

3. Check the Show full path check box to see the full path of files in Silk Test Classic.

This option is useful if you have a complex directory structure, or if you work from both local and
network copies. By default, this check box is checked.

4. Check the Save files before running check box so that all open modified files are written to disk before
executing a script, suite, or test plan.

By default, this check box is checked. If you uncheck the check box, only the modified script, suite, or
test plan is written to disk before running it.

5. From the Save outline list, select in which state outline files are saved.

Outline files include .pln, .inc, .t, and .g.t files.

6. In the Width of tabs field, specify the number of spaces in a tab stop.

The default is 4 spaces.

7. Check the Show toolbar check box to display the toolbar.

By default, this check box is checked.

8. Check the Show toolbar tips check box to display a on-screen description of a toolbar button (ToolTip)
when you place the mouse cursor over the button.

Silk Test Classic uses the standard Windows mechanism for displaying ToolTips. You can customize the
appearance of the ToolTips by using the standard Windows Display Properties dialog box. By default,
this check box is checked.

9. In the Project history size field, specify the number of recent projects to display on the File menu.

You can specify an integer from 0 to 4. The default size is 4.

10.In the File history size field, specify the number of recent file actions to display on the File menu.

You can specify an integer from 0 to 9. The default size is 9.

11.Specify the extensions for include files in the Include file extensions field.

Separate the extensions with a space. Files with other extensions are treated like text files, and are
displayed in the text editor only. The default include file extensions are inc, lib, and opt.

12.Check the Prefer Locator check box to use locators to resolve the window declaration, whenever both
locators and tags are present.

By default, this check box is checked.

13.In the Data file for attributes and queries field, specify the default path for the test-plan initialization
file.

Specify the full path and file name. The file extension is arbitrary. The default test-plan initialization file is
testplan.ini.

520 | Setting Silk Test Classic Options

Note: You can only specify one data file for attributes and queries at a time.

14.In the Help files for library browser field, specify the files that Silk Test Classic should use to compile
its help file (4test.hlp) for the Library Browser. Separate the entries with a comma. The default file
is 4test.txt, which includes information for all the built-in classes and functions.

15.To disable saving object files during compilation, uncheck all check boxes in the Auto-Complete area
as well as the Save object files during compilation check box on the Runtime Options dialog box.

a) Check the Function tip check box to display the function signature in a tooltip whenever you type an
open parenthesis (after a function, test case, or method in a 4Test file.

The function signature includes the return argument type, the pass-mode, the data type, the names
of any arguments, and any optional attributes that are defined. The first argument is highlighted in
bold text. As you enter each argument and then type a comma, the next argument that you are
expected to type is highlighted. The expected argument is always indicated with bold text; for
example, if you backspace or delete an argument within your function, the expected argument is
updated accordingly in the function tip.

b) Check the Member list check box to display the members from which you can select when you type
a period "." after a member name in a 4Test file.

The members that you see in the MemberList are dependant upon the MemberList Options that
you have selected.

c) Check the Datatype list check box to display the list of the built-in and user-defined non-winclass
types whenever you type the keyword of after a list, an array [], or a varargs; for example, list
of.

d) Check the Appstate list check box to display a list of the currently defined application states when
you type the keyword appstate as part of a test case declaration; for example testcase foo ()
appstate.

16.Specify how much detail appears in your MemberList by selecting the inheritance level from the
Inheritance Level list.

• Select Below AnyWin Class to display methods for any class derived from the AnyWin class. This
is the default inheritance level.

Note: Methods that are defined in and above the AnyWin class, such as Click and Exist,
which are defined in the Winclass, are not displayed in the MemberList.

• Select All to display the complete inheritance for members all the way up through AnyWin and the
control classes, including the Winclass.

• Select None to display only the members that are defined in the class of the current object and
window declaration.

17.Specify which members are displayed in your MemberList by checking the corresponding check boxes.

a) Check the Show methods check box to display all methods that are defined in the referenced .t,
and .inc files.

Methods are indicated in the Memberlist with a red icon.
b) Check the Show window children check box to display all window objects of type WINDOW that

are defined in window declarations in the referenced .t and .inc files.

Works with the parent statement, the with statement, and the this keyword. Window children are
indicated in the Memberlist with a yellow icon.

c) Check the Show properties check box to display all properties that are defined in the
referenced .t, and .inc files.

Properties are indicated in the Memberlist with a blue icon.
d) Check the Show variables check box to display all variables that are defined in the referenced .t

and .inc files, including native data types, data, and records.

Fields defined for records and nested records are also displayed. Variables and fields are indicated
in the Memberlist with a red icon.

Setting Silk Test Classic Options | 521

e) Check the Show membertype check box to display attributes for the selected members, such as the
class for window children, the data type for properties and variables, and the return type for method
functions.

By default, this check box is unchecked.

18.Click OK.

Setting the Editor Font
You can use the Editor Font dialog box to select a screen font in the family, size, and style of your choice.

1. Click Options > Editor Font. The Editor Font dialog box appears.

2. Select a font family from the Font list.

The default font is Courier.

3. Select a style for the selected font from the Font style list.

The default font style is Regular.

4. Select a point size for the selected font from the Size list.

5. Click OK. Silk Test Classic changes the font family, size, and style for all open windows.

While you make your selections, the Sample displays a line of text in the selected font family, style, and
point size.

Setting the Editor Colors
You can use the Editor Colors dialog box to set the screen colors for various elements of 4Test code,
results information, and the test plan, if available. You can select any of the provided screen colors or
create your own color by modifying the RGB values of these colors.

Reset Click to revert to the default colors.

Text background Enables you to set the background color for all editor windows (.inc, .pln, .res, .t,). The
default value for Text background is white.

1. Click Options > Editor Colors. The Editor Colors dialog box appears.

2. Select the editor item, the color of which you want to change, from the Editor item list.

You can change the colors of the following items:

• 4Test strings
• 4Test numbers
• 4Test keywords
• 4Test comments
• 4Test other
• Results summary
• Results output
• Results errors
• Results warnings
• Results not executed
• Results other
• Testplan test description
• Testplan statements
• Testplan comments
• Testplan other

522 | Setting Silk Test Classic Options

• Difference text changed
• Difference text added
• Difference text deleted
• Difference text other
• Text background

3. Select the new color for the item.

4. To change the RGB values of the selected color, slide the corresponding bars to the left or right, click
the corresponding spin buttons, or type the value into the corresponding fields.

5. Optional: Click Reset to revert to the default colors.

6. Click OK.

Runtime Options Dialog Box
Use this dialog box to specify settings that Silk Test Classic uses when it runs a script.

Click Options > Runtime.

4Test area

Agent name Specifies the name of the agent on the target machine, that is, the machine on which you
want to run a script or suite. Specify a value only if you want to run your script on a
machine other than the host machine.

Network If you are testing applications across a network, select either TCP/IP or NetBIOS as the
networking protocol to use. If you choose the Open Agent as the default agent, only
TCP/IP is available.

Default Agent Specifies which agent, the Classic Agent or the Open Agent, to use by default. For
example, if your test cases target an Apache Flex environment, specify the Open Agent
as the default agent. For projects created prior to Silk Test Classic 2008, the Classic
Agent is selected by default. You can change the agent if necessary.

Arguments Specifies the arguments, if any, that you want to pass to the script at runtime. Separate
multiple arguments with spaces. For example, suppose your script takes two arguments:
the number of iterations to perform and the name of a test data file. In this case, you
would enter 5 test1.dat.

Use path Specifies one or more paths along which Silk Test Classic searches for include files.
Include files can be named in the Use files field or in a script’s use statement. If you
specify a path, Silk Test Classic searches the current directory and then each of the
directories in the path named here. If you do not specify a search path, Silk Test Classic
searches the current directory only. The syntax for a path is the same as that used by the
native operating system. By default, the Use path is set to c:\Program Files\Silk
\<SilkTest install directory>. Click Browse to select an additional include
path. The Use path field contains a maximum of 1024 characters. Silk Test Classic
displays the first 256 characters of a directory. The 257th character is truncated.

Use files Specifies the names of one or more include files for Silk Test Classic to automatically
load at startup. Do not specify files in this field if you intend to include a use statement for
the files in a script. Type the file names as you would type any other operating system
path. You can use an absolute path or a relative path. However, it is recommended that
you use a relative path. For example, to include the Java SWT extensions for the Open
Agent, the relative path is extend\JavaSWT\JavaSWT.inc. Click Browse to select an
additional include file. The Use files field contains a maximum of 1024 characters. Silk
Test Classic displays the first 256 characters of a directory. The 257th character is

Setting Silk Test Classic Options | 523

truncated. When you enable extensions or configure an application, Silk Test Classic
adds an include file based on the technology or browser type that you enable to the Use
files box. For extensions that use the Open Agent, Silk Test Classic names the include
file <technology_type>.inc. For instance, if you configure an Apache Flex
application, a file named flex.inc is added. If you configure a Web application for a
Internet Explorer browser, Silk Test Classic adds the explorer.inc file. Extensions
that use technologies on the Classic Agent are located in the directory C:\Users
\<Current user>\Documents\Silk Test Classic Projects\<Project
name>\extend\. Technology domains that use the Open Agent are located in the
directory C:\Users\<Current user>\Documents\Silk Test Classic
Projects\<Project name>\extend\<technology type>.

Object
filepath

Specifies the location from which Silk Test Classic reads and writes object files. Leave
the field empty if you want to store object files in the same directory as their
corresponding source files, specify an absolute path if you want to store all object files in
the same directory, or specify a relative path if you want object files to be stored in a
directory relative to the directory containing the source files.

GUI targets Specifies the platforms for which you want to compile your scripts and include files (using
conditional compilation). You can specify as many GUI targets as you want; separate
each GUI specifier with a comma. You use this field when doing distributed testing with
multiple platforms; if networking is disabled, then the field is ignored. Silk Test Classic
implicitly includes the local host GUI type.

Default
Browser

Specifies the Web browser to use when testing Web applications. Make sure the
extension with which you are testing appears in the Default Browser field.

Save object
files during
compilation

Creates an object file from a script or include file when it is compiled. (An object file is
always created for a script or include file when it is saved.) The default is checked.
Checking this option will minimize compilation time for features such as Auto-Complete
and Projects, which rely on frequent compilation.

To disable saving object files during compilation, the Auto-Complete options on the
General Options dialog box as well as this option need to be unchecked.

Compiler
constants

Opens the Compiler Constants dialog box, where you can define constants and assign
values to them. You can use the defined constants in scripts and include files anywhere
you can specify an expression. Constants are evaluated and replaced with their values at
compile time. To define a constant, specify its name in the Constant Name field and its
value in the Value field, then click Add. You can edit or delete an existing constant by
selecting it and clicking Edit or Remove.

Results area

Directory/File Specifies the name of the directory, or the name of the directory and file that stores the
results of script runs. Silk Test Classic always assigns the extension .res to all results
files. If you supply a different extension, Silk Test Classic will override it. If you leave the
field empty (the default), Silk Test Classic gives the results file the same name as the
script and stores it in the same directory as the script. If you supply only a directory
name, Silk Test Classic gives the results file the same name as the script and stores it
in the directory you specify.

Note: If you provide a local or remote path in this field, the path cannot be
validated until script execution time. Silk Test Classic can only validate the path
when the script is executing.

History size Specifies an integer representing how many sets of results to keep for a script. Once
this number is reached, Silk Test Classic automatically deletes the oldest set of results
each time it generates new results. A value of 0 saves all results files. Default is 5.

524 | Setting Silk Test Classic Options

Write to disk
after each line

If checked, writes the results file to disk whenever the script generates output, as in the
case of a print statement. Selecting this option ensures that in the event of system
failure, Silk Test Classic will produce a results file containing output up to the time of
system failure. The disadvantage of selecting this option is that file I/O slows down
script execution. By default, this check box is checked.

Find Error
stops at
warning

If checked, the Edit > Find Error menu option locates error messages and warnings in
results files. Otherwise, the command locates error messages only. By default, this
check box is checked.

Show overall
summary

If checked, displays the summary of results for the entire script, suite, or test plan,
including the start and elapsed time of execution, and the total number of errors and
warnings. By default, this check box is checked.

Log elapsed
time, thread,
and machine
for each output
line

If checked, records this information in the results file for each line that is written. Default
is unchecked. To view this information, make the results file active, then choose
Results > View Options and check Elapsed time, Thread number, or Current
machine.

Execution area

Minimize while
running

If checked, Silk Test Classic runs minimized while you run a script, suite, or test plan. By
default, this check box is unchecked.

Show detailed
status window

If checked, Silk Test Classic displays the Runtime Status window while you are running
a script or suite when Silk Test Classic is not minimized. By default, this check box is
checked.

Save status
window
position

If checked, Silk Test Classic remembers the position and size of the Runtime Status
window if you change it during script execution. The next time you run a script, the
Runtime Status window appears in the new position and/or the new size. Default is
unchecked, in which case the Runtime Status window always comes up in the same
location and as the default size.

Animated Run
Mode (Slow-
Motion)

If checked, Silk Test Classic waits one second after each interaction with the application
under test is executed. Typically, you will only use this check box if you want to watch the
test case run. For instance, if you want to demonstrate a test case to someone else, you
might want to check this check box. You can set this check box in the Run Testcase
dialog box also, which enables you to enable or disable animated run mode each time
you run a test case. When you enable or disable Animated Run Mode in the Run
Testcase dialog box, Silk Test Classic makes the same change in the Runtime Options
dialog box. Likewise, when you enable or disable animated run mode in the Runtime
Options dialog box, Silk Test Classic makes the same change in the Run Testcase
dialog box. Executions of the default base state and functions that include one of the
following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

Setting Silk Test Classic Options | 525

• Sleep

Debugging area

Print agent
calls

If checked, specifies whether or not you want the results file for each test run to include a
list of all method calls made by your script. Each entry includes the method name and the
arguments passed to it. This is a useful feature for debugging because it tells you exactly
which methods were actually called by the running program. By default, this check box is
unchecked.

Print tags
with agent
calls

If checked and Print agent calls is also checked, includes tags with the method calls in
your results files. By default, this check box is unchecked.

Compiler Constants Dialog Box
Use to define constants and assign values to them. You can use the defined constants in scripts and
include files anywhere you can specify an expression. Constants are evaluated and replaced with their
values at compile time.

Click Options > Runtime Options and then click Compiler Constants.

Constant Name
and Value

Displays the list of defined constants and the values associated with them.

Constant Name Type the name of the constant you want to add to the list.

Value Type the value of the constant you specified in the Constant Name box.

Edit Click to modify the constant you selected from the Constant Name and Value box.
You must select a constant from the list before the Edit button is available.

Remove Click to delete the constant you selected from the Constant Name and Value box. You
must select a constant from the list before the Remove button is available.

Add Specify a Constant Name and Value in the appropriate boxes and then click Add to
add the new constant to the list.

Agent Options Dialog Box
Use to set global options for how the agent interacts with the application under test. Options you specify
within the tabs are saved in the partner.ini file. If you work on multiple projects, you might want to have
a custom set of agent options for each project. To do this, save your options in a file with a name other than
partner.ini.

Click Options > Agent.

Any option you set in the Agent Options dialog box can be changed by the same option set to a different
value within a script.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

526 | Setting Silk Test Classic Options

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option, and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click Copy to Clipboard to copy the statement to the clipboard.

Timing Tab
The Timing tab is available on the Agent Options dialog box and contains the following options:

Window timeout
(seconds)

Specifies the number of seconds Silk Test Classic waits for a window to appear and be
in the correct state. If a window does not appear in the correct state within the
specified timeout, Silk Test Classic raises an exception. The correct state of the
window depends on how you set the options on the Verification tab, which determine
whether Silk Test Classic checks whether a window is enabled, active, exposed, or
unique. Default is 5 seconds, unless you have enabled enhanced support for Visual
Basic, in which case the default is 20 seconds for 32-bit applications.

Window retry
interval
(seconds)

Specifies the number of seconds Silk Test Classic waits between attempts to verify a
window, if the window does not exist or is in the incorrect state. Silk Test Classic
continues trying to find the window until the time specified by the Window timeout
option is reached. The correct state of the window depends on how you set the options
on the Verification tab, which determine whether or not Silk Test Classic checks
whether a window is enabled, active, exposed, or unique. Default is 0.06 seconds.

Keyboard event
delay (seconds)

Specifies the delay used before each keystroke in a script. Default is 0.02 seconds.
You can specify a number in increments of .001 from .001 to 999.999 seconds,
inclusive.

Setting a keyboard event delay is necessary only if objects seem not to be recognized.
This often appears as a win.SetActive() being executed before the action to
display the window or the wrong window may be made active. The amount you may
need to adjust the timing depends upon the speed of the machine you are working on
and the application that you are testing. We recommend starting with a delay of .001
and incrementing only by .001 if necessary.

Setting this value to .001 is necessary only for client/server application testing – if you
are testing a Web application, a setting of .001 radically slows down the browser.
However, setting this to 0 (zero) may cause basic application testing to fail.

Mouse event
delay (seconds)

Specifies the delay used after each mouse event (when the mouse is moved to an
object) in a script. The delay affects moving the mouse, pressing buttons, and
releasing buttons. Default is 0.02 seconds.

Application
ready timeout
(seconds)

Specifies the number of seconds that the agent waits for an application to become
ready. If the application is not ready within the specified timeout, Silk Test Classic
raises an exception. Default is 10 seconds. This option applies only if the application or
extension knows how to communicate to the agent that it is ready. To find out whether
the extension has this capability, see the documentation that comes with the extension.
To require the agent to confirm the ready state of an application, select the Verify That
an Application is Ready (Requires an Extension) check box on the Verification tab.

Application
ready retry
interval
(seconds)

Specifies the number of seconds Silk Test Classic waits between attempts to verify
that an application is ready. Silk Test Classic continues to test the application for
readiness if it is not ready until the time specified by the Application ready timeout
option is reached. Default is 0.1 seconds.

Timeout to wait
for active

This functionality is supported only if you are using the Classic Agent. For additional
information, refer to the Silk Test Classic Classic Agent Help.

Setting Silk Test Classic Options | 527

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

window
(seconds)

Enter the maximum time, in seconds, to wait for a window to become active.

Retry interval to
wait for active
window
(seconds)

This functionality is supported only if you are using the Classic Agent. For additional
information, refer to the Silk Test Classic Classic Agent Help.

Enter the maximum time, in seconds, to wait for a window to become active before
trying to verify the object again.

Timeout to wait
for an enabled
window
(seconds)

Enter the maximum time, in seconds, to wait for a window to become enabled.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Verification Tab
The Verification tab is available on the Agent Options dialog box and contains the following options:

Verify that windows are
active

If checked, verifies that windows are active before interacting with them.
Default is checked.

Verify that windows are
enabled

If checked, verifies that windows are enabled before interacting with them.
Default is checked.

Verify that windows are
exposed

If checked, verifies that windows are exposed (that is, not covered, obscured,
or logically hidden by another window) before interacting with them. Default is
checked.

Verify that a tag
uniquely identifies a
window

If checked, verifies that each tag used by the script matches only one window.
Default is checked.

Verify that coordinates
passed to a method are
inside the window

If checked, verifies that the coordinates, passed to a method, are inside the
window before the mouse is pressed. If checked and coordinates fall outside
the window, Silk Test Classic raises the E_COORD_OUTSIDE_WINDOW
exception. Typically, you use the checking feature unless you need to be able
to pass coordinates outside of the window, such as negative coordinates.

Note: The MoveMouse, PressMouse, and ReleaseMouse methods
never verify their coordinates. Default is checked.

Verify the class tag for
methods of class
Control

If checked, verifies that objects are of the specified type before interacting with
them. This option is unchecked and disabled.

528 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Verify that an
application is ready
(requires an extension)

If checked, synchronizes the agent with the application under test. Calls made
to the agent will not proceed until the application is ready. This option applies
only if you have an extension enabled in the Extensions dialog box. Default is
checked.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Close Tab
The Close tab is available from the Agent Options dialog box and contains the following options:

List of buttons used
to close a window

Specifies a list of strings representing the list of buttons used to close windows
closed with the Close, CloseWindows, and Exit methods. The preferred way
to specify these buttons is with the lsCloseWindowButtons variable in the
object’s declaration. Default is Cancel, Close, Exit, Done. If the UI of the
application is localized, you need to replace the strings with the localized strings.

Keystrokes used to
close a dialog box
window

Specifies a list of strings representing the keystroke sequence used to close
dialog boxes (used by Close, CloseWindows, and Exit). The preferred way
to specify this keystroke sequence is with the lsCloseDialogKeys variable in the
object’s declaration. Default is <Esc>.

List of menus used to
close a window

Specifies a list of strings representing the list of menu items used to close
windows with Close, CloseWindows, and Exit. The preferred way to specify
these menu items is with the lsCloseWindowMenus variable in the object’s
declaration. Default is File/Exit*, File/Quit*.

List of buttons used
to close a
confirmation window

Specifies a list of strings representing the list of buttons used to close
confirmation dialog boxes, which means dialog boxes or message boxes that
appear when closing windows with the Close, CloseWindows, and Exit
methods. The preferred way to specify these buttons is with the
lsCloseConfirmButtons variable in the object’s declaration. Default is No.

Name of Close item
on system menu

Specifies a list of strings representing the list of menu items on the system menu
used to close windows with the Close, CloseWindows, and Exit methods.
Default is Close.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

Setting Silk Test Classic Options | 529

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Bitmap Tab
The Bitmap tab is available from the Agent Options dialog box and contains the following options:

Bitmap
match count

Specifies an integer representing the number of consecutive snapshots that must be the
same for the bitmap to be considered stable. Snapshots are taken up to the number of
seconds specified by the Bitmap match timeout option, with a pause specified by Bitmap
match interval occurring between each snapshot. This option affects the
CaptureBitmap, GetBitmapCRC, VerifyBitmap, and WaitBitmap methods. Default
is 5.

Bitmap
match
interval
(seconds)

Specifies a number representing the time interval between snapshots to use for ensuring
the stability of the bitmap image. The snapshots are taken up to the time specified by the
Bitmap match timeout option. This option affects the CaptureBitmap, GetBitmapCRC,
VerifyBitmap, and WaitBitmap methods. Default is 0.1 seconds.

Bitmap
match
timeout
(seconds)

Specifies a number representing the total time allowed for a bitmap image to become
stable. During the time period, Silk Test Classic takes multiple snapshots of the image,
waiting the number of seconds specified by the Bitmap match interval option between
snapshots. If the timeout period is reached before the number of bitmaps specified by the
match count option, Silk Test Classic stops taking snapshots and raises the exception
E_BITMAP_NOT_STABLE. This option affects the CaptureBitmap, GetBitmapCRC,
VerifyBitmap, and WaitBitmap methods. Default is 5 seconds.

Bitmap
compare
tolerance
(pixels)

Specifies an integer representing the number of pixels of difference below which two
bitmaps are considered to match. If the number of pixels that are different is smaller than
the number specified with this option, the bitmaps are considered identical. The maximum
tolerance is 32,767 pixels. The bitmap pixel tolerance is used by the VerifyBitmap and
WaitBitmap methods, as well as the SYS_ CompareBitmap function. Default is 0
pixels.

You can also get and set bitmap options using the GetOption and SetOption methods.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

530 | Setting Silk Test Classic Options

Bitmap Agent Options
The following table lists the agent options which determine the behavior of bitmap verification.

Option Description

opt_bitmap_match_count The number of successive snapshots that must be the same for the bitmap to be
considered stable.

opt_bitmap_match_interv
al

The time interval between snapshots to use for ensuring the stability of the image.

opt_bitmap_match_timeo
ut

The total time allowed for a bitmap to become stable.

opt:bitmap_pixel_toleran
ce

The number of pixels that is allowed to be different for two bitmaps to be considered
equivalent.

To set these options globally for a group of scripts, use the Agent Options dialog box. To set these options
locally within a script or test case, use the SetOption method. For example:

Agent.SetOption (OPT_BITMAP_MATCH_COUNT, 3)

Synchronization Tab
This functionality is supported only if you are using the Open Agent.

The Synchronization tab is available on the Agent Options dialog box contains the following options:

Synchronization
mode

Select the synchronization algorithm for the ready state of a Web application. The
synchronization algorithm configures the waiting period for the ready state of an
invoke call.

HTML
mode

Using the HTML mode ensures that all HTML documents are in an
interactive state. With this mode, you can test simple web pages. If
more complex scenarios with Java script are used, it might be
necessary to manually script synchronization functions.

AJAX
mode

Using the AJAX mode eliminates the need to manually script
synchronization functions (such as wait for objects to appear or
disappear, wait for a specific property value, and so on), which eases
the script creation process dramatically. This automatic synchronization
is also the base for a successful record and replay approach without
manual script adoptions.

Synchronization
timeout (seconds)

Enter the maximum time, in seconds, to wait for an object to be ready.

Synchronization
exclude list

Type the entire URL or a fragment of the URL for any service or Web page that you
want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which
are permanently open in order to retrieve asynchronous data from the server. These
requests may let the synchronization hang until the specified synchronization
timeout expires. To prevent this situation, either use the HTML synchronization
mode or specify the URL of the problematic request in the Synchronization exclude
list setting.

For example, if your web application uses a widget that displays the server time by
polling data from the client, permanent traffic is sent to the server for this widget. To

Setting Silk Test Classic Options | 531

exclude this service from the synchronization, determine what the service URL is
and enter it in the exclusion list.

For example, you might type:

http://example.com/syncsample/timeService
timeService
UICallBackServiceHandler

Separate multiple entries with a comma.

If your application uses only one service, and you want to disable that service for
testing, you must use the HTML synchronization mode rather than adding the
service URL to the exclusion list.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Setting Advanced Options
Set advanced options to enable fallback support, to specify whether locator attribute names should be case
sensitive, and so on.

1. Click Options > Agent. The Agent Options dialog box opens.

2. Click the Advanced tab. The Advanced Options page displays.

3. To test an embedded Chrome application, specify the executable and the port as a value pair in the
Enable embedded Chrome support field.
For example, myApp.exe=9222.

To specify multiple embedded Chrome applications, separate the value pairs with a comma.

4. Enable Fallback support for web views on Android and iOS to enable the mobile native fallback
support for hybrid mobile applications that are not testable with the default browser support.

5. Enable Microsoft Accessibility to enable Microsoft Accessibility in addition to the normal Win32
control recognition.

6. Enable Remove focus on capture text to remove the focus from the window before capturing a text.

A text capture is performed during recording and replay by the following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

7. Enable Match locator attribute values case sensitive to set locator attribute names to be case
sensitive. The names of locator attributes for mobile web applications are always case insensitive, and
this option is ignored when recording or replaying mobile web applications.

532 | Setting Silk Test Classic Options

8. Click OK.

Other Tab
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Other tab is available on the Agent Options dialog box and contains the following options:

Tolerance to use
when sizing
windows (pixels)

Specifies an integer representing the number of pixels allowed for a tolerance
when a resized window does not end at the specified size. For some windows
and GUIs, you can’t always resize the window to the particular size specified. If
the ending size is not exactly what was specified and the difference between the
expected and actual sizes is greater than the tolerance, Silk Test Classic raises
an exception. Windows cannot be sized smaller than will fit comfortably with the
title bar. Default is 0 pixels.

Tolerance to use
when moving
windows (pixels)

Specifies an integer representing the number of pixels allowed for a tolerance
when a moved window does not end up at the specified position. For some
windows and GUIs, you can’t always move the window to the particular pixel
specified. If the ending position is not exactly what was specified and the
difference between the expected and actual positions is greater than the
tolerance, Silk Test Classic raises an exception.

The tolerance can be set through the Control Panel, by setting the desktop
window granularity option. If the granularity is zero, you can place a window at
any pixel location. If the granularity is greater than zero, the desktop is split into a
grid of the specified pixels in width, determining where a window can be placed.
In general, the tolerance should be greater than or equal to the granularity.
Default is 0 pixels.

Events used to
invoke popup menus

Specifies a string, which is the command (keystrokes or mouse buttons) used to
display pop-up menus. To use mouse buttons, specify <button1>,
<button2>, or <button3> in the command sequence. Default is
<Button2><Up><Down>. If you are testing Java applications or applets, we
recommended that you set this options to <Button2>.

Pick menus before
getting menu item
information

If checked, picks the menu before checking whether an item on it exists, is
enabled, or is checked. You might see menus pop up on the screen even though
your script does not explicitly call the Pick method. Default is unchecked.

Pick dropdowns
before getting item
information

If checked, drops down the combo box before trying to access the contents. This
is usually not needed, but some combo boxes only get populated after they are
dropped down. Check this option if you are having problems getting the contents
of a combo box, such as the Location combo box in Internet Explorer. Default is
unchecked.

Consider case when
matching items in
controls

Check this option to consider case when looking for an item in a control. Default
is unchecked.

Show windows
which are out of
view

If checked, allows controls that are not currently scrolled into view to be seen by
the agent. This option is useful for testing Web applications. If unchecked,
controls not currently in view are invisible. Default is checked.

Automatically scroll
windows into view

If checked, scrolls a control into view before recording events against it or
capturing its bitmap. This option is useful for testing web applications. This option
applies only if Show windows which are out of view is enabled. This option is

Setting Silk Test Classic Options | 533

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

useful for testing web applications in which a dialog contains a scroll bar. Default
is unchecked.

Enable
communication with
SilkBean

If checked, enables communication with the SilkBean for all scripts in a test
session. The SilkBean is a utility that allows you to perform cross-platform testing
of 100% pure Java controls in standalone Java applications. This option applies
only if you enable Java support on Silk Test Classic. Default is unchecked.

We strongly recommend that you keep the default settings for Show windows which are out of view and
Automatically scroll windows into view. If you do change the values, save them in a custom options set.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Compatibility Tab
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Compatibility tab is available from the Agent Options dialog box. Use the following options only if
you are upgrading from a previous release of Silk Test Classic and want to use functionality that matches
the previous release.

Don't group
radio buttons
into a list

If unchecked, treats radio buttons as a group of class RadioList. Otherwise, uses
the Release 1.x method of treating radio buttons as individual objects. Default is
unchecked.

Use release 1.x
version of the
class library

If checked, uses QA Partner Release 1 versions of GetChildren, GetClass, and
GetParent. Otherwise, uses Release 2 and later versions. Default is unchecked.

Use release 1.x
window tags

If checked, generates and operates on tags compatible with Silk Test Classic releases
earlier than QA Partner Release 2. Otherwise, uses Release 2 or later tags. Default is
unchecked. The Release 2 algorithm affects tags that use index numbers and some
tags that use captions. In general, Release 2 tags are more portable, while the earlier
algorithm generates more platform-dependent tags. Use this option only if you must
run old scripts without any changes.

Don't trim
spaces when
getting items in
controls

If checked, leading and trailing spaces are not trimmed from items on windows.
Default is unchecked.

Add ‘Window
tags’ to the
Record menu

If checked, includes the Record Window Tags menu item on the Record menu.
Selecting the Record Window Tags menu item opens the Record Window Tags
dialog. Use the Record Window Tags dialog to capture and paste window tags for

534 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

individual objects into your script or test frame. This dialog is equivalent to the QA
Partner Release 1.x Paste Window dialog box, allowing you to paste Release 1.x
style window tags into your script. Default is unchecked.

Only use Agent-
based clicks
(not API-based
clicks)

If checked, use API-based clicks when available. An API click is generated internally
by the browser, instead of by the agent. API clicks are more reliable than agent clicks,
which can click the wrong location of an object. API-based clicks are for browsers only.
If cleared, use agent-based clicks even when API-based clicks are available. Default is
unchecked.

Use ANSI call If checked, converts all string parameters (return type, string arguments, strings in
record structures that are used as arguments) from W (wide-character, Unicode) to A
(ANSI) character format before calling the DLL function internally. Return values and
pass-mode variables set to inout that are strings or contain strings within record
structures get converted back from A (ANSI) format to W (wide-character) format after
calling the DLL. Using this check box makes an ANSI call transparent, as the
conversion is done internally. Default is unchecked.

The DLL calling stack does not support return values that are pointers to a record
structure. To determine if the function succeeded, use the inout or out pass-mode
variable and use the return-type variable as a flag.

Important: If you use DLL functions where you specify string sizes in bytes, remember that W (wide-
character) strings are assigned 2 bytes per character, and A (ANSI) strings are assigned 1 byte per
character. If you pass a buffer of 1000 characters via an ANSI call, you use 1000 bytes of space, not
2000 bytes. But if you return a string of 1000 characters from a DLL, the W (wide-character) buffer will
have 2000 bytes.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Extensions Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to enable extensions for applications under test.

Click Options > Extensions.

The Extensions dialog box displays the runtime environments for all extensions that you have installed, or
that work with the Classic Agent. The environments listed in the dialog box are used for running the
applications that you want to test. The extensions enable Silk Test Classic to recognize the non-standard
controls in your environment. If you are using a project, the information you specify in the Extensions
dialog box is stored in the partner.ini file. If you are not using a project, the information you specify in
the Extensions dialog box is stored in the extend.ini file.

Setting Silk Test Classic Options | 535

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Application
Column

Displays the browser and runtime environments that the installation program installed and
recognizes automatically. For applications and runtime environments that do not use
standard names, or for stand-alone applications, you must use the New button to manually
add the name of the executable or DLL file to the Extensions dialog box. If the executable
name contains spaces, you must enclose the name in quotation marks.

Primary
Extension
Column

For each application listed in the Application column, the Primary Extension column
displays the currently selected primary extension, or Disabled or None, if applicable. To
change a primary extension, click in the Primary Extension column, then use the
embedded list box to select one of the available options.

Keep in mind that you cannot enable more than one primary extension for an application.
Primary extensions are the ones listed in the list boxes of the Extensions dialog box, such
as DOM and .NET. Secondary extensions, which are checked with the check boxes in the
Extensions dialog box, Java, ActiveX, and Accessibility, are the only ones that can co-
exist with another extension. Thus, for example, an embedded browser in a .NET
application is not allowed, since both IE DOM and .NET are primary extensions.

Also, remember that not all of the Primary Extensions in the list box can be applied to a
new application. Only IE DOM, which has superseded the IE4 OCX extension for
embedded browser applications, or .NET extensions make sense for new applications.

Other
Extensions

You can use the check boxes in the Other Extensions columns to enable other
extensions required for testing each application that is launched in the runtime
environment listed in the Application column. When a check box in the Other Extensions
column is checked, the corresponding button in the Options area is enabled.

Java Enables Java support for an application running on the host machine or
an applet running in a browser. When the Java check box is checked,
the Java button in the Options area is enabled. Click the Java button to
display the Extension Options dialog box for Java and select Java
extension options for the currently selected application.

ActiveX Enables ActiveX and Visual Basic support for an application running on
the host machine. When the ActiveX check box is checked, the ActiveX
button in the Options area is enabled. Click the ActiveX button to
display the Extension Options dialog box for ActiveX and select
ActiveX extension options for the currently selected application.

Accessibility Enables Windows Accessibility. When the Accessibility check box is
checked, the Accessibility button in the Options area is enabled. Click
the Accessibility button to display the Windows Accessibility dialog
box.

.NET Enables .NET support for an application running on the host machine.

Options
area

The buttons in the Options area are disabled until a corresponding extension is enabled
for the currently selected application.

Extension Enabled only when a browser is enabled in the Primary Extension
column for the currently selected application. Click Extension to display
the DOM Extensions dialog box and specify options for the DOM
extension.

Java Enabled only when a Java check box is checked in the Other
Extensions column for the currently selected application. Click Java to
display the Extension Options dialog box for Java and redirect output
from the Java console to a local file. This allows you to scroll and copy
text more easily.

536 | Setting Silk Test Classic Options

ActiveX Enabled only when an ActiveX check box is checked in the Other
Extensions column for the currently selected application. Click ActiveX
to display the Extension Options dialog box for ActiveX and select
ActiveX and Visual Basic options.

Accessibility Enabled only when an Accessibility check box is checked in the Other
Extensions column for the currently selected application. Click
Accessibility to display the Windows Accessibility dialog box.

New Displays the Extension application dialog box where you can add one
or more runtime environments to the Extensions dialog box for testing
applications.

Duplicate Active only when you select a runtime environment in the Application
column that you entered manually. You cannot duplicate runtime
environments that are installed by default. Click Duplicate to add a new
application that has all the same settings, primary and other extensions
and other options, as the selected application, but with a different name.

Remove Active only when you select a runtime environment in the Application
column that you entered manually. You cannot remove runtime
environments that are installed by default. Click Remove to delete a
runtime environment from the dialog box.

Details Active only when you select a runtime environment with an enabled
Primary Extension. Click Details to display detailed information about
the runtime environment, including version, help text, and executable
modules.

Extension Details Dialog Box
Use the Extension Details dialog box to view more information about the selected extension. Access this
dialog box by clicking Options > Extensions, enabling and selecting the extension for which you want to
view details, and then clicking Details.

This dialog box contains:

File Displays the file name associated with the selected extension.

Version Displays the version of the file associated with the selected extension.

Include Displays the name of the include file associated with the selected extension, if applicable.

Help text Displays the file name of the help text associated with the selected extension, if applicable.

Prop set Displays the name of the property set associated with the selected extension.

Modules Displays the name of modules associated with the selected extension, if applicable.

Setting Recording Options for the Open Agent
This functionality is supported only if you are using the Open Agent.

You can set the recording options to optimize recording with the Open Agent in the following two ways:

• In the Recording Options dialog box.
• Within a script, by using the SetOption method.

Setting Silk Test Classic Options | 537

Using SetOption overrides the value specified for the option in the Recording Options dialog box. If you
do not set an option with SetOption, the value specified in the Recording Options dialog box is the
default.

To set the recording options in the Recording Options dialog box, perform the following actions:

1. Click Options > Recorder. The Recording Options dialog box appears.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

3. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

4. To record mouse move actions for web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

5. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

6. To record text clicks instead of clicks, check the OPT_RECORD_TEXT_CLICK check box.

Recording text clicks is enabled by default, and is the fallback mechanism when testing applications
which display texts. Micro Focus recommends to leave this check box checked.

7. To resize the application under test (AUT) when a recording session starts, check the
OPT_RESIZE_APPLICATION_BEFORE_RECORDING check box.

This check box is checked by default, enabling the Silk Recorder to display next to the AUT. When this
check box is unchecked, the AUT and the Silk Recorder might overlap.

8. Define custom attributes for recording.

a) Select the Custom Attributes tab.
b) Select the technology domain of the application that you are testing.

For example, to set custom attributes for a web application, select xBrowser.
c) Add the attributes that you want to use to the list.

Separate attribute names with a comma.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption
will change when you translate the application into another language, and the index might change
when another object is added. If custom attributes are available, the locator generator uses these
attributes before any other attribute. The order of the list also represents the priority in which the
attributes are used by the locator generator. If the attributes that you specify are not available for the
objects that you select, Silk Test Classic uses the default attributes for the application that you are
testing.

Note: You cannot set custom attributes for Apache Flex applications.

9. Set the classes that you want to ignore during recording and replay.

a) Select the Transparent Classes tab.
b) Add the names of any classes that you want to ignore to the list.

Separate class names with a comma.

10.Specify recording options for web applications.

a) Select the Browser tab.
b) Add names of attributes that you want to ignore during recording to the Locator attribute name

exclude list.

538 | Setting Silk Test Classic Options

For example, if you do not want to record attributes named height, add height to the list. Separate
attribute names with a comma.

c) Add values of attributes that you want to ignore during recording to the Locator attribute value
exclude list.
For example, if you do not want to record attributes that have the value x-auto, add x-auto to the list.

d) Check the OPT_XBROWSER_LOWLEVEL check box to record native user input instead of DOM
functions.

For example to record Click instead of DomClick and TypeKeys instead of SetText.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a
plug-in or AJAX, Micro Focus recommends using high-level DOM functions, which do not require the
browser to be focused or active during playback. As a result, tests that use DOM functions are faster
and more reliable.

e) Specify the maximum length for locator attribute values in the
OPT_XBROWSER_LOCATOR_MAX_ATTRIBUTE_VALUE_LENGTH field.

f) Check the OPT_XBROWSER_ENABLE_SMART_CLICK_POSITION check box to automatically
search for a free click spot on the object.
If disabled, the click is always made in the center of the object, and might possibly be performed an
object layered over the target.

g) To force Mozilla Firefox to open external links in a new tab instead of a new window, check
OPT_FIREFOX_SINGLE_WINDOW_MODE.

Note: This option only works with Mozilla Firefox 52 or later.

h) To disable iframe and frame support for browsers, uncheck
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.
If you are not interested in the content of the iframes in a web application, disabling the iframe
support might improve replay performance. For example, disabling the iframe support might
significantly improve replay performance for web pages with many adds and when testing in a mobile
browser. This option is ignored by Internet Explorer. This option is enabled by default.

i) In the Whitelist for iframe support, specify attributes of iframes and frames that should be
considered during testing.
Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are excluded. Wildcards are allowed, for example the
entry "name:*form" would include <IFRAME name="user-form" src=…>. This option is ignored by
Internet Explorer. If the list is empty, all iframes and frames are considered during testing. Separate
multiple entries with a comma.

11.In the Blacklist for iframe support, specify attributes of iframes and frames that should be excluded
during testing.
Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are considered during testing. Wildcards are allowed, for
example the entry "src:*advertising*" would exclude <IFRAME src=http://my.domain/advertising-
banner.html>. This option is ignored by Internet Explorer. If the list is empty, all iframes and frames are
considered during testing. Separate multiple entries with a comma.

12.Specify recording options for WPF applications.
a) Check the OPT_WPF_PREFILL_ITEMS check box to pre-fill items in a WPFItemsControl, for

example a WPFComboBox or WPFListBox, during recording and playback.
b) Add the names of custom classes that you want to expose during recording and playback to the

Custom WPF class names list.

13.Specify whether to use Microsoft UI Automation support instead of the normal Win32 control
recognition.
a) Click the UI Automation tab.
b) Set Enable Microsoft UI Automation Support to True to enable Microsoft UI Automation support

instead of the normal Win32 control recognition.

Setting Silk Test Classic Options | 539

Note: The UI Automation support overrides the standard technology-domain-specific support.
When you are finished interacting with the controls that require UI Automation support, disable
the UI Automation support again to resume working with standard controls.

c) In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name
to the grid.

Separate attribute names with a comma.
d) In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to
the grid.

Separate attribute values with a comma.

14.Click OK.

Setting Recording Options for the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can set the recording options to optimize recording with the Classic Agent in the following two ways:

• In the Recorder Options dialog box.
• Within a script, by using the SetOption method.

Using SetOption overrides the value specified for the option in the Recorder Options dialog box. If you
do not set an option with SetOption, the value specified in the Recorder Options dialog box is the
default.

To set the recording options in the Recorder Options dialog box, perform the following actions:

1. Click Options > Recorder. The Recorder Options dialog box opens.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the Change hotkey
to Ctrl+Shift check box.

By default, Ctrl+Alt is the shortcut key combination.

3. To record the tags that are specified in the Record Window Declarations Options dialog box, check
the Record multiple tags check box.

If checked, Silk Test Classic records multiple tags whenever recording. If this check box is disabled, see
the description of the multiple tags agent option.

Note: If you change the setting for Record Multiple Tags here, the check box on the Record
Window Declarations Options dialog box is automatically updated.

4. To add new declarations to the INC file during recording, check the Auto Declaration check box.

5. To verify the test application using properties instead of attributes, check the Verify using properties
check box.

This option is checked automatically if you have enabled enhanced support for Visual Basic. This
feature requires properties for verification. You cannot uncheck the Verify using properties check box
without disabling enhanced support for Visual Basic.

6. Specify the file that contains the definitions for the used property sets in the Data file for property sets
field.

7. To record events at a lower level for selected controls, check the corresponding check boxes in the
Recorded Events list.

For example, you might want to record a click in a check box, instead of recording an actual selection. If
you specify that you want to record only low-level events in check boxes, Silk Test Classic records
something like the following when you select a check box: Find.CaseSensitive.Click (1, 41,

540 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

10). If you are using a high-level event, Silk Test Classic records something like the following:
Find.CaseSensitive.Check ().

8. Uncheck the Ignore mouse move events check box to record mouse movements.
If this check box is unchecked, Silk Test Classic records mouse movements that cannot be built into
higher-level actions and that occur while a mouse button is pressed. Leave this check box checked
unless you are testing an application, such as a drawing application, where mouse movements
themselves are significant.

9. To record mouse movements that cannot be built into higher-level actions and that occur while a mouse
button is pressed when you select the Record Testcase and Record Actions commands, uncheck the
Ignore mouse move events check box.
Leave the check box checked unless you are testing an application where mouse movements
themselves are significant.

10.Uncheck the Don't record BeginDrag/EndDrag check box to record BeginDrag and EndDrag
methods when you press a mouse button on an object and do a drag operation on a listview, treeview,
or list box.

11.Click OK.

Setting Replay Options for the Open Agent
This functionality is supported only if you are using the Open Agent.

You can set the replay options to optimize replaying tests with the Open Agent.

1. Click Options > Agent. The Agent Options dialog box appears.

2. Click the Replay tab.

3. Select a Replay mode from the list.

• Default: Use this mode for the most reliable results. Each control uses the best method for the
control type, by using either the mouse and keyboard (low level) mode or the API (high level) mode.

• High level: Use this mode to replay each control using the API.
• Low level: Use this mode to replay each control using the mouse and keyboard.

4. To ensure that the window is active before a call is executed, check the Ensure window is active check
box.

5. Click OK.

Defining which Custom Locator Attributes to Use for
Recognition

The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results and
stable recognition of the controls in your application. You can use any property that is available in the
respective technology as a custom attribute, given that the property is either a number, like an integer or a
double, a string, an item identifier, or an enumeration value.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

In xBrowser, WPF, Java SWT, and Swing applications, you can also retrieve arbitrary properties, such as a
WPFButton that defines myCustomProperty, and then use those properties as custom attributes. To
achieve optimal results, the application developers can add a custom automation ID to the controls that you

Setting Silk Test Classic Options | 541

want to interact with in your test. In Web applications, the application developers can add an attribute to
controls that you want to interact with, such as <div myAutomationId=”my unique element
name” />. This approach can eliminate the maintenance associated with locator changes. Or, in Java
SWT, the UI developer can define a custom attribute, for example testAutomationId, for a widget that
uniquely identifies the widget in the application. You can then add that attribute to the list of custom
attributes, in this case testAutomationId, and you can then identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If more than one objects have the same custom attribute value assigned, all the objects with that value will
be returned when you call the custom attribute. For example, if you assign the unique ID loginName to
two different text boxes, both text boxes will be returned when you call the loginName attribute.

To define which custom attributes of a locator should be used for the recognition of the controls in your
AUT:

1. Click Options > Recorder and then click the Custom Attributes tab.

2. From the Select a tech domain list box, select the technology domain for the application that you are
testing.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

3. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk Test Classic uses
the default attributes for the application that you are testing. Separate attribute names with a comma.

4. Click OK. You can now record or manually create a test case.

Setting Classes to Ignore
To specify the names of any classes that you want to ignore during recording and replay:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and replay.

Separate class names with a comma.

4. Click OK.

Custom Controls Dialog Box
This functionality is supported only if you are using the Open Agent.

Options > Manage Custom Controls.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Frame file for custom class declarations, define the frame file into which the new custom classes
should be generated.

542 | Setting Silk Test Classic Options

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Option Value

Silk Test base class Control

Silk Test class UltraGrid

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

Property Sets Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Property Sets dialog box to view existing property sets and create, modify, combine, and delete
property sets. Property sets are used to verify properties in test cases.

To open the Property Sets dialog box, click Options > Property Sets.

The Property Sets dialog box includes the following items:

Item Description

Property Sets Displays the list of available property sets.

New Click to access the New Property Set dialog box where you can create new property
sets.

Combine Click to access the Combine Property Sets dialog box where you can combine existing
property sets into a new property set.

Edit Click to access the Edit Property Set dialog box where you can modify and delete
property sets.

Setting Silk Test Classic Options | 543

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Item Description

Remove Click to delete the selected property set. Select the property set that you want to remove,
click Remove, and then click Yes to delete the selected property set.

New Property Set Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the New Property Set dialog box to create property sets, which are used to verify properties in test
cases. Use the Edit Property Set dialog box to modify and delete property sets.

To access the New Property Set dialog box, click Options > Property Sets > New or click Define on the
Verify Window dialog box.

To access the Edit Property Set dialog box, click Options > Property Sets > Edit.

The dialog boxes contain the following items:

Name Type the name of the property set you want to create. Property set names are not case
sensitive and they can be any length and consist of any combination of alphanumeric
characters and underscore characters.

List of property
sets

Displays existing property sets. This list changes, depending on whether you are
adding new property sets or editing them.

Class Type the name of the property set’s class. The name of the class is not validated, so be
sure to type carefully. Invalid names are ignored at runtime.

Property Type the property of the class you have just identified.

Add Click to add the class/property pair to the list.

Edit Click after selecting a class/property set you want to edit.

Remove Click after selecting a class/property set you want to delete.

Combine Property Sets Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Combine Property Sets dialog box to combine existing property sets.

To open the dialog box, click Options > Property Sets > Combine. You must select an existing property
set before Combine is enabled.

The Combine Property Sets dialog box includes the following items:

Name Specify a name for the property set you are creating.

Property sets to
combine

From this list, select at least two property sets that you want to combine into a new
property set.

Note: If any of the existing property sets are modified, the combined property
set will be modified as well.

DOM Extensions Dialog Box
Use to set object and table recognition options for the DOM extension.

544 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Click Options > Extensions, enable a primary extension in the Primary Extension column, and then click
Extension in the Options area.

Note: The primary extension must be enabled before you can click Extension.

The information that you enter on this dialog box is saved in the domex.ini file in your <SilkTest
installation directory>\Extend directory. To avoid any confusion, we recommend that you do not
have the domex.ini file open while you are working with the DOM Extensions dialog box.

There are several DOM extension options that are not available through the DOM Extensions dialog box.

Show the following components area

Borderless
Table

Check the Table check box and set a value for borderless table recognition. .76 is the
threshold where Silk Test Classic starts to recognize more objects within tables, such as
images, hidden text, check boxes, textfields, and buttons.

Meta If checked, the DOM extension records Meta objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record Meta objects.

Hidden If checked, the DOM extension records Hidden objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record Hidden objects.

XML If checked, the DOM extension records XML objects. Default is unchecked. Check this
check box if you want the DOM extension to record XML objects.

Invisible If checked, the DOM extension records invisible objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record invisible objects. If your
browser-based application consists of pages that contain many invisible objects that you
do not need to test, then you can improve performance by un-checking this check box in
order to ignore all invisible objects.

Form If checked, the DOM extension records Form objects. Default is unchecked. Check this
check box if you want the DOM extension to record Form objects.

Text If checked, the DOM extension records Text objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record Text objects. If you are testing a
transaction type page with a lot of text, consider un-checking the Text check box. This
prevents Silk Test Classic from recording many text objects, which helps your declarations
to be clean. If, on the other hand, you're looking for formatting and styles of text objects,
you'll want to select this option.

BodyText If checked, the DOM extension records BodyText objects, which is text that is not contained
within an HTML tag. (In previous releases, body text appeared as HtmlText.) Default is
unchecked. We suggest keeping this option unchecked for improved performance,
particularly when recording window declarations on large pages. Should you need to
record body text, check this check box. Silk Test Classic sometimes treats body text
differently from HTML text that is in an HTML tag. For example, GetChildren() will not
return body text. Also, Record Window Declarations will not highlight the window
declaration of a body text object when the cursor is moved over it, and other recorders
such as Record Window Identifiers will not detect it. IsVisible() returns FALSE for body text.

List Item If checked, the DOM extension shows the text contained within HtmlList controls in your
browser. Default is checked. If mouse events are associated with your list items, check this
check box so Silk Test Classic can interact with the list items. This setting is global.
However, if you want to set this option for only certain points in your script, use
BrowserPage.SetUserOption() as described in SetUserOption().

Setting Silk Test Classic Options | 545

Object recognition options area

Use
Browser
nearest
text

Determines how the DOM extension finds the closest static text for HtmlTable, HtmlLink-
text, HtmlColumn, HtmlLink-image, HtmlImage, HtmlHeading, HtmlText,
HtmlRadioList, and HtmlPushbutton. Check this check box if you want Silk Test
Classic to use the DOM extension to find the closest static text for the objects listed above.
This does not apply to invisible objects such as XML, Meta, and Hidden; those objects do
not rely on any text on a page and so it would be meaningless to try to associate them with
any objects. Uncheck this check box if you want to use the Agent to determine closest static
text for the objects listed above.

Use virtual
column

Affects how the DOM extension records asymmetric tables. These are tables that use either
column span or row span attributes, or tables whose rows don't have the same number of
columns. An example of an asymmetric table is a typical calendar page that has the month
of January written across the top row and the seven days of the week in seven columns
across the 2nd row.

We highly recommend that you check this box if you are working with tables that have
asymmetrical rows.

Check this check box if you want to create virtual columns for any row in a table. In the
example above, it causes the top row to contain one real column for "January", followed by 6
virtual columns which are blank and align with Mon, Tues, etc. These virtual columns appear
where there are none in order to complete the table and they are named virtual1, virtual2,
and so on. These virtual columns cause the table to be symmetrical.

Uncheck this check box to avoid creating virtual columns. This causes Silk Test Classic to
record the top row as the name for first column. This occurs because there is no 2nd column
in the top row; Mon is promoted to the name of the second column, and so on.

Search
whole
DOM tree

Determines how windows declarations are found. To search the entire DOM tree when you
record windows declarations, check the Search whole DOM tree check box.

Extension Application Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Extension Application dialog box to add one or more runtime environments to the Extensions
dialog box for testing applications.

Click Options > Extensions and then click New.

Enter name(s) of
executable or DLL
file

Type the name of the executable or DLL that you want to add, separated by
commas. If the executable name contains spaces, enclose the name in quotation
marks. Note that after enabling a new application, you may need to run the
Extension Enabler on the target machine and restart any applications affected by
these changes.

Browse button Click to browse to the executable you want to add.

Extension Options (ActiveX) Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to specify options for the currently selected extension.

546 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Click Options > Extensions, select the appropriate extension, enable ActiveX in the Other Extensions
column, and then click ActiveX.

Ignore VB
and SS
Frames

Check this check box to allow scripts created prior to Silk Test Classic 5.0 to run properly.
When this option is selected, the frame is essentially ignored and objects in VB and SS
(Sheridan OCX) frames are treated as children of the main window rather than child objects
of the containing frame. If you do not select this option for scripts created prior to Silk Test
Classic 5.0, you will need to re-record window declarations in the current release and edit
your scripts.

Note: If the controls inside the VB and SS frames are windowless, then this option will
not work properly. In this case, you can use this option successfully only if you change
the controls so that they have windows.

Do not select this option for window declarations recorded In Silk Test Classic 5.0 or later,
which treats objects in these frames as children of the frame and grandchildren of the main
window. The window declarations file reflects this deeper nesting.

Note: This change brings Silk Test Classic into conformance with current MS
Windows architecture.

Extension Options Dialog Box (Java)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Extension Options dialog box for Java to specify options for the currently selected extension.

Click Options > Extensions, select the appropriate extension, and then click Java.

Java console
filename

Type the path to the file to which you want to redirect Java console output.

Redirect Java
console output

Check this check box if you want to redirect output from the Java console to a local
file where you can easily scroll and copy the text. When testing with the SilkBean,
you cannot redirect console output using this option.

TrueLog Options - Classic Agent Dialog Box
Use the TrueLog Options - Classic Agent dialog box to enable TrueLog for the Classic Agent and to
customize the information that the TrueLog collects for Silk Test Classic.

Click Options > TrueLog.

Logging bitmaps and controls in TrueLog may adversely affect the performance of Silk Test Classic.
Because capturing bitmaps and logging information can result in large TrueLog files, you may want to log
test cases with errors only and then adjust the TrueLog options for test cases where more information is
needed.

Note: By default, TrueLog Explorer is enabled when you are using the Open Agent, and disabled
when you are using the Classic Agent. When TrueLog Explorer is enabled, the default setting is that
screenshots are only created when an error occurs in the script and only test cases with errors are
logged.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer Help for Silk Test.

Logging Settings tab

Enables the TrueLog capture and configures the TrueLog.

Setting Silk Test Classic Options | 547

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf

Enable
TrueLog

Captures TrueLog data and activates logging settings. You can also enable or disable
TrueLog each time you run a test case by checking this check box in the Run Testcase
dialog box. When you enable or disable TrueLog in the Run Testcase dialog box, Silk
Test Classic makes the same change in the TrueLog Options dialog box. Likewise,
when you enable or disable TrueLog in the TrueLog Options dialog box, Silk Test
Classic makes the same change in the Run Testcase dialog box.

All testcases Logs activity for all test cases, both successful and failed.

Testcases with errors Logs activity for only those test cases with errors.

TrueLog file Designates the location and name of the TrueLog file. This path is relative to the machine
on which the agent is running. The name defaults to the name used for the results file,
with an .xlg extension. The location defaults to the same folder as the test case .res
file.

Note: If you provide a local or remote path in this field, the path cannot be
validated until script execution time.

Log the
following for
controls

Logs certain types of information about the controls on the active window or page.

Control
information

Logs the GUI control’s hierarchy, name, type, and other attributes for the active window
or page. This information appears on the Controls tab of the Information window in
TrueLog Explorer. This is selected by default when you enable TrueLog. If you choose to
log control information, you may optionally decide to log:

Control
creation/
deletion

Tracks the creation and/or deletion of controls on the active window
or page. TrueLog updates the control hierarchy after each action.
Choosing this option may adversely affect performance.

Include static
text controls

Includes the static text controls in the logged hierarchy. To keep
TrueLogs small, leave this option turned off for browser testing.

Track low level
events

Logs keyboard and mouse events. For each mouse click and key
press a new Action node is created on the Tree List in the TrueLog.
Use caution when selecting this option for browser applications, as
you can significantly impact performance.

Log the
following for
browsers

Identifies the browser events you want to capture.

Download events Captures all events that trigger page downloads. Selected by
default.

Navigate events Captures all events that cause new pages to appear. Selected
by default.

Terminate events Captures all events that cause a browser to close. Selected by
default.

New window
events

Captures all events that cause a new browser window to appear.
Selected by default.

MouseMove calls Logs all scripted MouseMove calls. This is useful for tracking
JavaScript MouseOver events. By including this information in
TrueLogs, you may significantly affect performance. This
information appears as an Action node in the Tree List.

548 | Setting Silk Test Classic Options

TrueLog
delay

Allows Windows time to draw the application window before a bitmap is taken. The delay
can be used for browser testing. You can insert a Browser.WaitForReady call in your
script to ensure that the DocumentComplete events are seen and processed. If
WindowActive nodes are missing from the TrueLog, you need to add a
Browser.WaitForReady call. You can also use TrueLog Delay to optimize script
performance. Set the delay as small as possible to get the correct behavior and have the
smallest impact on script execution time. The default setting is 0.

Enable
bitmap
capture

Controls when TrueLog captures screenshots of the application under test. Bitmap files
are included in TrueLog (.xlg) files. Selected by default.

As specified on
action settings tab

Enables the capture of bitmaps for each action type you select
on the Action Settings tab. This setting also causes a bitmap
capture each time a window becomes active in your
application.

On error Captures a bitmap when an error occurs in your test case.

Window only Saves the bitmaps for the active window.

Desktop Saves a bitmap of the entire desktop.

Before error bitmap Captures the bitmap before the error occurred.

TrueLog
Presets

Sets pre-determined logging levels.

Minimal Logs test cases with errors; enables bitmap capture of desktop on error;
does not log any actions.

Default Logs test cases with errors; enables bitmap capture of window on error; logs
data for Select and SetText actions; enables bitmap capture for Select
and SetText actions.

Full Logs all test cases; logs all control information; logs all events for browsers
except for MouseMove events; enables bitmap capture of the window on
error; captures bitmaps for all actions.

If you enable Full logs and encounter a Window Not Found error, you may
need to manually edit your script.

Action Settings tab

The Action Settings tab on the TrueLog Options - Classic Agent dialog box selects the scripted actions
you want to include in the TrueLog. When enabled, these actions appear as nodes in the Tree List view of
the TrueLog.

Select
actions to
log

Enable Selects the action to log. Each action corresponds to a 4Test method, except for
Click and Select.

Click Records mouse clicks on many controls, such as PushButton,
ScrollBar, TextField, and HtmlLink. To record Click
methods on a CheckBox, choose Select, not Click.

Select Records actions on multiple methods of multiple types of controls,
including ListBox, TreeView, ComboBox, RadioButton, and
CheckBox. Here is a partial list of what Select records:

• Select (ListBox, TreeView, ComboBox, RadioButton)

Setting Silk Test Classic Options | 549

• DoubleSelect, SelectList, SelectRange (ListBox, TreeView)
• Click (ListBox, TreeView, ComboBox, RadioButton,

CheckBox)
• Check, Uncheck, Toggle, SetState (CheckBox)

Bitmap Selects the point in time you want bitmaps to be captured:

None Never captures bitmaps.

Before Captures bitmaps before errors occur.

After Captures bitmaps after errors occur.

Both Capture bitmaps both before and after errors occur.

Setting TrueLog Options
You can enable TrueLog reports and HTML reports to capture bitmaps and to log information for test runs
with Silk Test Classic.

Logging bitmaps and controls might adversely affect the performance of Silk Test Classic. Because
capturing bitmaps and logging information can result in large TrueLog files, you may want to log test cases
with errors only and then adjust the TrueLog options for test cases where more information is needed.

The results of test runs can be examined in the TrueLog Explorer, in the case of TrueLog reports, or in a
browser, in the case of HTML reports. For additional information on the TrueLog Explorer, refer to the Silk
TrueLog Explorer Help for Silk Test.

Note: To reduce the size of TrueLog files with Silk Test 17.5 or later, the file format for TrueLog files
has changed from .xlg to the compressed .tlz file format. Files with a .xlg suffix are
automatically appended with a .tlz suffix. To parse result data from a .tlz file, you can unzip
the .tlz file and parse the data from the included .xlg file.

To enable creating result data and to customize the information that Silk Test Classic collects, perform the
following steps:

1. Click Options > TrueLog. The TrueLog Options dialog box opens.

2. In the Basic Settings area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

• Click Testcases with errors to log activity for only those test cases with errors.

3. Select the result format:

• Select TrueLog Report (.tlz) to generate visual execution logs that can be viewed in TrueLog
Explorer.

• Select HTML Report to generate an HTML-based report that can be viewed in a browser.
• Select Both to generate both a TrueLog report and an HTML-based report.

4. In the TrueLog location field, type the name of and optionally the path to the TrueLog file, or click
Browse and select the file.

The path is relative to the machine on which the agent is running. The default path is the path of the Silk
Test Classic project folder, and the default name is the name of the suite class, with a .tlz suffix. To
ensure that TrueLog files are not overwritten, for example when you perform parallel testing, you can
add placeholders to the TrueLog file name. These placeholders are replaced with the appropriate data
at execution time.

550 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf

Note: The path is validated at execution time. Tests that are executed by Silk Central set this value
to the Silk Central results directory to enable the screenshots to be shown in the result view.

5. Select the Screenshot mode.

Default is On Error.

6. Optional: Set the Delay.

This delay gives the operating system time to draw the application window before a bitmap is taken. You
can try to add a delay if your application is not drawn properly in the captured bitmaps.

7. Click OK.

Setting Silk Test Classic Options | 551

Troubleshooting the Open Agent
This section provides information and workarounds for working with the Open Agent.

Troubleshooting Apache Flex Applications
This functionality is supported only if you are using the Open Agent.

This section provides help and troubleshooting information for working with Apache Flex applications.

Why Cannot Silk Test Classic Recognize Apache Flex
Controls?
This functionality is supported only if you are using the Open Agent.

If Silk Test Classic cannot recognize the controls of an Apache Flex application, which you are accessing
through a Web server, you can try the following things:

• Compile your Apache Flex application with the Adobe automation libraries and the appropriate
FlexTechDomain.swc for the Apache Flex version.

• Use runtime loading.
• Apache Flex controls are not recognized when embedding an Apache Flex application with an empty id

attribute.

Troubleshooting Basic Workflow Issues with the Open
Agent

The following troubleshooting tips might help you with the basic workflow:

Why is my application not displayed in the Select Application dialog box?

If the application that you want to test is not displayed in the Select Application dialog box, try the
following:

• Uncheck the Hide processes without caption check box. This check box is checked by default and
prevents applications without a caption from being displayed in the dialog box.

• Run Silk Test Classic with elevated privileges.

1. Close Silk Test Classic.
2. Stop the Open Agent.
3. Run Silk Test Classic as an administrator.

• Use the Task Manager to check if the application is running under a different user account.
• Ensure that the application is not started with the runas command or a similar command.

Error Messages
This section provides help and troubleshooting information for error messages.

552 | Troubleshooting the Open Agent

Agent not responding

Problem

You get the following error message:

Error: Agent not responding

This error can occur for a number of reasons.

Solution

Try any or all of the following:

• Restart the application that you are testing.
• Restart Silk Test Classic.
• Restart the Host machine.

If you are recording declarations on a very large page and get this error, consider increasing the
AgentTimeout.

Control is not responding

Problem

You run a script and get the following error: Error: Control is not responding

This is a catch-all error message. It usually occurs in a Select() statement when Silk Test Classic is
trying to select an item from a ListBox, TreeView, ListView, or similar control.

The error can occur after the actual selection has occurred, or it can occur without the selection being
completed. In general the error means that the object is not responding to the messages Silk Test Classic
is sending in the manner in which it expects.

Solution

Try these things to eliminate the error message:

• If the line of code is inside a Recording block, remove the Recording keyword.
• Set the following option just before the line causing the error:

Agent.SetOption(OPT_VERIFY_RESPONDING, FALSE).

• If the selection is successful, but you still get the error, try using the Do . . . except feature.

Functionality Not Supported on the Open Agent
If you use Classic Agent functionality in an Open Agent script, an error message displays, stating that the
functionality is not supported on the Open Agent.

Example

For example, if you try to call the ClearTrap function of the Classic Agent on a
MainWin object in an Open Agent script, the following error message displays:

The Open Agent does not support the function
'MainWin::ClearTrap'#

Troubleshooting the Open Agent | 553

Unable to Connect to Agent

Problem

You get the following error message: Error: Unable to connect to agent

This error can occur for a number of reasons.

Solution

Connect to the
default agent

Click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine
depending on which agent is specified as the default in the Runtime Options dialog. If
the agent does not start within 30 seconds, a message is displayed. If the default agent
is configured to run on a remote machine, you must connect to it manually.

Restart the
agent that you
require for
testing

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test
Open Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Open Agent or (in
Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Classic
Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Classic Agent.

Window is not active

Problem

You run a script and get the following error: Error: Window 'name' is not active.

This error means that the object Silk Test Classic is trying to act on is not active. This message applies to
top-level windows (MainWin, DialogBox, ChildWin).

Solution

You can correct the error by doing one of the following:

1. Edit the script and add an explicit SetActive() statement to the window you are trying to act on just
above the line where the error is occurring. An easy way to do this is to double-click the error in the
results file. You will be brought to the line in the script. Insert a new line above it and add a line ending
with the SetActive() method.

2. Tell Silk Test Classic not to verify that windows are active. There are two ways to do this:

To turn off the verification globally, uncheck the Verify that windows are active option on the
Verification tab in the Agent Options dialog (Options > Agent).

To turn off the option in your script on a case by case basis, add the following statement to the script,
just before the line causing the error: Agent.SetOption(OPT_VERIFY_EXPOSED, FALSE).

3. Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, TRUE).

This means Silk Test Classic will execute the action regardless of whether the window is active.
4. Extend the window time out to be greater than 10 by inserting the Agent - Window Timeout to >= 10

into your partner.ini.

554 | Troubleshooting the Open Agent

Window is not enabled

Problem

You run a script and get the following error: Error: Window 'name' is not enabled.

This error means that the object that Silk Test Classic is trying to act on is not enabled. This message
applies to controls inside top-level windows (such as PushButton and CheckBox).

Solution

You can correct this problem in one of two ways.

• If the object is indeed disabled, edit the script and add the actions that will enable the object.
• If the object is in fact enabled and you want the script to perform the action, tell Silk Test Classic not to

verify that a window is enabled:

To turn off the verification globally, uncheck the Verify that windows are enabled option on the
Verification tab in the Agent Options dialog box (Options > Agent).

To turn off the option in your script on a case-by-case basis, add the following statement to the script, just
before the line causing the error: Agent.SetOption(OPT_VERIFY_ENABLED, FALSE)

Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_ENABLED, TRUE).

This means Silk Test Classic will execute the action regardless of whether the window is enabled.

Window is not exposed

Problem

You run a script and get the following error: Error: Window 'name' is not exposed.

Sometimes, applications are written such that windows are hidden to the operating system, even though
they are fully exposed to the user. A running script might generate an error such as Window not
exposed, even though you can see the window as the script runs.

Solution

While it might be tempting to simply turn off the checks for these verifications from the Agent Options >
Verification dialog box, the best course of action is to take such errors on a case by case basis, and only
turn off the verification in cases where the window is genuinely viewable, but Silk Test Classic is getting
information from the operating system saying the object is not visible.

1. Add the following statement to the script, just before the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, FALSE).

2. Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, TRUE).

This means Silk Test Classic will execute the action regardless of whether it thinks the window is exposed.

Window not found

Problem

You run a script and get the following error: Error: Window 'name' was not found.

Troubleshooting the Open Agent | 555

Resolution

This error occurs in the following situations:

When the window that Silk Test
Classic is trying to perform the
action on is not on the desktop.

If you are watching the script run, and at the time the error occurs
you can see the window on the screen, it usually means the tag that
was generated is not a correct tag. This could happen if the
application changed from the time the script or include file was
originally created.

To resolve this issue, enable view trace listing in your script.

The window is taking more than
the number of seconds specified
for the window timeout to open.

To resolve this issue, set the Window Timeout value to prevent
Window Not Found exceptions

Only if you are using the Classic
Agent, in the TrueLog Options -
Classic Agent dialog box, if all of
the following options are set

• The action PressKeys is enabled.
• Bitmaps are captured after or before and after the PressKeys

action.
• PressKeys actions are logged.

The preceding settings are set by default if you select Full as
the TrueLog preset.

To resolve this issue, modify your test case.

Handling Exceptions
This section provides help and troubleshooting information for handling exceptions.

Default Error Handling
If a test case fails, for example if the expected value doesn’t match the actual value in a verification
statement, by default Silk Test Classic calls its built-in recovery system, which:

• Terminates the test case.
• Logs the error in the results file.
• Restores your application to its default base state in preparation for the next test case.

These runtime errors are called exceptions. They indicate that something did not go as expected in a
script. They can be generated automatically by Silk Test Classic, such as when a verification fails, when
there is a division by zero in a script, or when an invalid function is called.

You can also generate exceptions explicitly in a script.

However, if you do not want Silk Test Classic to transfer control to the recovery system when an exception
is generated, but instead want to trap the exception and handle it yourself, use the 4Test do...except
statement.

Custom Error Handling
You can also use do ... except to perform some custom error handling, then use the re-raise
statement to pass control to the recovery system as usual.

Example: do ... except

The Text Editor application displays a message box if a user searches for text that does
not exist in the document. You can create a data-driven test case that verifies that the
message box appears and that it displays the correct message. Suppose you want to

556 | Troubleshooting the Open Agent

determine if the Text Editor application is finding false matches, that is, if it is selecting
text in the document before displaying the message box. That means that you want to
do some testing after the exception is raised, instead of immediately passing control to
the recovery system. The following code sample shows how you can use do ...
except to keep the control inside the test case:

testcase Negative (SEARCHINFO Data)
 STRING sMatch
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()

 do
 MessageBox.Message.VerifyValue (Data.sMessage)
 except
 sMatch = DocumentWindow.Document.GetSelText ()

 if (sMatch != "")
 Print ("Found " + sMatch + " not " + Data.sPattern)
 reraise
 MessageBox.OK.Click ()

 Find.Cancel.Click ()
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

This following tasks are performed in the example:

• A test is performed after an exception is raised.
• A statement is printed to the results file if text was selected.
• The recovery system is called.
• The recovery system terminates the test case, logs the error, and restores the test

application to its default base state.

As the example shows, following the do keyword is the verification statement, and
following the except keyword are the 4Test statements that handle the exception. The
exception-handling statements in this example perform the following tasks:

• Call the GetSelText method to determine what text, if any, is currently selected in
the document.

• If the return value from the GetSelText method is not an empty string, it means
that the application found a false match.

• If the application found a false match, print the false match and the search string to
the results file.

• Re-raise the exception to transfer control to the recovery system.
• Terminate the test case.

The reraise statement raises the most recent exception again and passes control to the
next exception handler. In the preceding example, the reraise statement passes control
to the built-in recovery system. The reraise statement is used in the example because if
the exception-handling code does not explicitly re-raise the exception, the flow of control
passes to the next statement in the test case.

Troubleshooting the Open Agent | 557

Trapping the exception number
Each built-in exception has a name and a number (they are defined as an enumerated data type,
EXCEPTION). For example, the exception generated when a verify fails is E_VERIFY (13700), and the
exception generated when there is a division by zero is E_DIVIDE_BY_ZERO (11500).

All exceptions are defined in 4test.inc, in the directory where you installed Silk Test Classic.

You can use the ExceptNum function to test for which exception has been generated and, perhaps, take
different actions based on the exception. You would capture the exception in a do...except statement
then check for the exception using ExceptNum.

For example, if you want to ignore the exception E_WINDOW_SIZE_ INVALID, which is generated when a
window is too big for the screen, you could do something like this:

do
Open.Invoke ()
except
if (ExceptNum () != E_WINDOW_SIZE_INVALID)
 reraise

If the exception is not E_WINDOW_SIZE_INVALID, the exception is reraised (and passed to the recovery
system for processing). If the exception is E_ WINDOW_SIZE_INVALID, it is ignored.

Defining Your Own Exceptions
In addition to using built-in exceptions, you can define your own exceptions and generate them using the
raise statement.

Consider the following test case:

testcase raiseExample ()
 STRING sTestValue = "xxx"
 STRING sExpected = "yyy"
 TestVerification (sExpected, sTestValue)

TestVerification (STRING sExpected, STRING sTestValue)
 if (sExpected == sTestValue)
 Print ("Success!")
 else
 do
 raise 1, "{sExpected} is different than {sTestValue}"
 except
print ("Exception number is {ExceptNum()}")
 reraise

The TestVerification function tests two strings. If they are not the same, they raise a user-defined
exception using the raise statement.

Raise Statement

The raise statement takes one required argument, which is the exception number. All built-in exceptions
have negative numbers, so you should use positive numbers for your user-defined exceptions. raise can
also take an optional second argument, which provides information about the exception; that information is
logged in the results file by the built-in recovery system or if you call ExceptLog.

In the preceding test case, raise is in a do...except statement, so control passes to the except clause,
where the exception number is printed, then the exception is reraised and passed to the recovery system,
which handles it the same way it handles built-in exceptions.

558 | Troubleshooting the Open Agent

Here is the result of the test case:

Testcase raiseExample - 1 error
Exception number is 1
yyy is different than xxx
Occurred in TestVerification at except.t(31)
Called from raiseExample at except.t(25)

Note that since the error was re-raised, the test case failed.

Using do...except Statements to Trap and Handle
Exceptions
Using do...except you can handle exceptions locally, instead of passing control to the built-in error
handler, which is part of the recovery system of Silk Test Classic. The do...except statement has the
following syntax:

do
<statements>
except
<statements>

If an exception is raised in the do clause of the statement, control is immediately passed to the except
clause, instead of to the recovery system.

If no exception is raised in the do clause of the statement, control is passed to the line after the except
clause. The statements in the except clause are not executed.

Consider this simple test case:

testcase except1 (STRING sExpectedVal, STRING sActualVal)

do
 Verify (sExpectedVal, sActualVal)
 Print ("Verification succeeded")
except
 Print ("Verification failed")

This test case uses the built-in function Verify, which generates an exception if its two arguments are not
equivalent. In this test case, if sExpectedVal equals sActualVal, no exception is raised,
Verification succeeded is printed, and the test case terminates. If the two values are not equal,
Verify raises an exception, control immediately passes to the except clause, the first Print statement
is not executed, and Verification failed is printed.

Here is the result if the two values "one" and "two" are passed to the test case:

Testcase except1 ("one", "two") - Passed
Verification failed

The test case passes and the recovery system is not called because you handled the error yourself.

You handle the error in the except clause. You can include any 4Test statements, so you could, for
example, choose to ignore the error, write information to a separate log file, and log the error in the results
file.

Programmatically Logging an Error
Test cases can pass, even though an error has occurred, because they used their own error handler and
did not specify to log the error. If you want to handle errors locally and generate an error (that is, log an
error in the results file), you can do any of the following:

• After you have handled the error, re-raise it using the reraise statement and let the default recovery
system handle it.

Troubleshooting the Open Agent | 559

• Call any of the following functions in your script:

LogError
(string, [cmd-
line])

Writes string to the results file as an error (displays in red or italics, depending
on platform) and increments the error counter.

This function is called automatically if you don’t handle the error yourself.

cmd-line is an optional string expression that contains a command line.

LogWarning
(string)

Same as LogError, except it logs a warning, not an error.

ExceptLog () Calls LogError with the data from the most recent exception.

Performing More than One Verification in a Test Case
If the verification fails in a test case with only one verification statement, usually an exception is raised and
the test case is terminated. However, if you want to perform more than one verification in a test case,
before the test case terminates, this approach would not work.

Classic Agent Example

For example, see the following sample test case:

testcase MultiVerify ()
 TextEditor.Search.Find.Pick ()
 Find.VerifyCaption ("Find")
 Find.VerifyFocus (Find.FindWhat)
 Find.VerifyEnabled (TRUE)
 Find.Cancel.Click ()

The test case contains three verification statements. However, if the first verification,
VerifyCaption, fails, an exception is raised and the test case terminates. The second
and the third verification are not executed.

To perform more than one verification in a test case, you can trap all verifications except
the last one in a do...except statement, like the following sample for the Classic
Agent shows:

testcase MultiVerify2 ()
 TextEditor.Search.Find.Pick ()
 do
 Find.VerifyCaption ("Find")
 except
 ExceptLog ()
 do
 Find.VerifyFocus (Find.FindWhat)
 except
 ExceptLog ()
 Find.VerifyEnabled (TRUE)
 Find.Cancel.Click ()

All the verifications in this example are executed each time that the test case is run. If
one of the first two verifications fails, the 4Test function ExceptLog is called. The
ExceptLog function logs the error information in the results file, then continues the
execution of the script.

560 | Troubleshooting the Open Agent

Open Agent Example

For example, you might want to print the text associated with the exception as well as
the function calls that generated the exception. The following test case illustrates this:

testcase VerifyTest ()
 STRING sTestValue = "xxx"
 STRING sExpectedValue = "yyy"
 CompValues (sExpectedValue, sTestValue)

CompValues (STRING sExpectedValue, STRING sTestValue)
 do
 Verify (sExpectedValue, sTestValue)
 except
 ErrorHandler ()

ErrorHandler ()
 CALL Call
 LIST OF CALL lCall
 lCall = ExceptCalls ()
 Print (ExceptData ())
 for each Call in lCall
 Print("Module: {Call.sModule}",
 "Function: {Call.sFunction}",
 "Line: {Call.iLine}")

• The test case calls the user-defined function CompValues, passing two arguments.
• CompValues uses Verify to compare its arguments. If they are not equal, an

exception is automatically raised.
• If an exception is raised, CompValues calls a user-defined function,

ErrorHandler, which handles the error. This is a general function that can be used
throughout your scripts to process errors the way you want.

• ErrorHandler uses two built-in exception functions, ExceptData and
ExceptCalls.

Except Data All built-in exceptions have message text
associated with them. ExceptData returns that
text.

ExceptCalls Returns a list of the function calls that
generated the exception. You can see from
ErrorHandler above, that ExceptCalls
returns a LIST OF CALL. CALL is a built-in
data type that is a record with three elements:

• sFunction

• sModule

• iLine

ErrorHandler processes each of the calls
and prints them in the results file.

• Silk Test Classic also provides the function ExceptPrint, which combines the
features of ExceptCalls, ExceptData, and ExceptNum.

Testcase VerifyTest - Passed
*** Error: Verify value failed - got "yyy", expected "xxx"
Module: Function: Verify Line: 0
Module: except.t Function: CompValues Line: 121
Module: except.t Function: VerifyTest Line: 112

The second line is the result of printing the information from ExceptData. The rest
of the lines show the processing of the information from ExceptCalls.

Troubleshooting the Open Agent | 561

This test case passes because the error was handled locally and not re-raised.

Writing an Error-Handling Function
If you want to customize your error processing, you will probably want to write your own error-handling
function, which you can reuse in many scripts.

Open Agent Example

For example, you might want to print the text associated with the exception as well as
the function calls that generated the exception. The following test case illustrates this:

testcase VerifyTest ()
 STRING sTestValue = "xxx"
 STRING sExpectedValue = "yyy"
 CompValues (sExpectedValue, sTestValue)

CompValues (STRING sExpectedValue, STRING sTestValue)
 do
 Verify (sExpectedValue, sTestValue)
 except
 ErrorHandler ()

ErrorHandler ()
 CALL Call
 LIST OF CALL lCall
 lCall = ExceptCalls ()
 Print (ExceptData ())
 for each Call in lCall
 Print("Module: {Call.sModule}",
 "Function: {Call.sFunction}",
 "Line: {Call.iLine}")

• The test case calls the user-defined function CompValues, passing two arguments.
• CompValues uses Verify to compare its arguments. If they are not equal, an

exception is automatically raised.
• If an exception is raised, CompValues calls a user-defined function,

ErrorHandler, which handles the error. This is a general function that can be used
throughout your scripts to process errors the way you want.

• ErrorHandler uses two built-in exception functions, ExceptData and
ExceptCalls.

Except Data All built-in exceptions have message text
associated with them. ExceptData returns that
text.

ExceptCalls Returns a list of the function calls that
generated the exception. You can see from
ErrorHandler above, that ExceptCalls
returns a LIST OF CALL. CALL is a built-in
data type that is a record with three elements:

• sFunction

• sModule

• iLine

ErrorHandler processes each of the calls
and prints them in the results file.

562 | Troubleshooting the Open Agent

• Silk Test Classic also provides the function ExceptPrint, which combines the
features of ExceptCalls, ExceptData, and ExceptNum.

Testcase VerifyTest - Passed
*** Error: Verify value failed - got "yyy", expected "xxx"
Module: Function: Verify Line: 0
Module: except.t Function: CompValues Line: 121
Module: except.t Function: VerifyTest Line: 112

The second line is the result of printing the information from ExceptData. The rest
of the lines show the processing of the information from ExceptCalls.

This test case passes because the error was handled locally and not re-raised.

Exception Values
This section describes the exceptions that are generated by Silk Test Classic under specific error
conditions.

Exception value Description

E_ABORT Script aborted by user.

E_APP_NOT_READY The application is not ready.

E_APP_NOT_RESPONDING The application is not responding to input.

E_APPID_INVALID The specified application ID is not a valid application.

E_BITMAP_NOT_STABLE The bitmap timeout period set with
OPT_BITMAP_MATCH_TIMEOUT
was reached before the image stabilized.

E_BITMAP_REGION_INVALID The specified region was off the screen.

E_BITMAPS_DIFFERENT The comparison failed when comparing two bitmaps.

E_CANT_CLEAR_SELECTION The selection cannot be cleared.

E_CANT_CLOSE_WINDOW The window cannot be closed (often resulting when a
confirmation dialog box pops up).

E_CANT_COMPARE_BITMAP Silk Test Classic ran out of a system resource (such as
memory) needed to compare the bitmaps.

E_CANT_CONVERT_RESOURCE The specified resource cannot be handled by
GetResource, although it is a valid resource for the
widget.

E_CANT_EXIT_APP Silk Test Classic was unable to close the application.

E_CANT_EXTEND_SELECTION The list box selection can not be extended because
nothing is selected.

E_CANT_MAXIMIZE_WINDOW The window can not be maximized.

E_CANT_MINIMIZE_WINDOW The window can not be minimized.

E_CANT_MOVE_WINDOW The window can not be moved.

E_CANT_RESTORE_WINDOW The window size can not be restored.

E_CANT_SET_ACTIVE The window can not be set active.

E_CANT_SET_FOCUS The window can not be given the input focus.

E_CANT_SIZE_WINDOW The window can not be resized.

Troubleshooting the Open Agent | 563

Exception value Description

E_CANT_START_APP The application cannot be started.

E_COL_COUNT_INVALID The specified value is not a valid character count.

E_COL_NUM_INVALID The specified value is not a valid character position.

E_COL_START_EXCEEDS_END The starting character exceeds the end character
position.

E_COLUMN_INDEX_INVALID The specified index is not a valid column index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_COLUMN_NAME_INVALID The specified index is not a valid column index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_CONTROL_NOT_RESPONDING The control is not responding. Raised after checking
whether a specified action took place.

E_COORD_OFF_SCREEN The specified mouse coordinate is off the screen.

E_COORD_OUTSIDE_WINDOW The specified coordinate is outside the window. This
exception is never raised if the OPT_VERIFY_COORD
option is set to FALSE.

E_CURSOR_TIMEOUT The cursor timeout period was reached before the correct
cursor appeared.

E_DELAY_INVALID The specified delay is not valid.

E_FUNCTION_NOT_REGISTERED The function called is a user-defined function that hasn't
been registered by the application.

E_GRID_HAS_NO_COL_HDR The specified DataGrid has no column header. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_GUIFUNC_ID_INVALID The specified function is not a valid function.

E_INTERNAL Internal Silk Test Classic error.

E_INVALID_REQUEST Invalid argument count or argument, or wrong number of
arguments.

E_ITEM_INDEX_INVALID The specified index is not a valid item index.

E_ITEM_NOT_FOUND The specified item was not found.

E_ITEM_NOT_VISIBLE The specified item is not visible.

E_KEY_COUNT_INVALID The repeat count used in the key specification is not a
valid number.

E_KEY_NAME_INVALID The specified key name is not valid.

E_KEY_SYNTAX_ERROR The syntax used in the key specification is not valid.

E_LINE_COUNT_INVALID The specified line count is not valid.

E_LINE_NUM_INVALID The specified line number is not valid.

564 | Troubleshooting the Open Agent

Exception value Description

E_LINE_START_EXCEEDS_END The specified start line exceeds the end line number.

E_MOUSE_BUTTON_INVALID The specified mouse button is not valid

E_NO_ACTIVE_WINDOW No window is active.

E_NO_COLUMN GuptaTable exception.

E_NO_DEFAULT_PUSHBUTTON The dialog box does not have a default button.

E_NO_FOCUS_WINDOW No window has the input focus.

E_NO_SETFOCUS_CELL GuptaTable exception.

E_NO_SETFOCUS_COLUMN GuptaTable exception.

E_NO_SETTEXT_CELL GuptaTable exception.

E_NOFOCUS_CELL No cell in the Gupta table has input focus.

E_NOFOCUS_COLUMN No column in the Gupta table has input focus.

E_NOFOCUS_ROW No row in the Gupta table has input focus.

E_NOT_A_TABLEWINDOW The specified window is not a Gupta table.

E_OPTION_CLASS_MAP_INVALID The mapping specified with the OPT_CLASS_MAP
option is not valid.

E_OPTION_EVTSTR_LENGTH The length of the event string given in
OPT_MENU_INVOKE_POPUP was too long.

E_OPTION_NAME_INVALID The specified agent option does not exist.

E_OPTION_TOO_MANY_TAGS The maximum number of tags was exceeded when
specifying buttons and menu items using one or more of
these options:

• OPT_CLOSE_CONFIRM_BUTTONS

• OPT_CLOSE_WINDOW_BUTTONS

• OPT_CLOSE_WINDOW_MENUS

E_OPTION_TYPE_MISMATCH Mismatch between type of agent option and type of
specified value.

E_OPTION_VALUE_INVALID The specified agent option is not valid.

E_OUT_OF_MEMORY The system has run out of memory.

E_POS_INVALID The specified position is not valid.

E_POS_NOT_REACHABLE The specified position cannot be reached. It is out of
range of the object.

E_RESOURCE_NOT_FOUND The widget does not contain the specified resource.

E_ROW_INDEX_INVALID The specified index is not a valid row index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_SBAR_HAS_NO_THUMB The scroll bar thumb can not be clicked to scroll a page
because the scroll bar does not have a thumb.

E_SQLW_BAD_COLUMN_NAME A bad column name was specified for the Gupta table.

Troubleshooting the Open Agent | 565

Exception value Description

E_SQLW_BAD_COLUMN_NUMBER A bad column number was specified for the Gupta table.

E_SQLW_BAD_ROW_NUMBER A bad row number was specified for the Gupta table.

E_SQLW_CANT_ENTER_TEXT GuptaTable exception.

E_SQLW_INCORRECT_LIST GuptaTable exception.

E_SQLW_NO_EDIT_WINDOW GuptaTable exception.

E_SQLW_TABLE_WINDOW_HIDDEN GuptaTable exception.

E_SQLW_TOO_BIG_LIST GuptaTable exception.

E_SYSTEM A system operation has failed.

E_TAG_SYNTAX_ERROR The tag syntax is not valid: invalid coordinate or index,
multiple indices specified, the window part is not the last
part of the tag, or the tilde (~) is not followed by a child
window.

E_TIMER The specified timer operation is redundant. For example,
a pause operation specified for a stopped timer.

E_TRAP_NOT_SET Attempted to clear a trap that was not set.

E_UNSUPPORTED The specified method is not supported on the current
platform.

E_VAR_EXPECTED A function or method call has not passed a variable for a
required parameter or an expression failed to specify a
variable required by an operator.

E_VERIFY User-specified verification failed.

E_WINDOW_INDEX_INVALID The tag uses an invalid index number.

E_WINDOW_NOT_ACTIVE The specified window is not active.

E_WINDOW_NOT_ENABLED The specified window is not enabled.

E_WINDOW_NOT_EXPOSED The specified window is not exposed.

E_WINDOW_NOT_FOUND The specified window is not found. Raised by any method
that operates on a window, except Exists.

E_WINDOW_NOT_UNIQUE The specified identifier does not represent a unique
window. Raised by any method that operates on a
window. Affected by the value set with the
OPT_VERIFY_UNIQUE option.

If you receive this exception, you might try using a slightly
modified tag syntax to refer to a window with a non-
unique tag. You can either include an index number after
the object, as in Dbox ("Cancel[2]"), or you can
specify the window by including the text of a child that
uniquely identifies the window, such as Dbox/
uniqueText/..., where the unique text is the tag of
a child of that window.

E_WINDOW_SIZE_INVALID The window size is too big for the screen or it is negative.

566 | Troubleshooting the Open Agent

Exception value Description

E_WINDOW_TYPE_MISMATCH The specified window is not valid for this method. Raised
when the type of window used is not the type the method
accepts.

Troubleshooting Java Applications
This section provides solutions for common reasons that might lead to a failure of the test of your
standalone Java application or applet. If these do not solve the specific problem that you are having, you
can enable your extension manually.

The test of your standalone Java application or applet may fail if the application or applet was not ready to
test, the Java plug-in was not enabled properly, if there is a Java recognition issue, or if the Java applet
does not contain any Java controls within the JavaMainWin.

What Can I Do If the Silk Test Java File Is Not Included
in a Plug-In?
If the SilkTest_Java3.jar file is not included in the lib/ext directory of the plug-in that you are
using:

1. Locate the lib/ext directory of the plug-in that you are using and check if the SilkTest_Java3.jar
file is included in this folder.

2. If the SilkTest_Java3.jar file is not included in the folder, copy the file from the javaex folder of
the Silk Test installation directory into thelib\ext directory of the plug-in.

What Can I Do If Java Controls In an Applet Are Not
Recognized?
Silk Test Classic cannot recognize any Java children within an applet if your applet contains only custom
classes, which are Java classes that are not recognized by default, for example a frame containing only an
image. For information about mapping custom classes to standard classes, see Mapping Custom Classes
to Standard Classes. Additionally, you have to set the Java security privileges that are required by Silk Test
Classic.

Multiple Machines Testing
This section provides help and troubleshooting information for testing on multiple machines.

Setting Up the Recovery System for Multiple Local
Applications

Problem

By default, the recovery system will only work for the single application assigned to the const
wMainWindow. With distributed testing, you can get recovery on multiple applications by using
multitestcase instead of testcase.

You might ask whether you can get the recovery system to work on multiple applications that are running
locally using multitestcase locally. The answer is no; multitestcase is for distributed testing only.

Troubleshooting the Open Agent | 567

But you can use the following solution instead, using testcase.

Solution

To get recovery for multiple local applications, set up your frame file to do the following:

1. Get standard wMainWindow declarations for each application. The easiest way is to select File > New
> Test Frame for each application, then combine the wMainWindow declarations into a single frame file
or include them with use.

2. Make the global wMainWindow a variable of type WINDOW, rather than a constant.
3. Assign one of the windows to wMainWindow as a starting point.
4. Create a LIST OF WINDOW and assign the wMainWindow identifier for each application you are

dealing with to it.
5. Define a TestcaseEnter function so that you reassign the wMainWindow variable and call

SetAppState on each MainWin in turn.
6. Define a TestcaseExit function so that you reassign the wMainWindow variable and call

SetBaseState on each MainWin in turn.
7. Then use DefaultBaseState, or your own base state if you want, with each of your test cases. In

your test case, use SetActive each time you switch from one application to the other.

Example

The example consists of two sample files. The sample files are for the Classic Agent. If
you want to use the example with the Open Agent, you have to change the sample
code. For the sample script file, see two_apps.t. For the sample include file, see
two_apps.inc. The example uses two demo applications shipped with Silk Test
Classic, the Text Editor and the Test Application. To see that the recovery system is
working for both applications, turn on the two debugging options in Runtime Options
and look at the transcript after running the test script.

The first test case has an intentional error in its last statement to demonstrate the
recovery system. The test case also demonstrates how to move data from one
application to another with Clipboard.GetText and Clipboard.SetText.

Because the recovery system is on, the DefaultBaseState will take care of invoking
each application if it is not already running and will return to the DefaultBaseState after
each test case, even if the test case fails.

You can print the sample files out or copy them to the Clipboard, then paste them into
Silk Test Classic. You might have to do some cleanup where the indentation of lines is
incorrect in the pasted file.

two_apps.t
The following sample script file for the Classic Agent shows how you can locally test multiple applications.
To use the sample with the Open Agent, you have to change the sample code, for example you have to
replace all tags with locators.

testcase Test1 () appstate DefaultBaseState
 //SetActive each time you switch apps
 TestApplication.SetActive()
 TestApplication.File.New.Pick ()
 MDIChildWindow1.TextField1.SetPosition (1, 1)
 MDIChildWindow1.TextField1.TypeKeys ("In Test Application MDI Child Window
#1.")
 //SetActive each time you switch apps
 TextEditor.SetActive ()
 TextEditor.File.New.Pick ()
 TextEditor.ChildWin("(untitled)[1]").TextField("#1")

568 | Troubleshooting the Open Agent

 .TypeKeys ("In Text Editor untitled Document window.<Enter>")
 //SetActive each time you switch apps
 TestApplication.SetActive()
 LIST OF STRING lsTempStrings
 lsTempStrings = MDIChildWindow1.TextField1.GetMultiText()
 Clipboard.SetText([LIST OF STRING]lsTempStrings)
 //SetActive each time you switch apps
 TextEditor.SetActive()
 TextEditor.ChildWin("(untitled)
[1]").TextField("#1").SetMultiText(Clipboard.GetText(),2)
 TextEditor.VerifyCaption("FooBar")

testcase Test2 () appstate DefaultBaseState
 wMainWindow = TestApplication
 TestApplication.SetActive()
 TestApplication.File.New.Pick ()
 MDIChildWindow1.TextField1.SetPosition (1, 1)
 MDIChildWindow1.TextField1.TypeKeys ("In Test Application MDI Child Window
#1.")
 wMainWindow = TextEditor
 TextEditor.SetActive ()
 TextEditor.File.New.Pick ()
 TextEditor.ChildWin("(untitled)[1]").TextField("#1")
 .TypeKeys ("In Text Editor untitled Document window.<Enter>")
 wMainWindow = TestApplication
 TestApplication.SetActive()
 LIST OF STRING lsTempStrings
 lsTempStrings = MDIChildWindow1.TextField1.GetMultiText()
 Clipboard.SetText([LIST OF STRING]lsTempStrings)
 wMainWindow = TextEditor
 TextEditor.SetActive()
 TextEditor.ChildWin("(untitled)
[1]").TextField("#1").SetMultiText(Clipboard.GetText(),2)

two_apps.inc
The following sample include file for the Classic Agent shows how you can locally test multiple applications.
To use the sample with the Open Agent, you have to change the sample code, for example you have to
replace all tags with locators.

// two_apps.inc
// define wMainWindow as a window global var
// and assign one of the apps (your pick) as a starting point.
window wMainWindow = TextEditor
const wMainWindow = TextEditor //replace default def

// Create a list of app MainWins
list of window lwApps = {...}
TextEditor
TestApplication
// Define your own TestCaseEnter.
TestCaseEnter ()
 window wCurrentApp
 for each wCurrentApp in lwApps
 wMainWindow = wCurrentApp
 SetAppState()

// Define your own TestCaseExit.
TestCaseExit (BOOLEAN bException)
 if bException
 ExceptLog()
 window wCurrentApp
 for each wCurrentApp in lwApps

Troubleshooting the Open Agent | 569

 wMainWindow = wCurrentApp
 if (wCurrentApp.Exists())
 SetBaseState()

window MainWin TextEditor
 tag "Text Editor"

// The working directory of the application when it is invoked
const sDir = "C:\QAP40"
// The command line used to invoke the application
const sCmdLine = "C:\PROGRAMFILES\<SilkTest install directory>\\SILKTEST
\TEXTEDIT.EXE"

// The first window to appear when the application is invoked
// const wStartup = ?

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}
Menu File
 tag "File"
 MenuItem New
 tag "New"
 MenuItem Open
 tag "Open"
 MenuItem Close
 tag "Close"
 MenuItem Save
 tag "Save"
 MenuItem SaveAs
 tag "Save As"
 MenuItem Print
 tag "Print"
 MenuItem PrinterSetup
 tag "Printer Setup"
 MenuItem Exit
 tag "Exit"
 Menu Edit
 tag "Edit"
 MenuItem Undo
 tag "Undo"
 MenuItem Cut
 tag "Cut"
 MenuItem Copy
 tag "Copy"
 MenuItem Paste
 tag "Paste"
 MenuItem Delete
 tag "Delete"
 Menu Search
 tag "Search"
 MenuItem Find
 tag "Find"
 MenuItem FindNext
 tag "Find Next"
 MenuItem Replace
 tag "Replace"
 MenuItem GotoLine
 tag "Goto Line"
 Menu Options
 tag "Options"
 MenuItem Font
 tag "Font"
 MenuItem Tabs
 tag "Tabs"

570 | Troubleshooting the Open Agent

 MenuItem AutomaticIndent
 tag "Automatic indent"
 MenuItem CreateBackups
 tag "Create backups"
 Menu xWindow
 tag "Window"
 MenuItem TileVertically
 tag "Tile Vertically"
 MenuItem TileHorizontally
 tag "Tile Horizontally"
 MenuItem Cascade
 tag "Cascade"
 MenuItem ArrangeIcons
 tag "Arrange Icons"
 MenuItem CloseAll
 tag "Close All"
 MenuItem Next
 tag "Next"
 Menu Help
 tag "Help"
 MenuItem About
 tag "About"

window MessageBoxClass MessageBox
 tag "~ActiveApp/[DialogBox]$MessageBox"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Yes
 tag "Yes"
 PushButton No
 tag "No"
 StaticText Message
 mswnt tag "#2"
 tag "#1"

window ChildWin Untitled
 tag "(untitled)"
 parent TextEditor
 TextField TextField1
 tag "#1"

window DialogBox Open
 tag "Open"
 parent TextEditor
 StaticText FileNameText
 tag "File Name:"
 TextField FileName1
 tag "File Name:"
 ListBox FileName2
 tag "File Name:"
 StaticText DirectoriesText
 tag "Directories:"
 StaticText CQap40Text
 tag "c:\qap40"
 ListBox CQap40
 tag "c:\qap40"
 StaticText ListFilesOfTypeText
 tag "List Files of Type:"
 PopupList ListFilesOfType
 tag "List Files of Type:"
 StaticText DrivesText
 tag "Drives:"

Troubleshooting the Open Agent | 571

 PopupList Drives
 tag "Drives:"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Network
 tag "Network"

window MainWin TestApplication
 tag "Test Application"
// The working directory of the application when it is invoked
const sDir = "C:\QAP40"

// The command line used to invoke the application
const sCmdLine = "C:\QAP40\TESTAPP.EXE"

// The first window to appear when the application is invoked
// const wStartup = ?

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}
Menu File
 tag "File"
 MenuItem New
 tag "New"
 MenuItem Close
 tag "Close"
 MenuItem Exit
 tag "Exit"
 MenuItem About
 tag "About"
Menu Control
 tag "Control"
 MenuItem CheckBox
 tag "Check box"
 MenuItem ComboBox
 tag "Combo box"
 MenuItem ListBox
 tag "List box"
 MenuItem PopupList
 tag "Popup list"
 MenuItem PushButton
 tag "Push button"
 MenuItem RadioButton
 tag "Radio button"
 MenuItem StaticText
 tag "Static text"
 MenuItem Scrollbar
 tag "Scrollbar"
 MenuItem Textfield
 tag "Textfield"
 MenuItem DrawingArea
 tag "Drawing area"
 MenuItem KeyboardEvents
 tag "Keyboard events"
 MenuItem Cursors
 tag "Cursors"
 MenuItem ListView
 tag "List view"
 MenuItem PageList
 tag "Page list"
 MenuItem StatusBar
 tag "Status bar"

572 | Troubleshooting the Open Agent

 MenuItem ToolBar
 tag "Tool bar"
 MenuItem TrackBar
 tag "Track bar"
 MenuItem TreeView
 tag "Tree view"
 MenuItem UpDown
 tag "Up-Down"
Menu Menu
 tag "Menu"
 MenuItem TheItem
 tag "The item"
 MenuItem TheAcceleratorItem
 tag "The accelerator item"
 Menu TheCascadeItem
 tag "The cascade item"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 MenuItem Check
 tag "Check"
 MenuItem Uncheck
 tag "Uncheck"
 MenuItem TheCheckItem
 tag "The check item"
 MenuItem Enable
 tag "Enable"
 MenuItem Disable
 tag "Disable"
 MenuItem TheEnableItem
 tag "The enable item"
 Menu Submenu1
 tag "Submenu1"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Submenu2
 tag "Submenu2"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Submenu3
 tag "Submenu3"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 MenuItem ThePopupMenu
 tag "The popup menu"
 MenuItem Check
 tag "Check"
 MenuItem Uncheck
 tag "Uncheck"
 MenuItem TheCheckItem
 tag "The check item"
 MenuItem Enable
 tag "Enable"
 MenuItem Disable
 tag "Disable"
 MenuItem TheEnableItem
 tag "The enable item"

Troubleshooting the Open Agent | 573

 MenuItem AddMenu
 tag "Add menu"
 MenuItem ClearMenus
 tag "Clear menus"
 Menu DisabledMenu
 tag "DisabledMenu"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Menu5
 tag "#5"
 MenuItem MenuItem1
 tag "#1"
 MenuItem MenuItem2
 tag "#2"
 Menu xWindow
 tag "Window"
 MenuItem Cascade
 tag "Cascade"
 MenuItem Tile
 tag "Tile"
 MenuItem ArrangeIcons
 tag "Arrange Icons"
 MenuItem CloseAll
 tag "Close All"
 MenuItem ChangeCaption
 tag "Change Caption"
 MenuItem SysModal1
 tag "SysModal 1"
 MenuItem SysModal2
 tag "SysModal 2"
 MenuItem SysModal3
 tag "SysModal 3"
 MenuItem N1MDIChildWindow1
 tag "1 MDI Child Window #1"

window ChildWin MDIChildWindow1
 tag "MDI Child Window #1"
 parent TestApplication
 TextField TextField1
 tag "#1"

Other Problems
This section provides help and troubleshooting information for problems that are not covered by another
section.

Adding a Property to the Recorder
1. Write a method.
2. Add a property to the class.
3. Add the property to the list of property names.

For example, if you have a text field that is ReadOnly and you want to add that property to the recorder
you can do the following:

1. Write the method Boolean IsReadOnly() for the TextField class.
2. Add the property, bReadOnly to the class.

574 | Troubleshooting the Open Agent

3. Add bReadOnly to the list of property names.
4. Compile. bReadOnly will appear in the Recorder after you compile.

Winclass TextField : TextFieldBOOLEAN IsReadOnly()
STRING sOriginalText = this.GetText()
STRING sNewText = "xxx"
this.SetText(sNewText)
if this.GetText()==sOriginalText
return TRUE
else
return FALSE
property bReadOnly
BOOLEAN Get()
return this.IsReadOnly()
LIST OF STRING IsPropertyNames = {…}
"bReadOnly"

Cannot Double-Click a Silk Test Classic File and Open
Silk Test Classic

Problem

Silk Test Classic does not open automatically when you double-click
a .t, .inc, .s, .g.t, .pln, .res, .stp, or .vtp file.

Cause

During the install process, Silk Test Classic is associated with these file types. However if these file type
associations have been changed after Silk Test Classic setup, these file types may not be opened with Silk
Test Classic when double-clicking such a file.

Note: File type associations are only available for Microsoft Windows platforms.

Solution

You can either manually associate these file types with Silk Test Classic in Windows, under Start >
Settings > Control Panel > Folder Options, or reinstall Silk Test Classic.

Cannot Extend AnyWin, Control, or MoveableWin
Classes
The AnyWin, Control, and MoveableWin classes are logical (virtual) classes that do not correspond to
any actual GUI objects, but instead define methods common to the classes that derive from them. This
means that Silk Test Classic never records a declaration that has one of these classes.

Furthermore, you cannot extend or override logical classes. If you try to extend a logical class, by adding a
method, property or data member to it, that method, property, or data member is not inherited by classes
derived from the class. You will get a compilation error saying that the method, property, or data member is
not defined for the window that tries to call it.

You can also not override the class, by rewriting existing methods, properties, or data members. Your
modifications are not inherited by classes derived from the class.

Troubleshooting the Open Agent | 575

Cannot open results file

Problem

Silk Test Classic crashes while running a script and reports the error Can't open results file.

Solution

While Silk Test Classic is running a script, it temporarily stores results in a journal file (.jou) which is
converted to a .res file when the script finishes running.

To solve this issue, delete all .jou files in the same directory as the script. You do not have to delete your
results files.

Then restart Silk Test Classic and run your script again.

Common DLL Problems
Here are some issues that could come up if you are calling DLL functions in a script.

Difficulty creating DLLs to use with Silk Test

Only specific data types are compatible with 4Test. These data types are listed in C data types for DLL
functions.

If your DLL calls have data types not supported by 4Test, then the functions must be wrapped such that
only compatible data types are used for the return type and arguments of the function. Any data types can
be used inside the DLL function.

Error after compile: dll not found

In the DLL declaration, use the fully qualified path of the DLL, not just the file name.

Error executing 'CallDllFunction'

When the communication timeout between the Open Agent and the application under test is too small, the
CallDllFunction might generate the error message Error executing 'CallDllFunction'.
Communication timeout between agent and application.

To solve this issue, increase the timeout.

1. Stop the Open Agent.
2. Open the file %OPEN_AGENT_HOME%/agent/openAgent.ini.
3. Append the following code to the file:

-DDefaultCommTimeout=300000

This code sets the timeout to 300000 milliseconds, which means 5 minutes. To specify no timeout, set
the value to -1.

4. Restart the Open Agent.

Error in results file: dll could not be loaded

Make sure the directory containing the DLL is on the path.

Error in results file: dll not found

This usually means that your path does not include the directory containing the DLL. If you are running
remotely, make sure that the path on the machine running the agent includes the DLL directory.

576 | Troubleshooting the Open Agent

Error in results file: function <name> not found in dll

The most likely scenario is that the DLL is a C++ library and the function name has been mangled. To use
functions in a C++ library, you need to wrap the functions with the C wrapper and recompile. Then Silk Test
Classic can access the function in the library.

If this is not the problem, there might be a typo in the function name in the DLL.

Warning in results file: String buffer size was increased from x to 256
characters

If the user calls a DLL function with an output string buffer that is less then the minimum size of 256
characters, the original string buffer is resized to 256 characters and a warning is printed. This warning,
String buffer size was increased from x to 256 characters (where x is the length of the
given string plus one) alerts the user to a potential problem where the buffer used might be shorter than
necessary.

Common Scripting Problems
Here are some common problems that occur with scripts.

Typographical errors

It is very easy to make typographical errors that the 4Test compiler cannot catch. If a line of code does
nothing, this might be the problem.

Global variables with unexpected values

When you write a function that uses global variables, make sure that each variable has an appropriate
value when the function exits. If another function uses the same variable later, and it has an unexpected
value on entry to the function, an error could occur.

To check that a variable has a reasonable value on entry to a function, set a breakpoint on the line that
calls the function and use the command View > Global Variables to check the variable's value.

Uninitialized variables

Silk Test Classic does not initialize variables for you. So if you have not initialized a variable on entry to a
function, it will have the value <unset>. It is better to explicitly give a value to a variable than to trust that
another function has already initialized it for you. Also, remember that 4Test does not keep local variables
around after a function exits; the next time the function is called, its local variables could be uninitialized.

If you are in doubt about whether a variable has a reasonable value at a particular point, set a breakpoint
there and use View > Global Variables or View > Local Variables to check the variable's value.

Global and local variables with the same name

It is usually not good programming practice to give different variables the same names. If a global and local
variable with the same name are in scope (accessible) at the same time, your code can only access the
local variable.

To check for repeated names, use View > Local Variables and View > Global Variables to see if two
variables with the same name are in scope simultaneously.

Incorrect values for loop variables

When you write a for loop or a while loop, be sure that the initial, final, and step values for the variable that
controls the loop are correct. Incrementing a loop variable one time more or less than you really want is a
common source of errors.

Troubleshooting the Open Agent | 577

To make sure a control loop works as you expect, use Debug > Step Into to step through the execution of
the loop one statement at a time, and watch how the value of the loop variable changes using View >
Local Variables.

Checking the precedence of operators

The order in which 4Test applies operators when it evaluates an expression may not be what you expect.
Use parentheses, or break an expression down into intermediate steps, to make sure it works as expected.
You can use View/Expression to evaluate an expression and check the result.

Incorrect uses of break statements

A break statement transfers control of the script out of the innermost nested for, for each, while, switch, or
select statement only. In other words, break exits from a single loop level, not from multiple levels. Use
Debug > Step Into to step through the script one line at a time and ensure that the flow of control works as
you expect.

Infinite loops

To check for infinite loops, step through the script with Debug > Step Into.

Code that never executes

To check for code that never executes, step through the script with Debug > Step Into.

Conflict with Virus Detectors

Problem

Silk Test Classic will occasionally have problems on machines running virus detectors that use heuristic or
algorithmic virus detection in addition to the standard pattern recognition. What happens is that while Silk
Test Classic is running, the virus detector identifies Silk Test Classic as displaying "virus-like" behavior, and
kills or otherwise disables the agent. This leads to unpredictable and inconsistent behavior in Silk Test
Classic, including loss of communications with the agent and inconsistent test results or object recognition.

Solution

To avoid this problem the only solution is to temporarily disable the virus detector while Silk Test Classic is
running.

Displaying the Euro Symbol

Problem

You want to display the Euro (€) symbol.

Solution

Download a Euro-enabled font from Microsoft. Double check that you can see the Euro symbol by opening
Notepad on the machine where you installed the font and entering the ASCII code for the Euro symbol. As
long as you see the symbol in notepad, you should be able to see it within Silk Test Classic.

In Silk Test Classic, click Options > Editor Font and be sure that your font is set to Arial, Courier New, or
Times New Roman.

578 | Troubleshooting the Open Agent

Do I Need Administrator Privileges to Run Silk Test
Classic?
You require the following privileges to install or run Silk Test Classic:

• To install Silk Test Classic, you must have local administrator privileges.
• To install Silk Test Classic on a Windows server, you must have domain-level administrator privileges.
• To run Silk Test Classic with the Classic Agent, you must have administrator privileges.
• If you have installed Silk Test Classic into the Program Files folder, you must have administrator

privileges to run Silk Test Classic with the Open Agent.
• If you have installed Silk Test Classic into a different location than the Program Files folder, you do

not need to have administrator privileges to run Silk Test Classic with the Open Agent.
• To run Silk Test Classic, you require full access rights to the following folders, including all subfolders:

• C:\ProgramData\Silk\SilkTest.
• %APPDATA%\Roaming\Silk\SilkTest.
• %APPDATA%\Local\Silk\SilkTest.
• %TEMP%.

Note: If User Account Control (UAC) is activated on your system, Micro Focus recommends that you
install Silk Test Classic into a different location than the Program Files folder.

Does Silk Test Classic Support Oracle Forms?

Open Agent

If you are using the Open Agent, Silk Test Classic provides built-in support for testing applications that are
based on Oracle Forms with a Java version up to Java 1.7 update 60. For additional information, see
Oracle Forms Support.

Classic Agent

If you are using the Classic Agent, Silk Test Classic handles Oracle Forms applications as any Java applet
that consists of custom classes.

All children of the applet are seen as CustomWins, with native class names such as oracle.ewt.* and
oracle.forms.*. You need to declare winclasses for any classes that you plan to use, and you can only
interact with classes through scripting. For more efficient declaration of classes, use the
CaptureAllClasses function instead of clicking Record > Class to record each class separately.

As with any application consisting of custom classes, if there are objects that Silk Test Classic does not
see, check Show All Classes to see if that exposes the ignored objects. If so, then you should add those
classes to the [ClassList] section of extend\JavaEx.ini. Uncheck Show All Classes before
recording window classes or declarations.

To get started, take a look at our guidelines for when and how to record classes.

If you do not want to record classes for these CustomWin objects, you can click Record > Class and then
uncheck the Show All Classes check box in the lower left corner of the dialog box.

Troubleshooting the Open Agent | 579

General Protection Faults

Problem

When recording or running tests, you get a General Protection Fault (GPF) or Invalid Page
Fault (IPF) in agent.exe or partner.exe.

Solution

It can be very difficult to pin down the cause of these problems. It might involve a combination of your
machine's configuration, other applications that are running, and the network's configuration. The best
approach is to gather the diagnostic information described below and send it to Technical Support with a
detailed description of what scenario led to the error.

Capture the
system
diagnostics

When the system error message displays, chose the option to capture detailed
information on the error. Write the information down.

Capture a
debug.log file

1. Ensure that no Silk Test Classic or Agent processes are running.
2. Open a DOS prompt window.
3. Change your working directory to your Silk Test Classic installation directory.
4. Delete or rename c:\debug.log if the file exists.
5. Set the following environment variable: set QAP_DEBUG_AGENT=1.
6. Start the Agent manually: start .\agent.
7. Start Silk Test Classic manually: start .\partner.
8. Go through the scenario to reproduce the problem.
9. The file c:\debug.log file will be created.
10.Send this file as an attachment to your email to Technical Support.

Monitor CPU and
RAM usage

When reproducing this error to gather the diagnostics above, also run a system
resource monitor to check on CPU and RAM usage. Note whether CPU or RAM is
being exhausted.

Note your system
configuration

When sending in these diagnostics, note the version of Silk Test Classic, the
operating system and version, and the machine configuration (CPU, RAM, disk
space).

Running Global Variables from a Test Plan Versus
Running Them from a Script

Problem

When running from a test plan, global variables don’t keep their value from one test case to another.

When test cases are run from a script, global variables are initialized once at the beginning and do not get
reset while the script is being run. On the other hand, when you run test cases from a test plan, all global
variables get re-initialized after each test case. This is because the Agent reinitializes itself before running
each test case. Consequently, you may find that global variables are not as useful when running from a test
plan.

580 | Troubleshooting the Open Agent

Solution

A workaround is to use the FileWriteLine or FileWriteValue function to write the values of the
global variables out to a file, then use the FileReadLine or FileReadValue function to read the value
back into each variable in each test case.

Include File or Script Compiles but Changes are Not
Picked Up

Problem

You compile an include file or script, but changes that you made are not used when you run the script.

Solutions

Did you change
the wrong
include file?

Make sure that the include file you are compiling is the same as the file that is being
used by the script. Just because you have an include file open and have just compiled
it does not mean that it is being used by the script. The include file that the script will
use is either specified in Runtime Options (Use Files field) or by a use statement in the
script.

Is there a time-
stamp
problem?

If the time stamp for the file on disk is later than the machine time when you do Run >
Compile, then the compile does not actually happen and no message is given. This
can happen if two machines are sharing a file system where the files are being written
out and the time on the machines is not synchronized.

By default, Silk Test Classic only compiles files that need compiling, based on the date
of the existing object files and the system clock. This way, you don't have to wait to
recompile all files each time a change is made to one file.

If you need to, you can force Silk Test Classic to compile all files by selecting Run >
Compile All. Run > Compile All compiles the script or suite and all dependent
include files, even if they have not changed since they were last compiled. It also
compiles files listed in the Use Files field in the Runtime Options dialog and the
compiler constants declared in the Runtime Options dialog. Finally, it compiles the
include files loaded at startup, if needed.

Are your object
files corrupted?

Sometimes a Silk Test Classic object (.ino or .to) file can become corrupted.
Sometimes a corrupted object file can cause Silk Test Classic to assume that the
existing compile is up to date and to skip the recompile without any message.

To work around this, delete all .ino and .to files in the directories containing
the .inc and .t files you are trying to compile, then compile again.

Library Browser Not Displaying User-Defined Methods

Problem

You add a description for a user-defined method and a user-defined function to 4test.txt. After
restarting Silk Test Classic, the new description for the function displays in the Library Browser, but not the
description for the method. So you know that the modified 4test.txt file is being used, but your user-
defined method is not being displayed in the Library Browser.

Troubleshooting the Open Agent | 581

Solutions

Only methods defined in a class definition (that is, in your include file where your class is defined) will
display in the Library Browser. For example, MyAccept will be displayed.

winclass DialogBox:DialogBox
Boolean MyAccept()
...

Methods you define for an individual object are not displayed in the Library Browser. For example,
MyDialogAccept will not display.

DialogBox MyDialog
tag "My Dialog"
Boolean MyDialogAccept()
...

In order to display in the Library Browser, the description in your 4test.txt file must have a return type
that matches the return type in your include file declaration. If the 4test.txt description has no returns
statement, then the declaration must be for a return type of void (either specified explicitly or by defaulting
to type void). Otherwise, the description will not display in the Library Browser.

For more information about adding information to the Library Browser, see Adding to the Library Browser.

Maximum Size of Silk Test Classic Files
The following size limits apply:

• The limit for .inc, .t, and .pln files (and their associated backup files, .*_) is 64K lines.
• The size limit for the corresponding object files (.*o) depends on the amount of available system

memory.
• The Silk Test Classic editor limits lines to 1024 characters.
• The maximum size of a single entry in a .res file is 64K.
• Test case names can have a maximum of 127 characters. When you create a data-driven test case, Silk

Test Classic truncates any test case name that is greater than 124 characters.

Recorder Does Not Capture All Actions

Problem

While recording, the Silk Test Recorder does not capture all actions in your application under test, though
you complete the actions.

Cause

The application under test may be "going too fast" and the Silk Test Recorder may not be able to keep up.

Solution

Slow down the interactions with your application while recording. Record a test case at the speed of the
Silk Test Recorder.

582 | Troubleshooting the Open Agent

Relationship between Exceptions Defined in 4test.inc
and Messages Sent To the Result File
Silk Test Classic calls LogError automatically when it raises an exception that you have not handled. By
reading 4test.inc you can find that Silk Test Classic has a list of exceptions like:

E_ABORT = -10100,
E_TBL_HAS_NO_ROW_HDR = -30100,
E_WINDOW_NOT_FOUND = -27800

Since exception numbers can apply to more than one exception, it can be helpful to query on a particular
exception number via ExceptNum() to decide how to handle an error. If you need to query on a specific
exception message, you can use ExceptData(). We recommend using MatchStr() with
ExceptData().

To find the E_... constant for any 4Test exception, you can use:

[-] do
 <code that causes exception>
[-] except
[] LogWarning ("Exception number: {[EXCEPTION]ExceptNum ()}")
[] reraise

This will print out the exception constant in the warning.

Be sure to remove the LogWarning do..except block after you have found the E_... constant.

The 4Test Editor Does Not Display Enough Characters

Problem

While you can edit 4Test files outside of Silk Test Classic and create lines with more than 1024 characters,
the Silk Test 4Test Editor (4Test Editor) does not let you edit or extend these lines.

The line limit of the 4Test Editor is 1024 characters.

Solution

Use the <Shift+Enter> continuation character to break the line into smaller lines.

Silk Test Classic Support of Delphi Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

While there is no support for Delphi controls "out of the box", virtually all of the Delphi objects can be class
mapped to standard controls.

The following code sample shows the class mapping for the Classic Agent classes:

[ClassMap]
DialogBox,0x50000044,0x50000044=Ignore
TBitBtn=PushButton
TButton=PushButton
TCheckBox=CheckBox
TComboBox=ComboBox
TDBCheckBox=CheckBox
TDBComboBox=ComboBox
TDBEdit=TextField
TDBListBox=ListBox
TDBLookupComboBox=ComboBox

Troubleshooting the Open Agent | 583

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

TDBLookupListBox=ListBox
TDBMemo=TextField
TDBRadioGroup=Ignore
TEdit=TextField
TFlyingPanel=Toolbar
TGroupBox=StaticText
TGroupButton=RadioButton
TListBox=ListBox
TListView=ListView
TMaskEdit=TextField
TMemo=TextField
TPageControl=PageList
TPanel=Ignore
TRadioButton=RadioButton
TRadioGroup=Ignore
TRichEdit=TextField
TRicherEdit=TextField
TScrollBar=ScrollBar
TStatusBar=StatusBar
TTabControl=PageList
TTreeView=TreeView
TUpDown=UpDown

Notes

Silk Test Classic can work with Delphi objects in a variety of ways. The amount of functionality you achieve
depends on how deep you want to get involved. You can even create an extension (external) for Delphi
objects. Delphi supports DLL calling, and you can use DLL's created in C/C++ in your Delphi application.
Class mapping will work in many instances, but not with every object.

If class mapping doesn't work, you can try any of the following workarounds:

1. Using SendMessage with the Clipboard.

• Delphi is built with VCL. The VCL (Visual Component Library) is similar to MFC in that all of the
classes of objects that Delphi can create are in this library. Instead of C++ it is written in Object
Pascal. The VCL source code is shipped with the Delphi product. In the VCL source, you can go to
the definition of the object class that you want to support for and add message handlers (windows
API messages) for various messages that you define.

• For example, add a message handler that says that if any object of this class receives a message
called QAP_GetValue, get the contents of the listbox, send a message back to the process that
sent the message, and send it the value. On the Silk Test Classic side of things you define a new
class to support the object and add a method that sends/receives the message to the supported
object.

• For example, here is sample code of a message handler on the Delphi side:

procedure QAP_GetValue (var Msg: TMessageRecord);
var
ValueToReturn : string;
begin
CopyToClipBoard;
Msg.Result := true;
end;

• Here is sample code for the Window class on the 4Test side:

winclass DelphObj : Control
LIST OF STRING GetContents ()
if (SendMessage (this.hWnd, QAP_GetListContents, NULL, NULL))
return Clipboard.GetText ()
else
RaiseError (1, "Couldn't get the contents of {this},
SendMessageEvent not processed correctly")

584 | Troubleshooting the Open Agent

2. Using the Extension Kit, create a DLL that does the same thing as above, except passing values directly
from application to application rather than relying on the clipboard. This method is preferred over the
above because of speed and data type stability.

3. Use low level 4Test events relying on coordinates to create methods. Silk Test Classic low-level
recording should only be used when you want to use recording rather than hand scripting.

Open Agent

To test Delphi applications with the Open Agent you could use the custom control support. For additional
information, see Custom Controls (Open Agent).

Stopping a Test Plan

Problem

You want to abort a test plan programmatically without using exit. Calling exit just aborts the script and
continues on to the next test case.

Solution

You can call

[] @("$StopRunning") ()

from a test case or a recovery system function such as ScriptExit(), which is called for each test case
in the test plan, or TestCaseExit().

This call will stop everything without even invoking the recovery system. Calling it will generate the
following exception message, with no call stack: Exception -200000

Using a Property Instead of a Data Member
Data members are resolved (assigned values) during compilation. If the expression for the data member
includes variables that will change at run-time, then you must use a property instead of that data member.

Using File Functions to Add Information to the
Beginning of a File
In Silk Test Classic 5.5 SP1 or later, there is no file open mode that allows you to insert information into the
beginning of a file. If you use FM_UPDATE, you can read in part of your file before writing, but any write
function calls will overwrite the rest of the file.

If you are writing strings rather than structured data, you can use ListRead() and ListWrite() to
insert information at the beginning or any other point of a file. Use ListRead() to read the contents of the
file into a list, insert the new information at the head or any other point of the list, and use ListWrite() to
write it back out.

[-] LIST OF STRING lsNewInfo = {...}
[] "*New line one*"
[] "*New line two*"
[] "*New line three*"
[] LIST OF STRING lsFile
[] INTEGER i
[]
[] ListRead (lsFile, "{GetProgramDir ()}\Sample.txt")
[-] for i = 1 to ListCount (lsNewInfo)
[] ListInsert (lsFile, i, lsNewInfo[i])
[] ListWrite (lsFile, "{GetProgramDir ()}\Sample.txt")
[]

Troubleshooting the Open Agent | 585

Sample.txt before the write:

Line 1
Line 2
Line 3
Line 4
Line 5

Sample.txt after:

New line one
New line two
New line three
Line 1
Line 2
Line 3
Line 4
Line 5

Why do I get error 07002 when updating an Excel
sheet?
When you update an Excel sheet, the following error might be thrown:

" *** Error: (07002) [Microsoft][ODBC Excel Driver] Too few parameters.
Expected 1.

In this case, your query contains a field name that cannot be found. Ensure that the fields exist in the
sheet.

Why Does the Str Function Not Round Correctly?
Any decimal/float number has an internal binary representation. Unfortunately, you can never be sure if a
decimal value has an exact representation in its binary pendant. If an exact binary representation is not
possible (mathematical constraint), the nearest value is used and this leads to the issue where it seems the
str function is not rounding correctly. You can workaround this issue. Use the following code to see the
internal representation:

[] printf("%.a20e\n", 32.495)
[] printf("%.a20e\n", 31.495)

Troubleshooting Projects
This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project
If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a .vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

• If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

586 | Troubleshooting the Open Agent

• If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File
If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectIni= line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>.ini file and the ProjectIni=
line no longer points to the correct location of the .ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your .ini file. Additionally, the <projectname>.ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>.vtp file:

[ProjectProfile]
ProjectIni=C:\Program Files\<Silk Test install directory>
\SilkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project
You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run
The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

Project files that are moved or corrupted. Open the SilkTestClassic.ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>.ini and

Troubleshooting the Open Agent | 587

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner.ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>
 \SilkTest\Examples\ProjectName.vtp

A testplan.ini file that is corrupted. Delete or rename the corrupted testplan.ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List
After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test
If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files
You require good knowledge of your files and how the partner and <projectname>.ini files work before
attempting to edit these files. Be cautious when editing the <projectname>.vtp and
<projectname>.ini files.

To edit the <projectname>.vtp and <projectname>.ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname.ini files has changed, make sure you update that as well. Each file refers to the
other.

The ProjectProfile section in the projectname.vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>.vtp and <projectname>.ini files in a text editor outside of Silk Test
Classic.

Note: Do not edit the projectname.vtp and projectname.ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>.ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

588 | Troubleshooting the Open Agent

Recognition Issues
This section provides help and troubleshooting information for recognition issues.

How Can the Application Developers Make
Applications Ready for Automated Testing?
The attributes available for a specific control in the application under test (AUT) might not be sufficient to
guarantee that Silk Test Classic always recognizes the control during automated testing. In such a case the
application developer can add custom attributes to the control, which can then be used as locator attributes
for the control. The following examples describe how an application developer can include custom
attributes in different application types:

• To include custom attributes in a Web application, add them to the html tag. Type <input
type='button' bcauid='abc' value='click me' /> to add an attribute called bcauid.

• To include custom attributes in a Java SWT application, use the
org.swt.widgets.Widget.setData(String <varname>key</varname>, Object <varname>value</
varname>) method.

• To include custom attributes in a Swing application, use the putClientProperty("propertyName",
"propertyValue") method.

Tips
This section provides general troubleshooting tips.

Example Test Cases for the Find Dialog Box
If you want to test the Find dialog box, each test case would need to perform the following tasks:

1. Open a new document file.
2. Type text into the document.
3. Position the insertion point at the top of the file.
4. Select Find from the Search menu.
5. Select the forward (down) direction for the search.
6. Make the search case sensitive.

Non-Data-Driven Test Case for the Classic Agent
testcase FindTest ()
TextEditor.File.New.Pick ()
DocumentWindow.Document.TypeKeys ("Test Case<HOME>")
TextEditor.Search.Find.Pick ()
Find.FindWhat.SetText ("Case")
Find.CaseSensitive.Check ()
Find.Direction.Select ("Down")
Find.FindNext.Click ()
Find.Cancel.Click ()
DocumentWindow.Document.VerifySelText (<text>)
Case
TextEditor.File.Close.Pick ()
MessageBox.No.Click ()

The major disadvantage of this kind of test case is that it tests only one out of the many
possible sets of input data to the Find dialog box. To adequately test the Find dialog

Troubleshooting the Open Agent | 589

box, you must record or hand-write a separate test case for each possible combination
of input data that needs to be tested. In even a small application, this creates a huge
number of test cases, each of which must be maintained as the application changes.

Non-Data-Driven Test Case for the Open Agent

testcase Find ()
 recording
 UntitledNotepad.SetActive()
 UntitledNotepad.New.Pick()
 UntitledNotepad.TextField.TypeKeys("Test Case
<LessThan>Home")
 UntitledNotepad.TextField.PressKeys("<Left Shift>")
 UntitledNotepad.TextField.TypeKeys("<GreaterThan>")
 UntitledNotepad.Find.Pick()
 UntitledNotepad.FindDialog.FindWhat.SetText("Case")
 UntitledNotepad.FindDialog.Down.Select("Down")
 Tmp_findNotepad.Find.MatchCase.Check()
 UntitledNotepad.FindDialog.FindNext.Click()
 Tmp_findNotepad.Find.Cancel.Click()
 Tmp_findNotepad.Find.Close()

When to use the Bitmap Tool
You might want to use the Bitmap Tool in these situations:

• To compare a baseline bitmap against a bitmap generated during testing.
• To compare two bitmaps from a failed test.

For example, suppose during your first round of testing you create a bitmap using one of Silk Test Classic’s
built-in bitmap functions, CaptureBItmap. Assume that a second round of testing generates another
bitmap, which your test script compares to the first. If the testcase fails, Silk Test Classic raises an
exception but cannot specifically identify the ways in which the two images differ. At this point, you can
open the Bitmap Tool from the results file to inspect both bitmaps.

Troubleshooting Web Applications
The test of your browser application may have failed for one of the reasons described in this section. If the
suggested solutions do not address the problem you are having, you can enable your extension manually.

What Can I Do If the Page I Have Selected Is Empty?
If the page you are testing is empty or does not contain any HTML elements, you might receive a Could
not recognize any HTML classes in your browser application message. Your
configuration might be correct, however, the automated configuration test does not support testing of blank
pages or pages that do not contain HTML elements. You can manually verify that your extensions are set
properly, open your application, and then record window declarations. If you can record against HTML
classes, the extension is configured correctly and you are ready to set up the recovery system using the
Basic Workflow bar.

590 | Troubleshooting the Open Agent

Why Do I Get an Error Message When I Set the
Accessibility Extension?
If you are using Internet Explorer to test a Web application and you have set the Accessibility extension,
you might get an error message when the start page of the browser is "about:blank". To avoid getting the
error message, set the start page of the browser to a different page.

Troubleshooting the Open Agent | 591

Using the Runtime Version of Silk Test
Classic

The Silk Test Classic Runtime (Runtime) provides a subset of the functionality of Silk Test Classic.
Specifically, it allows you to perform all of the tasks associated with executing tests and analyzing results.
You are prohibited from editing existing automation or creating new automation. The Runtime is intended to
run previously compiled files. If you update a shared file while the Runtime is open, you must close the
Runtime and reopen it in order to use the updated file.

Silk Test Classic Runtime is an installation option. For additional information, refer to the Silk Test
Installation Guide.

The Silk Test Classic Runtime Help includes the topics that are available from the full version of Silk Test
Classic, and additional product-specific information.

Installing the Runtime Version
Silk Test Classic Runtime is an installation option. For additional information, refer to the Silk Test
Installation Guide.

We strongly recommend that you do not install Silk Test Classic Runtime on the same machine as Silk Test
Classic. Silk Test Classic runtime shares files with this product and will overwrite any other installation you
already have on your machine.

Note: Silk Test Classic Runtime is sold and licensed separately from standard Silk Test Classic.

Starting the Runtime Version
You can start Silk Test Classic Runtime from the following locations:

• The command-line prompt in a DOS window. Enter runtime.exe. The same syntax applies as with
starting Silk Test Classic from the command line.

• The Silk Test Classic GUI. You must have selected the Silk Test Classic Runtime option during
installation.

When you start the Runtime, it displays minimized as an icon only; click the icon to maximize the window.

Comparing Silk Test Classic and Silk Test Classic
Runtime Menus and Commands

The table below lists the menus and commands that are available for each agent in Silk Test Classic and
those that are available in Silk Test Classic Runtime:

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Breakpoint Toggle Classic Agent

Open Agent

No

592 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Add Classic Agent

Open Agent

No

Delete Classic Agent

Open Agent

No

Delete All Classic Agent

Open Agent

No

Debug Abort Classic Agent

Open Agent

No

Exit Classic Agent

Open Agent

No

Finish Function Classic Agent

Open Agent

No

Reset Classic Agent

Open Agent

No

Run and Debug/Continue Classic Agent

Open Agent

No

Run to Cursor Classic Agent

Open Agent

No

Step Into Classic Agent

Open Agent

No

Step Over Classic Agent

Open Agent

No

Edit Undo Classic Agent

Open Agent

No

Redo Classic Agent

Open Agent

No

Cut Classic Agent

Open Agent

No

Copy Classic Agent

Open Agent

Yes

Select All Classic Agent

Open Agent

Yes

Paste Classic Agent No

Using the Runtime Version of Silk Test Classic | 593

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Delete Classic Agent

Open Agent

No

Find Classic Agent

Open Agent

Yes

Find Next Classic Agent

Open Agent

Yes

Replace Classic Agent

Open Agent

No

Go to Line Classic Agent

Open Agent

Yes

Go to Definition Classic Agent

Open Agent

Yes

Find Error Classic Agent

Open Agent

Yes

Data Driven Classic Agent

Open Agent

No

Visual 4Test Classic Agent

Open Agent

Yes

File New Classic Agent

Open Agent

No

Open Classic Agent

Open Agent

Yes

Close Classic Agent

Open Agent

Yes

Save Classic Agent

Open Agent

No

Save Object File Classic Agent

Open Agent

No

Save As Classic Agent

Open Agent

No

Save All Classic Agent

Open Agent

No

594 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

New Project Classic Agent

Open Agent

No

Open Project Classic Agent

Open Agent

Yes

Close Project Classic Agent

Open Agent

Yes

Export Project Classic Agent

Open Agent

No

Email Project Classic Agent

Open Agent

No

Run Classic Agent

Open Agent

Yes

Debug Classic Agent

Open Agent

No

Check out Classic Agent

Open Agent

No

Check in Classic Agent

Open Agent

No

Print Classic Agent

Open Agent

Yes

Printer Setup Classic Agent

Open Agent

Yes

Recent Files and Recent
Projects

Classic Agent

Open Agent

Yes

Exit Classic Agent

Open Agent

Yes

Help Help Topics Classic Agent

Open Agent

Yes

Library Browser Classic Agent

Open Agent

Yes

Tutorials Classic Agent

Open Agent

Yes

About Silk Test Classic Classic Agent Yes

Using the Runtime Version of Silk Test Classic | 595

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Include Open Classic Agent

Open Agent

Yes

Open All Classic Agent

Open Agent

Yes

Close Classic Agent

Open Agent

Yes

Close All Classic Agent

Open Agent

Yes

Save Classic Agent

Open Agent

No

Acquire Lock Classic Agent

Open Agent

No

Release Lock Classic Agent

Open Agent

No

Options General Classic Agent

Open Agent

Yes

Editor Font Classic Agent

Open Agent

Yes

Editor Colors Classic Agent

Open Agent

Yes

Runtime Classic Agent

Open Agent

Yes

Agent Classic Agent

Open Agent

Yes

Extensions Classic Agent Yes

Application Configurations Open Agent Yes

Recorder Classic Agent

Open Agent

No

Class Map Classic Agent Yes

Class Attributes Classic Agent Yes

Property Sets Classic Agent

Open Agent

Yes

596 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

TrueLog Classic Agent

Open Agent

Yes

Silk Central URLs Classic Agent

Open Agent

Yes

Open Options Set Classic Agent

Open Agent

Yes

Save New Options Set Classic Agent

Open Agent

No

Close Options Set Classic Agent

Open Agent

Yes

Recent Options Sets Classic Agent

Open Agent

Yes

Outline Move Left Classic Agent

Open Agent

No

Move Right Classic Agent

Open Agent

No

Transpose Up Classic Agent

Open Agent

No

Transpose Down Classic Agent

Open Agent

No

Expand Classic Agent

Open Agent

Yes

Expand All Classic Agent

Open Agent

Yes

Collapse Classic Agent

Open Agent

Yes

Collapse All Classic Agent

Open Agent

Yes

Comment Classic Agent

Open Agent

No

Uncomment Classic Agent

Open Agent

No

Project View Explorer Classic Agent Yes

Using the Runtime Version of Silk Test Classic | 597

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Align Classic Agent

Open Agent

Yes

Project Description Classic Agent

Open Agent

No

Add File Classic Agent

Open Agent

No

Remove File Classic Agent

Open Agent

No

Record Window Declarations Classic Agent No

Application State Classic Agent

Open Agent

No

Testcase Classic Agent

Open Agent

No

Method Classic Agent

Open Agent

No

Actions Classic Agent No

Class Classic Agent No

Window Identifiers Classic Agent No

Window Locations Classic Agent

Open Agent

No

Defined Window Classic Agent No

Window Tags Classic Agent No

Results Select Classic Agent

Open Agent

Yes

Merge Classic Agent

Open Agent

Yes

Delete Classic Agent

Open Agent

Yes

Extract Classic Agent

Open Agent

Yes

Export Classic Agent Yes

598 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Launch TrueLog Explorer Classic Agent

Open Agent

Yes

Convert to Plan Classic Agent

Open Agent

No

Compact Classic Agent

Open Agent

Yes

Show Summary Classic Agent

Open Agent

Yes

Hide Summary Classic Agent

Open Agent

Yes

View Options Classic Agent

Open Agent

Yes

Go to Source Classic Agent

Open Agent

Yes

View Differences Classic Agent

Open Agent

Yes

Update Expected Value Classic Agent

Open Agent

No

Mark Failures in Plan Classic Agent

Open Agent

Yes

Compare Two Results Classic Agent

Open Agent

Yes

Next Result Difference Classic Agent

Open Agent

Yes

Next Error Difference Classic Agent

Open Agent

Yes

Run Compile Classic Agent

Open Agent

No

Compile all Classic Agent

Open Agent

No

Run Classic Agent

Open Agent

Yes

Using the Runtime Version of Silk Test Classic | 599

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Debug Classic Agent

Open Agent

No

Application State Classic Agent

Open Agent

Yes

Testcase Classic Agent

Open Agent

Yes

Show Status Classic Agent

Open Agent

Yes

Abort Classic Agent

Open Agent

Yes

Testplan Go to Script Classic Agent

Open Agent

Yes

Detail Classic Agent

Open Agent

No

Insert Template Classic Agent

Open Agent

No

Completion Report Classic Agent

Open Agent

Yes

Mark Classic Agent

Open Agent

Yes

Mark All Classic Agent

Open Agent

Yes

Unmark Classic Agent

Open Agent

Yes

Unmark All Classic Agent

Open Agent

Yes

Mark by Query Classic Agent

Open Agent

Yes

Mark by Named Query Classic Agent

Open Agent

Yes

Find Next Mark Classic Agent

Open Agent

Yes

Define Attributes Classic Agent Yes

600 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Run Manual Tests Classic Agent

Open Agent

No

Tools Start Silk Performer Classic Agent

Open Agent

No

Connect to Default Agent Classic Agent

Open Agent

Yes

Data Drive Testcase Classic Agent No

Enable Extensions Classic Agent No

Open Silk Central Classic Agent

Open Agent

Yes

View/Transcript Expression Classic Agent

Open Agent

No

Global Variables Classic Agent

Open Agent

No

Local Variables Classic Agent

Open Agent

No

Expand Data Classic Agent

Open Agent

No

Collapse Data Classic Agent

Open Agent

No

Module Classic Agent

Open Agent

No

Breakpoints Classic Agent

Open Agent

No

Call Stack Classic Agent

Open Agent

No

Transcript Classic Agent

Open Agent

No

Window Tile Vertically Classic Agent

Open Agent

Yes

Tile Horizontally Classic Agent

Open Agent

Yes

Using the Runtime Version of Silk Test Classic | 601

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Cascade Classic Agent

Open Agent

Yes

Arrange Icons Classic Agent

Open Agent

Yes

Close All Classic Agent

Open Agent

Yes

Next Classic Agent

Open Agent

Yes

Previous Classic Agent

Open Agent

Yes

filename-filepath Classic Agent

Open Agent

Yes

Workflows Basic Classic Agent

Open Agent

No

Data Driven Classic Agent

Open Agent

No

602 | Using the Runtime Version of Silk Test Classic

Working with Files
This section describes how you can use files in Silk Test Classic.

Creating a New File
Use the New File dialog box to create a new file.

1. Click File > New. The New File dialog box appears.

2. Select the file type.

Silk Test Classic supports the following file types:

• Test frame
• Test plan
• 4Test script
• 4Test include file
• Keyword-driven test
• Keyword sequence
• Suite
• Text

3. Click OK.

• If you have selected any file type except test frame, a new editing window opens. The title bar of the
new editing window displays the file type you have chosen and untitled.

• If you have selected to create a new test frame file, and you are using the Open Agent, the Select
Application dialog box displays, allowing you to create a test frame file for a specific application.

• If you have selected to create a new test frame file, and you are using the Classic Agent, the New Test
Frame dialog box displays, allowing you to create a test frame file for an open application. For additional
information, see Creating a New Test Frame.

Searching for a String in a File
Use the Find dialog box to find a string in a file.

1. Click Edit > Find. The Find dialog box appears.

2. Type the text that you want to search for the active window into the Find what field.

The default string is the last string you searched for.

3. Check the Wrap Search check box to begin and end the search for the specified text at the current
location of the cursor.

When the check box is checked, the search continues past the end or beginning of the document back
to the current location of the cursor.

4. Check the Case sensitive check box to make the search sensitive to the case of the text string.

The default is to search with case sensitivity off.

5. Set the direction for the search.

• Select Up to have the search go from the current location of the cursor towards the top, or beginning,
of the file.

Working with Files | 603

• Select Down to have the search go from the current location of the cursor towards the bottom, or
end, of the file. This is the default direction.

6. Click Find Next to locate the next occurrence of the text string. If the search is successful, the first
occurrence of the text string in the file is highlighted. If the search is not successful, an informational
message displays.

Replacing a String in a File
Use the Replace dialog box to replace a string in a file with another string.

1. Click Edit > Replace. The Replace dialog box appears.

2. Type the text that you want to replace into the Find what field.

The default string is the last string you searched for.

3. Type the text with which you want to replace the text in the Find what field into the Replace with field.

4. Check the Case sensitive check box to make the search sensitive to the case of the text string.

The default is to search with case sensitivity off.

5. Set the direction for the search.

• Select Up to have the search go from the current location of the cursor towards the top, or beginning,
of the file.

• Select Down to have the search go from the current location of the cursor towards the bottom, or
end, of the file. This is the default direction.

6. Click Find Next to locate the next occurrence of the text in the Find What field. If the search is
successful, the first occurrence of the text string in the file is highlighted. If the search is not successful,
an informational message displays.

7. Click Replace to replace the next occurrence of the text in the Find What field with the text in the
Replace with field.

8. Click Replace All to replace every instance of the text in the Find What field with the text in the
Replace with field.

4Test Editor
The 4Test Editor, also called test plan editor or the outline, lets you edit a file. When you are in the 4Test
Editor, there are a variety of text editing commands available through the Outline menu and the toolbar.
You can also AutoComplete to automatically complete functions, members, application states, and data
types in your script or include files.

If you have a data driven file open, which is a file with the extension .g.t, a special 4Test Editor is
displayed with additional items.

Find values of type

Lets you specify what types of values you want to search for in the file. The default is to search the test
case for all types of values, text, numbers, and true/false (booleans). You can uncheck or check the boxes
to indicate the values you need to look for.

Next Click to search down from the cursor’s current location.

Prev click to search up from the cursor’s current location.

Replace value with

Lets you specify the table and column you are using to replace the highlighted value.

604 | Working with Files

Table Populated when you first create the .g.t file, or whenever you open the Find/Replace Values
dialog box, or when you click the list box arrow. The text that displays depends on the names
already saved in your data source. For example, if you are using a Microsoft Excel file as your
data source, a list of worksheets and named ranges displays here. Select the table that
contains the values you want to use to replace the highlighted value.

Column Blank when the 4Test Editor is opened with a .g.t file. The text that displays here depends on
the names already saved in your data source. Select the column that contains the values you
want to replace the highlighted value.

Replace Click after you have selected a value to replace, and the table and column that contains the
values you want to use as replacements.

Setting Up a Printer
Use the Printer Setup dialog box to set up a printer.

Options Click to display the printer’s options dialog box.

Network Click to display the Connect to Printer dialog box where you can select another printer to use.

1. Click File > Printer Setup.

2. Select the printer.

• To use the default printer, click Default Printer.
• To use a different printer than the default, click Specific Printer.

3. Select the printer format.

• Click Portrait to print the current document in portrait format (8.5 x 11).
• Click Landscape to print the current document in landscape format (11 x 8.5 inches).

4. Select the size of the paper that you are using to print from the Size list.

5. Select the paper source that the printer should use from the Source list.

6. Click Options to display specific options for the selected printer.

7. Click Network to select a network printer.

Printing the Contents of the Active Window
Use the Print dialog box to print all or part of the contents of the active editor or results window.

1. Click File > Print. The Print dialog box appears.

2. Select All lines to print the entire file or Selected lines only to print only lines that you have
highlighted.

3. Enter values for the left, right, top, and bottom margins. The default value for any margin is 0.50 inch.

4. Type literal text, variables, or a combination of both into the Header and Footer fields.

You can also enter the following into the fields:

• &f to print the file name.
• &p to print the page number.

For example, if you type Script: &f in the Header field of a file named testapp.t, the printed
header will be: Script: testapp.t.

5. Select the output resolution from the Print Quality list.

6. Check the Print Fully Expanded check box to print the entire contents of the file. Uncheck the check
box to print the file as it is shown on the screen.

Working with Files | 605

7. Check the Print Icons check box to print icons.

8. Click Font to change the font family, the font size, and the style of the text.

9. Click Setup to display the Printer Setup dialog box where you can reconfigure the printer options.

Confirm Test Description Identifier Dialog Box
This dialog box is displayed when cut-and-paste editing operations lead to unresolved test description
identifiers. For example, this dialog appears if you cut a test description and then pasted it back into the
same place. Outwardly, nothing has changed, but the act of cutting and pasting causes a confirmation as to
whether you want to retain the original test ID or not.

606 | Working with Files

Glossary
This section provides an alphabetical list of terms that are related to Silk Test Classic and their
descriptions.

4Test Classes
Classes are the core of object-oriented languages such as Visual Basic or 4Test. Each GUI object is an
instance of a class of objects. The class defines the actions, or methods, that can be performed on all
objects of a given type. For example, in 4Test the PushButton class defines the methods that can be
performed on all pushbuttons in your application. The methods defined for pushbuttons work only on
pushbuttons, not on radio lists.

The class also defines the data, or properties, of an object. In 4Test and Visual Basic, you can set or
retrieve the value of a property directly using the dot operator and a syntax similar to standard Visual
Basic.

4Test-Compatible Information or Methods
Information or methods that can be passed by value in 4Test prototypes.

Abstract Windowing Toolkit
The Abstract Windowing Toolkit (AWT) is a library of Java GUI object classes that is included with the Java
Development Kit from Sun Microsystems. The AWT handles common interface elements for windowing
environments including Windows.

The AWT contains the following set of GUI components:

• Button
• CheckBox
• CheckBox Group (RadioList)
• Choice (PopupList)
• Label (StaticText)
• List (ListBox)
• Scroll Bar
• Text Component (TextField)
• Menu

accented character
A character that has a diacritic attached to it.

agent
The agent is the software process that translates the commands in your scripts into GUI-specific
commands. It is the agent that actually drives and monitors the application you are testing.

Glossary | 607

applet
A Java program designed to run inside a Java-compatible Web browser, such as Netscape Navigator.

application state
The state you expect your application to be in at the beginning of a test case. This is in addition to the
conditions required for the base state.

attributes
In the test plan editor, attributes are site-specific characteristics that you can define for your test plan and
assign to test descriptions and group descriptions. Each attribute has a set of values. For example, you
define the Developer attribute and assign it the values of Kate, Ned, Paul, and Susan, the names of the
QA engineers in your department.

Attributes are useful for grouping tests, in that you can run or report on parts of the test plan that have a
given attribute value. For example, all tests that were developed by Bob can be executed as a group.

In Silk Test Classic, an attribute is a characteristic of an application that you verify in a test case. Attributes
are used in the Verify Window dialog box, which is available only for projects or scripts that use the
Classic Agent.

Band (.NET)
Each level in the grid hierarchy has one band object created to represent it.

base state
The known, stable state you expect the application to be in at the start of each test case.

bidirectional text
A mixture of characters that are read from left to right and characters that are read from right to left. Most
Arabic and Hebrew characters, for example, are read from right to left, but numbers and quoted western
terms within Arabic or Hebrew text are read from left to right.

Bytecode
The form of Java code that the Java Virtual Machine reads. Other compiled languages use compilers to
translate their code into native code, also called machine code, that runs on a particular operating system.
By contrast, Java compilers translate Java programs into bytecode, an intermediate form of code that is
slower than compiled code, but that can theoretically run on any hardware equipped with a Java Virtual
Machine.

608 | Glossary

call stack
A call stack is a listing of all the function calls that have been called to reach the current function in the
script you are debugging.

In debugging mode, a list of functions and test cases which were executing at the time at which an error
occurred in a script. The functions and test cases are listed in reverse order, from the last one executed
back to the first.

child object
Subordinate object in the GUI hierarchy. A child object is either logically associated with, or physically
contained by, its parent object. For example, the File menu, as well as all other menus, are physically
contained by the main window.

class
GUI object type. The class determines which methods can operate on an object. Each object in the
application is an instance of a GUI class.

class library
A collection of related classes that solve specific programming problems. The Java Abstract Windowing
Toolkit (AWT) and Java Foundation Class (JFC) are examples of Java class libraries.

class mapping
Association of nonstandard custom objects with standard objects understood by Silk Test Classic.

Classic 4Test
Classic 4Test is a test scripting language that was supported with Silk Test Classic 16.0 or prior. With Silk
Test Classic 16.5 or later, Silk Test Classic supports only Visual 4Test.

Note: With Silk Test Classic 16.0 or prior, you can easily convert your Classic 4Test scripts into Visual
4Test scripts by selecting Edit > Visual 4Test from the Silk Test Classic menu. With Silk Test Classic
16.5 or later, you can no longer convert your Classic 4Test scripts into Visual 4Test scripts. You can
use an older version of Silk Test Classic to convert the scripts, or you can contact support.

client area
The internal area of a window not including scroll bars, title bar, or borders.

custom object
Nonstandard object that Silk Test Classic does not know how to interact with.

Glossary | 609

data-driven test case
A special kind of test case that receives many combinations of data from 4Test functions/test plan.

data member
Variable defined within a class or window declaration. The value of a data member can be an expression,
but it is important to keep in mind that data members are resolved (assigned values) during compilation. If
the expression for the data member includes variables that will change at run-time, then you must use a
property instead of that data member.

declarations
See Window Declarations.

DefaultBaseState
Built-in application state function that returns your application to its base state. By default, the built-in
DefaultBaseState ensures that the application is running and is not minimized, the main window of the
application is open, and all other windows, for example dialog boxes and message boxes, are closed.

diacritic
1. Any mark placed over, under, or through a Latin-based character, usually to indicate a change in

phonetic value from the unmarked state.
2. A character that is attached to or overlays a preceding base character.

Most diacritics are non-spacing characters that don't increase the width of the base character.

Difference Viewer
Dual-paned display-only window that lists every expected value in a test case and its corresponding actual
value. Highlights all occurrences where expected and actual values differ. You display the Difference
Viewer by selecting the box icon in the results file.

double-byte character set (DBCS)
A double-byte character set, which is a specific type of multibyte character set, includes some characters
that consist of 1 byte and some characters that consist of 2 bytes.

dynamic instantiation
This special syntax is called a dynamic instantiation and is composed of the class and tag or locator of the
object. For example, if there is not a declaration for the Find dialog box of the Text Editor application, the
syntax required to identify the object looks like the following:

610 | Glossary

• Classic Agent:

MainWin("Text Editor|$D:\PROGRAM FILES
 \<SilkTest install directory>\SILKTEST\TEXTEDIT.EXE").DialogBox("Find")

• Open Agent:

/MainWin[@caption='Untitled - Text Editor']//DialogBox[@caption='Find']

The general syntax of this kind of identifier is:

• Classic Agent:

class("tag").class("tag"). ...

• Open Agent:

class('locator').class('locator'). ...

With the Classic Agent, the recorder uses the multiple-tag settings that are stored in the Record Window
Declarations dialog box to create the dynamic tag. In the Classic Agent example shown above, the tag for
the Text Editor contains its caption as well as its window ID. For additional information, see About Tags.

dynamic link library (DLL)
A library of reusable functions that allow code, data, and resources to be shared among programs using
the module. Programs are linked to the module dynamically at runtime.

enabling
Altering program code to handle input, display, and editing of bidirectional or double-byte languages, such
as Arabic and Japanese.

exception
Signal that something did not work as expected in a script. Logs the error in the results file.

frame file
See test frame file.

fully qualified object name
Name that uniquely identifies a GUI object. The actual format depends on whether or not a window
declaration has been previously recorded for the object and its ancestors.

group description
In the test plan editor, one or more lines in an outline that describe a group of tests, not a single test. Group
descriptions by default are displayed in black.

Glossary | 611

handles
A handle is an identification code provided for certain types of object so that you can pass it to a function
that needs to know which object to manipulate.

hierarchy of GUI objects
Parent-child relationships between GUI objects.

host machine
A host machine is a system that runs the Silk Test Classic software process in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

Host machines are always Windows systems.

hotkey
The following table lists the available hotkeys and accelerator keys for each menu:

Menu Name Command with Hotkey Hotkey Accelerator Key

Breakpoint Toggle Alt+B+T F5

Add Alt+B+A -

Delete Alt+B+D -

Delete All Alt+B+E -

Debug Abort Alt+D+A -

Exit Alt+D+X -

Finish Function Alt+D+F -

Reset Alt+D+E -

Run and Debug/Continue Alt+D+R F9

Run to Cursor Alt+D+C Shift+F9

Step Into Alt+D+I F7

Step Over Alt+D+S F8

Edit Undo Alt+E+U Ctrl+Z

Redo Alt+E+R Ctrl+Y

Cut Alt+E+T Ctrl+X

Copy Alt+E+C Ctrl+C

Paste Alt+E+P Ctrl+V

Delete Alt+E+D Del

Find Alt+E+F Ctrl+F

612 | Glossary

Menu Name Command with Hotkey Hotkey Accelerator Key

Find Next Alt+E+N F3

Replace Alt+E+E Ctrl+R

GoTo Line Alt+E+G Ctrl+G

GoTo Definition Alt+E+O F12

Find Error Alt+E+I F4

Data Driven - -

File New Alt+F+N Ctrl+N

Open Alt+F+O Ctrl+O

Save Alt+F+S Ctrl+S

Save As Alt+F+A -

Save All Alt+F+L -

New Project Alt+F+W -

Open Project Alt+F+E -

Close Project Alt+F+J -

Run Alt+F+R -

Debug Alt+F+D -

Check out Alt+F+T Ctrl+T

Check in Alt+F+K Ctrl+K

Print Alt+F+P Ctrl+P

Printer Setup Alt+F+I -

operation file-name Alt+F+# Alt+F+#

Exit Alt+F+X Alt+F4

Help Help Topics Alt+H+H -

Library Browser Alt+H+L -

Tutorials Alt+H+T -

About Silk Test Classic Alt+H+A -

Include Open Alt+I+O -

Open All Alt+I+P -

Close Alt+I+C -

Close All Alt+I+L -

Save Alt+I+S -

Acquire Lock Alt+I+A -

Release Lock Alt+I+R -

Options General Alt+O+G -

Editor Font Alt+O+D -

Editor Colors Alt+O+E -

Glossary | 613

Menu Name Command with Hotkey Hotkey Accelerator Key

Runtime Alt+O+T -

Agent Alt+O+A -

Extensions Alt+O+X -

Recorder Alt+O+R -

Class Map Alt+O+M -

Property Sets Alt+O+P -

Silk Central URLs Alt+O+U -

Open Options Set Alt+O+O -

Save Options Set Alt+O+S -

Close Options Set Alt+O+C -

option-file-name Alt+O+# -

Outline Move Left Alt+L+V Alt+Left Arrow

Move Right Alt+L+R Alt+Right Arrow

Transpose Up Alt+L+A Alt+Up Arrow

Transpose Down Alt+L+S Alt+Down Arrow

Expand Alt+L+E Ctrl++

Expand All Alt+L+X Ctrl+*

Collapse Alt+L+O Ctrl+-

Collapse All Alt+L+L Ctrl+/

Comment Alt+L+M Alt+M

Uncomment Alt+L+N Alt+N

Project View Explorer Alt+P+V -

Align Alt+P+A -

&Left Alt+P+L -

&Right Alt+P+R -

Project Description Alt+P+O -

Add File Alt+P+D -

Remove File Alt+P+R -

Record Window Declarations Alt+R+W Ctrl+W

Application State Alt+R+S -

Testcase Alt+R+ Ctrl+E

Method Alt+R+T -

Actions Alt+R+A -

Class Alt+R+C -

Window Identifiers Alt+R+I Ctrl+I

Window Locations Alt+R+L -

614 | Glossary

Menu Name Command with Hotkey Hotkey Accelerator Key

Results Select Alt+T+S -

Merge Alt+T+M -

Delete Alt+T+D -

Extract Alt+T+E -

Export Alt+T+X -

Convert to Plan Alt+T+C -

Compact - -

Show Summary Alt+T+H -

Hide Summary Alt+T+I -

View Options Alt+T+V -

Goto Source Alt+T+G -

View Differences Alt+T+W -

Update Expected Value Alt+T+U -

Mark Failures in Plan Alt+T+F -

Compare Two Results Alt+T+O -

Next Result Difference Alt+T+N -

Next Error Difference Alt+T+r -

Run Compile Alt+U+C Alt+F9

Compile all - -

Run All Tests Alt+U+R F9

Debug Alt+U+D Ctrl+F9

Application State Alt+U+A Alt+A

Testcase Alt+U+T Alt+T

Show Status Alt+U+S -

Abort Alt+U+B LShift+RShift

Testplan Goto Script Alt+T+G -

Detail Alt+T+D -

Insert Template Alt+T+I -

Completion Report Alt+T+C -

Mark Alt+T+M -

Mark All Alt+T+A -

Unmark Alt+T+U -

Unmark All Alt+T+N -

Mark by Query Alt+T+Q -

Mary by Named Query Alt+T+R -

Find Next Mark Alt+T+F -

Glossary | 615

Menu Name Command with Hotkey Hotkey Accelerator Key

Define Attributes Alt+T+E -

Manual tests Alt+T+T -

Tools Link Tester Alt+S+L -

Start Silk Performer Alt+S+P -

Data Drive Testcase Alt+S+D -

Enable Extensions Alt+S+E -

Silk Central Test Manager Alt+S+H

View/Transcript Expression Alt+V+E -

Global Variables Alt+V+G -

Local Variables Alt+V+L -

Expand Data Alt+V+X -

Collapse Data Alt+V+C -

Module Alt+V+M -

Breakpoints Alt+V+B -

Call Stack Alt+V+L -

Transcript Alt+V+T -

Window Tile Vertically Alt+W+T -

Tile Horizontally Alt+W+H -

Cascade Alt+W+C -

Arrange Icons Alt+W+E -

Close All Alt+W+L -

Next Alt+W+N F6

Previous Alt+W+P Shift+F6

file-file-name Alt+W+# -

Workflows Basic Alt+K+B -

Data Driven Alt+K+D -

Hungarian notation
Naming convention in which a variable’s name begins with one or more lowercase letters indicating its data
type. For example, the variable name sCommandLine indicates that the data type of the variable is
STRING.

identifier
Name used in test scripts to refer to an object in the application. Logical, GUI-independent name. Identifier
is mapped to the tag in a window declaration.

616 | Glossary

include file
File that contains window declarations and can contain constant, variable, and other declarations.

internationalization or globalization
The process of developing a program core whose feature design and code design don't make assumptions
based on a single language or locale and whose source code base simplifies the creation of different
language editions of a program.

Java Database Connectivity (JDBC)
Java API that enables Java programs to execute SQL statements and interact with any SQL-compliant
database. Often abbreviated as JDBC.

Java Development Kit (JDK)
A free tool for building Java applets and full-scale applications. This is an environment which contains
development and debugging tools, and documentation. Often abbreviated as JDK.

Java Foundation Classes (JFC)
Sun Microsystem's and Netscape's class library designed for building visual applications in Java. Often
abbreviated as JFC.

JFC consists of a set of GUI components named Swing that adopt the native look and feel of the platforms
they run on.

Java Runtime Environment (JRE)
Sun Microsystem's execution-only subset of its Java Development Kit. The Java Runtime Environment
(JRE) consists of the Java Virtual Machine, Java Core Classes, and supporting files, but contains no
compiler, no debugger, and no tools.

The JRE provides two virtual machines: JRE.EXE and JREW.EXE. The only difference is that JREW does
not have a console window.

Java Virtual Machine (JVM)
Software that interprets Java code for a computer’s operating system. A single Java applet or application
can run unmodified on any operating system that has a virtual machine, or VM.

JavaBeans
Reusable software components written in Java that perform a single function. JavaBeans can be mixed and
matched to build complex applications because they can identify each other and exchange information.

Glossary | 617

JavaBeans are similar to ActiveX controls and can communicate with ActiveX controls. Unlike ActiveX,
JavaBeans are platform-independent.

Latin script
The set of 26 characters (A through Z) inherited from the Roman Empire that, together with later character
additions, is used to write languages throughout Africa, the Americas, parts of Asia, Europe, and Oceania.
The Windows 3.1 Latin 1 character set covers Western European languages and languages that use the
same alphabet. The Latin 2 character set covers Central and Eastern European languages.

layout
The order and spacing of displayed text.

levels of localization
The amount of translation and customization necessary to create different language editions. The levels,
which are determined by balancing risk and return, range from translating nothing to shipping a completely
translated product with customized features.

load testing
Testing that determines the actual, which means not simulated, impact of multi-machine operations on an
application, the server, the network, and all related elements.

localization
The process of adapting a program for a specific international market, which includes translating the user
interface, resizing dialog boxes, customizing features if necessary, and testing results to ensure that the
program still works.

localize an application
To make an application suitable for a specific locale: for example, to include foreign language strings for an
international site.

locator
This functionality is supported only if you are using the Open Agent.

The locator is the actual name of an object, to which Silk Test Classic maps the identifier for a GUI object.
You can use locator keywords to create scripts that use dynamic object recognition and window
declarations.

618 | Glossary

logical hierarchy
The hierarchy that is implied from the visible organization of windows as they display to the user.

manual test
In the testplan editor, a manual test is a test that is documented but cannot be automated and, therefore,
cannot be run within the test plan. You might chose to include manual tests in your test plan in order to
centralize the testing process. To indicate that a test description is implemented manually, you use the
keyword value manual in the testcase statement.

mark
In the testplan editor, a mark is a technique used to work with one or more tests as a group. A mark is
denoted by a black stripe in the margin bar of the test plan. Marks are temporary and last only as long as
the current work session. Tests that are marked can be run or reported on independently as a subset of the
total plan.

master plan
In the testplan editor, that portion of a test plan that contains only the top few levels of group descriptions.
You can expand, which means display, the sub-plans of the master plan, which contain the remaining levels
of group description and test description. The master plan/sub-plan approach allows multi-user access to a
test plan, while at the same time maintaining a single point of control for the entire project. A master plan
file has a .pln extension.

message box
Dialog box that has only static text and pushbuttons. Typically, message boxes are used to prompt a user to
verify an action, such as Save changes before closing?, or to alert a user to an error.

method
Operation, or action, to perform on a GUI object. Each class defines its own set of methods. Methods are
also inherited from the class’s ancestors.

minus (-) sign
In a file, an icon that indicates that all information is displayed. Click on the minus sign to hide the
information. The minus sign becomes a plus sign.

modal
A dialog box that presents a task that must be completed before continuing with the application. No other
part of the application can be accessed until the dialog box is closed. Often used for error messages.

Glossary | 619

modeless
A dialog box that presents a simple or ongoing task. May be left open while accessing other features of the
application, for example, a search dialog box.

Multibyte Character Set (MBCS)
A mixed-width character set, in which some characters consist of more than 1 byte.

Multiple Application Domains (.NET)
The .NET Framework supports multiple application domains. A new application domain loads its own
copies of the common language runtime DLLs, data structure, and memory pools. Multiple application
domains can exist in one operation system process.

negative testing
Tests that deliberately introduce an error to check an application’s behavior and robustness. For example,
erroneous data may be entered, or attempts made to force the application to perform an operation that it
should not be able to complete. Generally a message box is generated to inform the user of the problem.

nested declarations
Indented declarations that denote the hierarchical relationships of GUI objects in an application.

No-Touch (.NET)
No-Touch deployment allows Windows Forms applications, which are applications built using Windows
Forms classes of the .NET Framework, to be downloaded, installed, and run directly on the machines of
the user, without any alteration of the registry or shared system components.

object
The principal building block of object-oriented programs. Each object is a programming unit consisting of
data and functionality. Objects inherit their methods and properties from the classes to which they belong.

outline
In the test plan editor, a structured, usually hierarchical model that describes the requirements of a test
plan and contains the statements that implement the requirements. The outline supports automatic,
context-sensitive coloring of test plan elements.

In Silk Test Classic, the outline is a 4Test editor mode that supports automatic, context-sensitive coloring
and indenting of 4Test elements.

620 | Glossary

Overloaded method
A method that you call with different sets of parameter lists. Overloaded methods cause naming conflicts
which must be resolved to avoid runtime errors when testing Java applications.

Example of an overloaded method How Java support resolves the naming conflict

setBounds(int i1, int i2, int i3, int i4) setBounds(int i1, int i2, int i3, int i4)

setBounds(RECT r1) setBounds_2(RECT r1)

parent object
Superior object in the GUI hierarchy. A parent object is either logically associated with or physically
contains a subordinate object, the child. For example, the main window physically contains the File menu
as well as all other menus.

performance testing
Testing to verify that an operation in an application performs within a specified, acceptable period of time.
Alternately, testing to verify that space consumption of an application stays within specified limits.

physical hierarchy (.NET)
The window handle hierarchy as implemented by the application developer.

plus (+) sign
In a file, an icon that indicates that there is hidden information. You can show the information by clicking on
the plus sign. The plus sign becomes a minus sign.

polymorphism
Different classes or objects performing the same named task, but with different execution logic.

project
Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy to see, manage, and work within your test environment.

Silk Test Classic projects store relevant information about your project, including references to all the
resources associated with a test set, such as plans, scripts, data, option sets, .ini files, results, and frame/
include files, as well as configuration information, Editor settings, and data files for attributes and queries.
All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you may never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

Glossary | 621

properties
Characteristics, values, or information associated with an object, such as its state or current value.

query
User-selected set of characteristics that are compared to the attributes, symbols, or execution
characteristics in a test plan. When the set of characteristics matches a test, the test is marked. This is
called marking by query. For example, you might run a query in order to mark all tests that are defined in
the find.t script and that were created by the developer named Bob.

recovery system
A built-in, automatic mechanism to ensure the application is in a known state. If the application is not in the
expected state, a message is logged to the results file and the problem is corrected. The recovery system
is invoked before and after each test case is executed.

regression testing
A set of baseline tests that are run against each new build of an application to determine if the current build
has regressed in quality from the previous one.

results file
A file that lists information about the scripts and test cases that you ran. In the testplan editor, a results file
also lists information about the test plan that you ran; the format of a results file mimics the outline format
of the test plan it derives from. The name of the results file is script-name.res or testplan-
name.res.

script
A collection of related 4Test test cases and functions that reside in a script file.

script file
A file that contains one or more related test cases. A script file has a .t extension, such as find.t.

side-by-side (.NET)
Side-by-side execution is the ability to install multiple versions of code so that an application can choose
which version of the common language runtime or of a component it uses.

622 | Glossary

Simplified Chinese
The Chinese alphabet that consists of several thousand ideographic characters that are simplified versions
of traditional Chinese characters.

Single-Byte Character Set (SBCS)
A character encoding in which each character is represented by 1 byte. Single byte character sets are
mathematically limited to 256 characters.

smoke test
Tests that constitute a quick set of acceptance tests. They are often used to verify a minimum level of
functionality before either accepting a new build into source control or continuing QA with more in-depth,
time-consuming testing.

Standard Widget Toolkit (SWT)
The Standard Widget Toolkit (SWT) is a graphical widget toolkit for the Java platform. SWT is an alternative
to the AWT and Swing Java GUI toolkits provided by Sun Microsystems. SWT was originally developed by
IBM and is maintained by the Eclipse Foundation in tandem with the Eclipse IDE.

statement
In the testplan editor, lines that implement the requirements of a test plan. The testplan editor has the
following statements:

• testcase
• script
• testdata
• include
• attribute

Statements consist of one of the preceding keywords followed by a colon and a value.

In Silk Test Classic, a statement is a method or function call or 4Test flow-of control command, such as
if..then, that is used within a 4Test test case.

status line
Area at the bottom of the window that displays the status of the current script, the line and column of the
active window (if any), and the name of the script that is currently running. When the cursor is positioned
over the toolbar, it displays a brief description of the item.

stress testing
Tests that exercise an application by repeating the same commands or operation a large number of times.

Glossary | 623

subplan
Test plan that is referenced by another test plan, normally the master test plan, by using an include
statement. Portion of a test plan that resides in a separate file but can be expanded inline within its master
plan. A subplan may contain the levels of group description and test description not covered in the master
plan. A subplan can inherit information from its master plan. You add a subplan by inserting an include
statement in the master plan. A subplan file has a .pln extension, as in subplan-name.pln.

suite
A file that names any number of 4Test test script files. Instead of running each script individually, you run
the suite, which executes in turn each of your scripts and all the test cases it contains.

Swing
A set of GUI components implemented in Java that are based on the Lightweight UI Framework. Swing
components include:

• Java versions of the existing Abstract Windowing Toolkit (AWT) components, such as Button, Scrollbar,
and List.

• A set of high-level Java components, such as tree-view, list-box, and tabbed-pane components.

The Swing tool set lets you create a set of GUI components that automatically implements the appearance
and behavior of components designed for any OS platform, but without requiring window-system-specific
code.

Swing components are part of the Java Foundation Class library beginning with version 1.1.

symbols
In the testplan editor, used in a test plan to pass data to 4Test test cases. A symbol can be defined at a
level in the test plan where it can be shared by a group of tests. Its values are actually assigned at either
the group or test description level, depending on whether the values are shared by many tests or are
unique to a single test. Similar to a 4Test identifier, except that its name begins with a $ character.

tag
This functionality is available only for projects or scripts that use the Classic Agent.

The actual name or index of the object as it is displayed in the GUI. The name by which Silk Test Classic
locates and identifies objects in the application.

target machine
A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test.

One Agent process can run locally on the host machine, but in a networked environment, the host machine
can connect to any number of remote Agents simultaneously or sequentially.

624 | Glossary

Target machines can be Windows systems.

template
A hierarchical outline in the testplan editor that you can use as a guide when creating a new test plan.
Based on the window declarations in the frame file.

test description
In the testplan editor, a terminal point in an outline that specifies a test case to be executed. Test
descriptions by default are displayed in blue.

test frame file
Contains all the data structures that support your scripts:

• window declarations
• user-defined classes
• utility functions
• constants
• variables
• other include files

test case
In a script file, an automated test that ideally addresses one test requirement. Specifically, a 4Test function
that begins with the testcase keyword and contains a sequence of 4Test statements. It drives an
application to the state to be tested, verifies that the application works as expected, and returns the
application to its base state.

In a test plan, a testcase is a keyword whose value is the name of a test case defined in a script file. Used
in an assignment statement to link a test description in a test plan with a 4Test test case defined in a script
file.

Test case names can have a maximum of 127 characters. When you create a data driven test case, Silk
Test Classic truncates any test case name that is greater than 124 characters.

test plan
In general, a document that describes test requirements. In the testplan editor, a test plan is displayed in an
easy-to-read outline format, which lists the test requirements in high-level prose descriptions. The structure
can be flat or many levels deep. Indentation indicates the level of detail. A test plan also contains
statements, which are keywords and values that implement the test descriptions by linking them to 4Test
test cases. Large test plans can be divided into a master plan and one or more sub plans. A test plan file
has a .pln extension, such as find.pln.

TotalMemory parameter
Total amount of memory available to the Java interpreter. This is the value returned from the
java.lang.Runtime.totalMemory() method.

Glossary | 625

Traditional Chinese
The set of Chinese characters, used in such countries or regions as Hong Kong SAR, China Singapore,
and Taiwan, that is consistent with the original form of Chinese ideographs that are several thousand years
old.

variable
A named location in which you can store a piece of information. Analogous to a labeled drawer in a file
cabinet.

verification statement
4Test code that checks that an application is working by comparing an actual result against an expected
(baseline) result.

Visual 4Test
Visual 4Test is the test scripting language used by Silk Test Classic.

window declarations
Descriptions of all the objects in the application’s graphical user interface, such as menus and dialog
boxes. Declarations are stored in an include file which has a .inc extension, typically the frame.inc file.

window part
Predefined identifiers for referring to parts of the window. Associated with common parts of MoveableWin
and Control classes, such as LeftEdge, MenuBar, ScrollBar.

XPath
The XML Path Language (XPath) models an XML document as a tree of nodes and enables you to
address parts of the XML document. XPath uses a path notation to navigate through the hierarchical
structure of the XML document. Dynamic object recognition uses a Find or FindAll function and an
XPath query to locate the objects that you want to test.

626 | Glossary

Index
.NET, Open Agent

testing applications 280
operator

testplan editor 127
+ and - operators

rules 138

07002
Excel 586

4Test classes
definition 607

4Test code
marking as GUI specific 445

4Test Editor
about 604
compatible information or methods 607
not enough characters displayed 583

4test.inc
relationship with messages sent to the result file 583

A
Abstract Windowing Toolkit

overview 607
accented characters

definition 607
Accessibility

enabling 532
enabling for the Open Agent 417
improving object recognition 417
Open Agent 417

accessing
files in projects 71

accessing data
member-of operator 415

acquiring locks
test plans 125

actions
recording 164

active object
highlight during recording 178

active script
running 480

active suite
running 480

Add Breakpoint
dialog box 514

add-ons
Google Chrome 365
Mozilla Firefox 368

adding
keywords 395

adding comments
test plan editor 127

adding files
projects 77

adding folders
projects 78

adding information to the beginning of a file
using file functions 585

adding keywords
keyword-driven tests 394

adding method to TextField class
example 437

adding properties
recorder 574

adding Tab method to DialogBox class
example 437

admin rights
installing 579
running 579

Adobe Flex
adding configuration information 256
Adobe Air support 251
automation support for custom controls 273
automationName property 258
coding containers 261
containers 261
creating applications 257
defining custom controls 268
loading at run-time 255
multiview containers 261
passing parameters 256
passing parameters at runtime 256
passing parameters before runtime 256
run-time loading 255
security settings 247
select method, overview 251
select method, setting 260
testing playback 263

advanced
options 532

advanced techniques
Open Agent 406

agent
definition 607

agent not responding
error message 553

agent options
differences 60
Open Agent 25
setting for Web testing 97
setting window timeout 48

Agent Options
dialog box 526

Agent Options dialog box
bitmap agent options 531
bitmap options 530
close options 529
compatibility options 534
other options 533
replay options 482, 541
synchronization options 531
timing options 527
verification options 528

AgentClass class

Index | 627

classes for non-window objects 428
agents

assigning to window declarations 25
comparison, classes 63
configuring ports, information service 50, 215
connecting to default 46
differences, classes 63
differences, object recognition 61
differences, options 60
driving associated applications simultaneously 222
options 25
parameter comparison 67
parameters 67
port numbers 49, 214
record functionality 47
setting default 45
setting default, Runtime Options 46
setting default, toolbar 46
supported methods 68
supported SYS functions 68
unable to connect 554
using both agents 46

AJAX applications
script hangs 378

analyzing results
tests 485

Android
configuring emulator 304
enabling USB-debugging 304
hybrid applications 302
installing USB drivers 303
invoking methods 337
mobile native applications, prerequisites 301
mobile web applications, prerequisites 301
parallel testing, tested configurations 305
recommended settings 304
recording test cases 57, 150
releasing devices 327
releasing devices, recording 327
releasing devices, replay 328
testing 301
troubleshooting 329

Android emulator
configuring 304

animation mode
test cases 482

AnyWin class
cannot extend class 575

Apache Flex
automationIndex property 258
automationName property 258
class definition file 275
Component Explorer 263
Component Explorer, launching 263
controls are not recognized 552
custom controls 450
customizing scripts 248, 267
enabling your application 253
exception values 251
Flash player settings 247
FlexDataGrid control, selecting items 252
initializing, applications 262

linking automation packages 253
locator attributes 249
overview 246
precompiling the application 254
prerequisites 246, 263
recording, applications 262
sample test case 265
select method, setting 260
styles 248
testing 245
testing custom controls 267
testing custom controls using automation support 272
testing custom controls using dynamic invoke 271
testing multiple applications, same web page 250
troubleshooting 552
using dynamic invoke 249
verifying scripts 248, 267
workflow 262

Apache Flex applications
custom attributes 175

API playback
comparing to, native playback 355

appearance
verifying by using a bitmap 189

appending test cases
data-driven scripts 208

Apple Safari
connection string 357
information service, installing 313, 318, 360, 363
limitations 361
preparing 360
prerequisites 359
running multiple tests 363
support 342
testing 359

applet
definition 608

applets
controls not recognized 567

application behavior differences
supporting 440

application configurations
keyword-driven tests 393

application state
definition 608

application states
behavior of based on NONE 186
overview 186
recording 154
testing 160

applications
configuring 56
preparing for automated testing 589
single and remote 213

applications with invalid data
testing 197

applying masks
exclude all differences 502
excluding differences 501
excluding selected areas 501

AppStateList
using 467

628 | Index

assigning agents
window declarations 25

assigning attributes
Testplan Detail dialog box 139

attaching
comments, result sets 504

attribute definitions
modifying 139

attribute types
dynamic object recognition 171
editing 171
Java AWT 295
Java Swing 295
Java SWT 299
Oracle Forms 298
UI Automation 421

attribute values
defining 138
editing 171

attributes
assigning to test plans 138
custom 175, 295
Define Attributes dialog box 146
defining 138
defining for existing classes 433
definition 432, 608
modifying definition 139
New Attribute dialog box 147
syntax 433
test plans 136
verification 432
verifying 432

autocomplete
using 464

AutoComplete
AppStateList 467
customizing MemberList 464
DataTypeList 467
FAQs 465
FunctionTip 467
MemberList 468
overview 464
turning off 466

automated testing
making locators easier to recognize 589

automatically generated code
data-driven test cases 194

AWT
overview 607

B

band (.NET)
definition 608

base state
about 103
definition 608
keyword-driven tests 393
modifying 104

based on NONE
application state behavior 186

baseline bitmaps

result bitmaps, graphical differences 503
basic workflow

Open Agent 55
troubleshooting issues, Open Agent 552

basic workflow issues
troubleshooting, Open Agent 552

Beans
definition 617

best practices
scripts, creating 159

bi-directional languages
support 459

BiDi text
definition 608

bidirectional text
definition 608

bitmap comparison
excluding parts of the bitmap 500
rules 498

bitmap differences
scanning 503

bitmap options
agent options 531
Agent Options dialog box 530

Bitmap Tool
applying a mask 501
baseline and result bitmaps 498
capturing a bitmap 495
capturing bitmaps 495
comparing bitmaps 497
designate bitmap as baseline 499
designating a bitmap as a results file 499
editing masks 501
exiting from scan mode 499
mask prerequisites 501
moving to the next or previous difference 504
opening bitmap files 500
overview 494
saving captured bitmaps 497
starting 500
starting from icon 500
starting from the results file 500
starting from the Run dialog box 500
un-setting a designated bitmap 499
using masks 500
zooming windows 499

bitmaps
agent options 531
analyzing 494
analyzing for differences 503
baseline 498
baseline vs result, graphical differences 503
Bitmap Tool overview 494
capturing during recording 496
capturing Zoom window in scan mode 496
comparing baseline and result bitmaps 499
comparison command rules 498
designate as baseline 499
designate as results file 499
exiting from scan mode 499
functions 498
options 530

Index | 629

result 498
saving captured bitmaps 497
saving masks 503
scanning differences 503
showing areas of difference 503
starting the Bitmap Tool 500
statistics 499
un-setting designated bitmaps 499
verifying 189
verifying appearance 189
viewing statistics 499
when to use the Bitmap Tool 495, 590
zooming in on differences 504

both agents
creating script 46

break statements
incorrect usage 518

Breakpoint dialog box 514
breakpoints

about 513
Add Breakpoint dialog box 514
Delete Breakpoint dialog box 514
deleting 514
setting 513
setting temporary 513
viewing 513

browser configuration settings
xBrowser 356

browser extensions
disabling 95

browser recognized
as client/server application 280

browser specifiers
web applications 345

browser test failure
troubleshooting 590

browser testing
replay, parallel 480

browser type
setting 346
viewing current 377
viewing current, GetProperty 377

browser window
specifying size 372

browsers
configuring 96

browsertype
using 377

building queries
tables 204

bytecode
definition 608

C
call stack

definition 609
Call Stack dialog box 517
calling DLLs

within 4Test scripts 424
calling Windows DLLs from 4Test

overview 423
cannot double-click

file to open Silk Test Classic 575

cannot extend
classes 575

cannot find items
Classic 4Test 86, 588

cannot open Silk Test Classic
by double-clicking a file 575

cannot save files
projects 85, 587

cannot start
Silk Test Classic 86, 587

capabilities
iOS 52, 217, 317

captions
GUI-specific 446

capturing
web pages, full page 359

capturing a bitmap
Bitmap Tool 495

capturing bitmaps
during recording 496
Bitmap Tool 495

categorizing test plans
overview 130

CEF
testing 387

certificates
installing, Mobile Center 322
replacing, information service 53, 218

changes not applied
include files or scripts 581

changing element colors
result files 506

checking precedence
operators 517

child object
definition 609

Chrome
changing browser type for replay 345
configuration settings 356
cross-browser scripts 377
extensions, testing 365
locators 377
prerequisites 364
testing 363
user data directories, testing 365

Chrome for Android
support 342

Chromium Embedded Framework
testing 387

class
definition 609

class hierarchy
4Test (Open Agent) 431

class library
definition 609

class mapping
definition 609

class methods
viewing in Library Browser 470

class properties
NumChildren alternative 434

classes

630 | Index

4Test 427
agent comparison 63
declarations 443
defining attributes 433
defining properties 431
defining with Open Agent 429
hierarchy (Open Agent) 431
logical 431
overview 427
WPF 290
xBrowser 382

classes for non-window objects
AgentClass 428
ClipboardClass 428
CursorClass 428

Classic 4Test
cannot find items 86, 588
definition 609

Classic Agent
comparison to Open Agent, classes 63
enabling 54
migrating to the Open Agent 60
recording options, setting 540

Classic Agent parameters
comparison to Open Agent 67

cleanup state
recording and pasting the recording 162

Click
mobile web 338

client area
definition 609

client/server applications
overview 276

client/server testing
challenges 276
code for template.t 242
concurrency testing 278
configuration testing 279
configurations 218
functional testing 279
multi_cs.t script 230
multi-application testing 236
multi-testcase code template 230
parallel template 229
parallel.t script 229
serially 235
template.t explained 242
testing databases 236
types of testing 278
verifying tables 277

clients
testing concurrently 233

Clipboard methods
4Test 454
code sample 454

ClipboardClass class
classes for non-window objects 428

close options
Agent Options dialog box 529

closing windows
recovery system 109
specifying buttons 113

specifying keys 113
specifying menus 113

colors
setting 522

columns
testing in Web applications 348

Combine Property Sets
dialog box 544

Combine Testplan Queries dialog box 143
combining

keywords 395
command line

starting from 406
starting from, Silk Test Classic 406

comments
attaching, result sets 504

Compare Two Results dialog box 494
comparing

result files 504
comparing bitmaps

Bitmap Tool 497
compatibility options

Agent Options dialog box 534
compile errors

Unicode content 463
Compiler Constants

dialog box 526
compiling

conditional compilation 443
compiling code

conditionally 444
completion reports

generating for test plans 125
Component Explorer

Apache Flex, launching 263
recording sample test case 265
testing 263

concurrency
processing 222

concurrency testing
code example 238
explanation of code example 239
overview 278

concurrent programming
threads 224

concurrently testing
clients 233

conditional compilation
result 445

conditionally compiling code
outcome 445

Configuration Assistant
automatic signing 314

configuration test failures
troubleshooting 280

configuration testing
client/server testing 279
overview 279

configuring
network of computers 213

configuring applications
custom 385

Index | 631

mobile Web 264
overview 56
standard 385
Web 264

configuring ports
information service, clients 50, 215
Open Agent 51, 216

configuring sample Web application
insurance company 380

Confirm Test Description Identifier dialog box 606
connecting

default agent 46
Open Agent, remote 212

connection string
desktop browsers, local 358
desktop browsers, remote 357
mobile devices 323

contact information 22
containers

invisible 455
continuous integration

uploading keyword libraries 403
Control class

cannot extend class 575
control is not responding 553
controls

recognized as custom controls 447
testing for Web applications 348
verifying that no longer displayed 192

Convert Results to Plan
dialog box 119

converting
test sets to projects 75

Create Session dialog box 144
create test case

basic workflow for the Open Agent 55
creating

file 603
keyword-driven tests 391
projects 55, 73, 264
suites 477

creating a new project
insurance company Web application 380

creating data-driven scripts
Specify Data Driven Script dialog box 208

creating data-driven test cases
workflow 193

creating masks
exclude all differences 502
excluding differences 501
excluding selected areas 501

creating new queries
combining queries 140

creating script
both agents 46

creating stable locators
overview 173

creating test cases
Open Agent 149

cross browser testing
Apple Safari 359
Apple Safari, limitations 361

current browser type, viewing 377
FAQs 376
Google Chrome 363
Microsoft Edge 370
Microsoft Edge, limitations 370
Mozilla Firefox 367
object recognition 350
overview 342
recording locators 377
scrolling 378
test objects 343
wrong timestamps, logs 377

cross-browser testing
Apple Safari 359
Apple Safari, limitations 361
connection string 357
current browser type, viewing 377
FAQs 376
Google Chrome 363
Microsoft Edge 370
Microsoft Edge, limitations 370
Mozilla Firefox 367
object recognition 350
overview 342
recording locators 377
remote locations, adding 160
scrolling 378
test objects 343
wrong timestamps, logs 377

cross-platform methods
using in scripts 443

cs.inc
overview 244

current browser type
viewing 377

CursorClass class
classes for non-window objects 428

custom applications
configuring 385

custom attributes
about 175, 295
Apache Flex applications 175
setting to use in locators 541
Web applications 176
Windows Forms applications 177
WPF applications 177

custom classes
filtering 454

custom controls
creating custom classes 452
dialog box 453, 542
dynamic invoke, FAQs 449
invoke call returns unexpected string 449
managing 450
overview 448
supporting 447, 452
testing (Apache Flex) 450
testing in Flex using automation support 272
testing in Flex using dynamic invoke 271
WPF 286

custom exceptions
custom 558

632 | Index

custom object
definition 609

custom verification properties
defining 436

Customer Care 22
customizing results 505

D

data member
definition 610

data members
using properties instead 585

data source
configuring DSN 198

data sources
setting up 199
setting up for data-driven 198

data-driven
workflow 193

data-driven scripts
appending test cases, dialog box 208
creating, dialog box 208
overwriting, dialog box 208
specifying, dialog box 208

data-driven test case
definition 610

data-driven test cases
adding to test plans 204
automatically generated code 194
creating 200
data sources 198
overview 193
passing data to 204
running 203
running, using sample records 203
selecting test case 200
setting up data sources 199
specifying 208
tips and tricks 196
working with 194

data-driven testing
finding values 200
replacing values 200
select test cases to data-drive 211

data-driving test cases
Oracle 199

databases
manipulating from test cases 236
testing 236

DataTypeList
using 467

DB Tester
using with Unicode content 456

DBCS
definition 610

debuggability
scripts 510

debugger
about 510
executing scripts 511
exiting 512

menus 512
starting 511

debugging
break statements, incorrect usage 518
changing variable values 515
designing debuggable scripts 510
enabling transcript 516
evaluating expressions 516
executing scripts 511
exit debugger 512
expressions 515
global variables, unexpected values 518
infinite loops 518
keyword-driven tests 510
loop variables, incorrect values 518
menus 512
never executing code 518
overview 510
setting breakpoints 513
starting debugger 511
step into 512
step over 512
test scripts 510, 511
tips 517
typographical errors 518
uninitialized handles 519
viewing modules 516
viewing transcripts 517
viewing variables 514
working with scripts 512

debugging transcripts
viewing 517

declarations
definition 610
dialog boxes 410
main window 412
menu 412
modified 454
overview 410
windows 413

default agent
connecting 46
setting 45
setting, Runtime Options 46
setting, toolbar 46

default browser
specifying 98

default error handling 556
DefaultBaseState

adding tests that use Open Agent 106
definition 610
function 105
wDynamicMainWindow object 108

defaults.inc
overview 243

DefaultScriptEnter method
overriding 110

DefaultScriptExit method
overriding 110

DefaultTestCaseEnter method
overriding 110

DefaultTestCaseExit method

Index | 633

overriding 110
DefaultTestPlanEnter method

overriding 110
DefaultTestPlanExit method

overriding 110
Define Attributes

dialog box 146
define values

attributes 138
defining

custom verification properties 436
exceptions, custom 558

defining a custom verification property
example 438

defining attributes
classes 433
with values 138

defining classes
Open Agent 429

defining custom verification properties
overview 434

defining method example
adding method to TextField class 437

defining methods
examples 437
overview 434
single GUI objects 434

defining properties
classes 431

defining symbols
Testplan detail dialog box 135

Delete Breakpoint dialog box 514
Delete Results

dialog box 505
deleting

keywords 395
results 505

Delphi
applications support 583

deriving methods
from existing methods 436

designing and recording test cases
test cases 181

DesktopWin class
using 431

determining where values are defined
large test plans 123

device not connected
mobile 329

DHTML
manually creating tests popup menus 373

diacritic
definition 610

Dialog
not recognized 379

dialog box declarations
overview 410

dialog boxes
Convert Results to Plan 119
declarations 410
Define Attributes 146
displaying double-byte characters 461

Edit Testplan Query 143
Find/Replace Values 200
Go to Testcase 210
Mark By Named Query 132
Mark by Query 131
New Testplan Query 143
Record Application State 154
Record Testcase 165
Run Testcase 483
Select Data Source 206
Select Testcase 211
Specify Data Driven Script 208
Specify Data Driven Testcase 208
specifying how to invoke 416
Testplan Completion Report 126
Testplan Detail 144
Testplan Detail - Testcase 146
Update Manual Tests 147

DialogBox class
adding Tab method example 437

Difference Viewer
about 491
definition 610
dialog box 491

differences
agent options 60
agents, object recognition 61
moving to next or previous 504

disabling extensions
browser 95

display issues
Unicode content 461

distributed testing
client/server testing configurations 218
connection, Open Agent 212
Open Agent 212
parallel processing 222
reporting distributed results 233
running tests on one remote target 230
running tests serially on multiple targets 231
specifying target machine driven by a thread 232
statement types 228
supported networking protocols, Open Agent 213
troubleshooting 245
using templates 229

dividing test plans
master plan and sub-plans 123

DLL calling conventions
stdcall 423

dlls
aliasing names 424
calling from within 4Test scripts 424
common problems 576
definition 611
passing arguments to functions 425
using support files 427

DLLs
calling 423

do...except
statements 445

do...except statements
handling exceptions 559

634 | Index

do...except to handle exceptions 206
Document Object Model

about 347
documenting manual tests

test plans 121
documenting user-defined methods

examples 471
DOM

about 347
DOM Extensions

dialog box 544
double-byte character set

definition 610
double-byte characters

displaying 461
displaying in dialog boxes 461
displaying in the Editor 461
issues 456

double-byte files
reusing single-byte 457

downloads 22
DSN

configuring for data-driven test cases 198
duplicate test descriptions dialog box 148
Dynamic HTML

manually creating tests for popup menus 373
dynamic instantiation

definition 610
recording without window declarations 185

dynamic invoke
Android 337
FAQs 449
iOS 337
mobile native 337
overview 449
simplify scripts 450
unexpected return value 449

dynamic link library
definition 611

dynamic object recognition
locator keyword 178
overview 166
supported attribute types 171
XPath 167

dynamically invoking methods
Flex 249
SAP 341
Silverlight 291
UI Automation 419
Windows Forms 281
Windows Presentation Foundation (WPF) 287

DynamicInvoke
Android 337
Apache Flex custom controls 271
Flex 249
iOS 337
Java AWT 296, 299
Java Swing 296, 299
Java SWT 296, 299
SAP 341
Silverlight 291
UI Automation 419

Windows Forms 281
Windows Presentation Foundation (WPF) 287

DynamicInvokeMethods
Silverlight 291

E

Eclipse
troubleshooting 300

Edge
connection string 357
limitations 370
locators 377
recording tests 151
testing 370

Edit Property Set
dialog box 544

Edit Testplan Query
dialog box 143

editing
options sets 75
remote locations 160

editing password
Mobile Center 323

editor
pasting recordings 162

editor colors
setting 522

Editor Colors
dialog box 522

editor font
setting 522

Editor Font
dialog box 522

elapsed time
logging 509

embedded browser applications
enabling extensions (Classic Agent) 92

embedded Chrome
testing 387

Emulator
defining, playback 319

emulators
testing 301

Enable Extensions dialog box
Classic Agent 98

enabling
definition 611

enabling extensions
automatically using basic workflow 90
host machines, manually 90
manually on target machines 91

encode
passwords 475

encrypt
passwords 475

entering testdata statement
manually 128

error handling
custom 556
default 556

error messages

Index | 635

agent not responding 553
handling differences 439
troubleshooting 552

error-handling
writing a function 562

errors
handling 556
navigating to 507

errors and the results file 489
Euro symbol

displaying 578
examples

adding a method to TextField class 437
adding Tab method to DialogBox class 437

Excel
07002 586

exception
definition 611
handling using do...except 206

exception handling
do.. except statements 559

exception values
Apache Flex 251
errors 563

exceptions
defining custom 558

excluded characters
recording 211
replay 211

executables
GUI-specific 446

executing keyword-driven tests
variables 400

executing scripts
debugging 511

executing tests
Run Testcase dialog box 483

existing files with Unicode content
specifying file formats 458

existing tests
adding to projects 75

Export Results
dialog box 493, 508

exporting results
structured files 508

Expression
dialog box 516

expressions
about 515
evaluating, debugging 516
operator precedence 517

extending class hierarchy
overview 427

Extension Application
dialog box 546

Extension Details
dialog box 537

extension dialog boxes
adding test applications 93

Extension Enabler
deleting applications 95

Extension Enabler dialog box

comparison with Extensions dialog box 95
Extension Information dialog box 99
Extension Options dialog box

ActiveX 546
Java 547

Extension Settings dialog box
client/server 100
Java 101
Web 100

Extension Settings dialog box (.NET) 99
extensions

automatically configurable 88
disabling 95
DOM Extensions dialog box 544
Enable Extensions dialog box (Classic Agent) 98
enabling automatically using basic workflow 90
enabling for AUTs 88
enabling for HTML applications 93
enabling manually on target machines 91
Extension Application dialog box 546
Extension Information dialog box 99
Extension Options dialog box (ActiveX) 546
Extension Options dialog box (Java) 547
Extension Settings dialog box 100
Extension Settings dialog box (.NET) 99
Extension Settings dialog box (Java) 101
Extension Settings dialog box (Web) 100
Google Chrome 365
host machines 89
Mozilla Firefox 368
overview 88
set manually 89
target machines 89
verifying settings 94

Extensions
deleting applications 95
dialog box 535

Extensions dialog box
comparison with Extension Enabler dialog box 95

Extract Results
dialog box 508

extracting
results 508

F

FAQs
cross-browser testing 376
dynamic invoke 449

file
creating 603
frame 611
include 617

file format issues
Unicode content 463

file formats
about 457
existing files with Unicode content 458
new files with Unicode content 459

file types
Silk Test Classic 76

files

636 | Index

adding to projects 77
moving in a project 78
removing from projects 80
using 603

files not displayed
recent files 86, 588

files not found
projects 85, 586

filtering
custom classes 454
keywords 404

Find
dialog box 603

Find dialog
example test cases 589

Find/Replace Values
dialog box 200

finding and replacing values
rules and tips 201

finding values
data-driven tests 200

Firefox
changing browser type for replay 345
configuration settings 356
cross-browser scripts 377
extensions, testing 368
limitations 368, 369
locators 377
profiles, testing 368
testing 367

firewalls
port numbers 50, 215
resolving conflicts 49, 214

Flash player
opening applications in 247
security settings 247

Flex
adding configuration information 256
Adobe Air support 251
attributes 249
automation support for custom controls 273
automationIndex property 258
automationName property 258
class definition file 275
Component Explorer 263
Component Explorer, launching 263
containers 261
creating applications 257
custom controls 450
customizing scripts 248, 267
defining custom controls 268
enabling your application 253
exception values 251
Flash player settings 247
FlexDataGrid control, selecting items 252
initializing, applications 262
linking automation packages 253
loading at run-time 255
multiview containers 261
overview 246
passing parameters 256
passing parameters at runtime 256

passing parameters before runtime 256
precompiling the application 254
prerequisites 246, 263
recording, applications 262
run-time loading 255
sample test case 265
security settings 247
select method, overview 251
select method, setting 260
styles 248
testing 245
testing custom controls 267
testing custom controls using automation support 272
testing custom controls using dynamic invoke 271
testing multiple applications, same web page 250
testing playback 263
using dynamic invoke 249
verifying scripts 248, 267
workflow 262

FlexDataGrid control
selecting items 252

folders
adding to projects 78
available controls 78
moving in a project 78
removing from projects 79
renaming in projects 79
using in projects 78

fonts
displaying differently 462
setting 522

forward case-sensitive search
setup example 204

frame file
definition 611

frequently asked questions
cross-browser testing 376
dynamic invoke 449

Frequently Asked Questions
AutoComplete 465

fully qualified object name
definition 611

functional test design
incremental 278

functional testing
overview 279

functionality not supported
Open Agent 553

FunctionTip
using 467

G

General Options
dialog box 520

general protection faults
troubleshooting 580

generating completion reports
test plans 125

GetMachineData
multi-application testing example 239

GetProperty method

Index | 637

Flex 249
Java 296, 299
Silverlight 291

GetText
code sample 454

getting started
Silk Test Classic 19

global variables
GUI specifiers 444
local variables, same name 518
overview 223
protecting access 225
running from test plan versus running from script 580
unexpected values 518
viewing, debugging 514

globalization
definition 617

Globals dialog box 515
glossary

overview 607
Go to Testcase

dialog box 210
Google Chrome

capabilities, setting 358
changing browser type for replay 345
configuration settings 356
extensions, testing 365
iframe performance, improving 373
limitations 365
limitations, macOS 366
options, setting 358
parallel testing, example 481
prerequisites 364
support 342
testing 363
user data directories, testing 365

graphical controls
support 448

group description
definition 611

groups
sharing projects 72

GUI objects
hierarchy 612
recording methods 435

GUI specifiers
4Test code 445
global variables 444
inheritance 444
overview 410, 443
syntax 445
usages 445

GUI-specific captions
support 446

GUI-specific executables
supporting 446

GUI-specific menu hierarchies
support 447

GUI-specific objects
support 446

GWT
locating controls 174

H

handles
definition 612

handling GUI differences
porting tests 439

hidden
input fields 373

hidecalls
keyword 434

hierarchy of GUI objects
definition 612

host machine
definition 612

host machines
enabling extensions, manually 90

hotkey
definition 612

HTML applications
enabling extensions 93

HTML definitions
tables, Open Agent 348

HTML reports
about 485
enabling 486, 550

HTTPS
certificates, Mobile Center 322
certificates, replacing 53, 218
information service 52, 217, 317

Hungarian notation
definition 616

hybrid applications
Android 302
iOS 312

I

identifier
definition 616

identifiers
overview 415
stable 172

iframes
performance, improving 373

ignoring
classes, recording 156, 520, 537

images
testing in Web applications 349

IME
using 461

IME issues
Unicode content 463

IMEs
differing in appearance 463
UI Automation 423

implementing
keywords 395

improving
window declarations 414

improving object recognition
Accessibility 417

improving recognition

638 | Index

defining new window 414
include file

definition 617
include files

changes not applied 581
conditionally loading 439
handling very large files 245
loading for different test application versions 439
maximum size 245

include scripts
changes not applied 581

incorrect values
scripts, fixing 506

incremental test design
functional 278

infinite loops
debugging 518

information service
certificates, replacing 53, 218
configuring ports, clients 50, 215
editing 52, 217, 317
HTTPS 52, 217, 317
Mac, installing 313, 318, 360, 363
ports, configure 49, 214

inheritance
GUI specifiers 444

initializing
Apache Flex applications 262

innerHTML
xBrowser 376

innerText
xBrowserf 376

input fields
finding 373

Input Method Editor
setting up 460

Input Method Editor issues
Unicode content 463

Input Method editors
differing in appearance 463

Input Method Editors
using 461

Insert Testplan Template dialog box 123
installing

information service, Mac 313, 318, 360, 363
privileges required 579

installing language support
Unicode content 460

installing USB drivers
Android 303

insurance company sample Web application
testing 380

insurance company Web application
configuring 380
creating a new project 380
recording test cases for Web site 381
replaying test cases 382

integrations
configuring Silk Central location 401

internationalization
configuring environment 460
definition 617

useful sites 457
internationalized content

issues with displaying 456
internationalized objects

support 455
Internet Explorer

configuration settings 356
cross-browser scripts 377
link.select focus issue 378
locators 377
misplaced rectangles 378
support 342

Internet Explorer 10
unexpected Click behavior 380

invalid data
testing applications 197

invalidated-handle error
troubleshooting 379

invisible containers
about 455

invoke
Android 337
iOS 337
SAP 341
UI Automation 419
Windows Forms 281
Windows Presentation Foundation (WPF) 287

Invoke method
callable methods 449

invokeMethods
drawing line in multiline text field 297

InvokeMethods
Android 337
iOS 337
SAP 341
UI Automation 419
Windows Forms 281
Windows Presentation Foundation (WPF) 287

invoking
dialog boxes 416

invoking test cases
multi-application environments 237

iOS
apps, preparing for testing 313
devices, preparing 312
hybrid applications 312
information service, installing 313, 318, 360, 363
invoking methods 337
Mac, preparing 314
mobile native applications, prerequisites 308
mobile web applications, prerequisites 308
native app, Simulator 309
native app, testing 308
recommended settings 319
recording test cases 57, 150
releasing devices 327
releasing devices, recording 327
releasing devices, replay 328
testing 307
testing, no developer account 316
web app, Simulator 311
web app, testing 310

Index | 639

iOS 9.3
existing scripts, executing 319

J
Java

applet controls not recognized 567
Java applications

Silk Test Java file missing in plug-in 567
standard names 94
troubleshooting 567

Java AWT
attribute types 295
attributes 295
dynamically invoking methods 296, 299
DynamicInvoke 296, 299
overview 294

Java AWT/Swing
priorLabel 297

Java database connectivity
definition 617

Java Development Kit
definition 617

Java Foundation Classes
definition 617

Java FX
support 418

Java Network Launching Protocol
configuring test applications 294

Java Runtime Environment
definition 617

Java Swing
attributes 295
dynamically invoking methods 296, 299
DynamicInvoke 296, 299
overview 294

Java SWT
attribute types 299
dynamically invoking methods 296, 299
DynamicInvoke 296, 299
troubleshooting 300

Java SWT and Eclipse
Open Agent 298

Java Virtual Machine
definition 617

JavaBeans
definition 617

JDBC
definition 617

JDK
definition 617

JFC
definition 617

JNLP
configuring test applications 294

JRE
definition 617

JVM
definition 617

K
keyword libraries

uploading 403

keyword sequences
creating 399
parameters 398

keyword-driven
testing 389

keyword-driven test editor
recommended keywords 397

keyword-driven testing
advantages 389
keyword recommendations, algorithm 397
marking test methods 394
overview 389
parameters, example 398
troubleshooting 404

keyword-driven tests
adding keywords 394
application configurations 393
base state 393
creating 391
debugging 510
editing 394
implementing keywords 393
implementing Silk Central keywords 401
keywords, searching 404
recording 391
removing keywords 394
specifying variables, execution 400
uploading keywords, Silk Central 402

keywords
about 390
adding 395
combining 395, 399
deleting 395
filtering 404
finding in project 404
hidecalls 434
implementing 393, 395
locator 178
managing 395
marking test methods 394
nesting 395
opening 395
parameters 395, 398
parameters, example 398
recording 393
replacing 395
sequences 395
uploading to Silk Central 402

L

Language bar
only English listed 463

large test plans
determining where values are defined 123
overview 123

Latin script
definition 618

layout
definition 618

libraries
uploading 403

640 | Index

Library Browser
adding information 469
adding user-defined files 470
not displaying user-defined methods 581
not-displayed Web classes 471
overview 468
source file 469
viewing class methods 470
viewing functions 470

licenses
handling limited licenses 245

licensing
available license types 18

limitations
Apple Safari 361
Google Chrome 365
Google Chrome, macOS 366
Microsoft Edge 370
mobile web applications 334
Mozilla Firefox 368, 369
native mobile applications 335
Windows 8 388
Windows 8.1 388

linking descriptions to scripts
Testplan Details dialog box 128

linking descriptions to test cases
Testplan Details dialog box 128

linking test plans to test cases
example 130

links
testing 349

load testing
definition 618

loading include files
conditionally 439

local sub-plan copies
refreshing 124

local variables
global variables, same name 518
viewing, debugging 514

localization
definition 618

localization levels
definition 618

localizing applications
definition 618

locally testing multiple applications
sample include file (Classic Agent) 569
sample script file (Classic Agent) 568

Locals dialog box 515
locating controls

GWT example 174
siblings example 173

locator
definition 618
keyword 178

locator attributes
Apache Flex controls 249
excluded characters 211
Rumba controls 339
SAP 340
Silverlight controls 290

UI Automation controls 421
Windows API-based controls 384
Windows Forms controls 280
WPF controls 284
xBrowser controls 351

locator generator
configuring for xBrowser 354

locator keyword
overview 178

locator keywords
recording window declarations 152

locator recognition
enhancing 589

Locator Spy
dialog box 153, 164
recording locators 153

locators
customizing 172
incorrect in xBrowser 378
object types 167
recording using Locator Spy 153
search scopes 167
setting custom attributes 541
supported constructs 168
supported subset 171
syntax 168
unsupported constructs 168
using attributes 168
xBrowser 377

locks
acquiring 125
overview 125
releasing 125
test plans 125

logging
elapsed time 509
machine information 509
thread 509

logging errors
programmatically 559

logic errors
evaluating 491

logical controls
different implementations 439

logical hierarchy
definition 619

login windows
handling 111
non-Web applications (Open Agent) 111

looking at statistics
bitmaps 499

loop variables
incorrect values 518

lsLeaveOpenLocators
specifying windows to be left open (Open Agent) 112

lwLeaveOpenWindows
specifying windows to be left open (Open Agent) 112

M

Mac
Apple Safari, prerequisites 359

Index | 641

Apple Safari, testing 359
information service, installing 313, 318, 360, 363

machine handle operator
specifying 232

machine handle operators
alternative syntax 233

machine information
logging 509

main function
using in scripts 205

main window
declarations 412

managing
keywords 395

manual test
definition 619
describing the state 121

manual test state
describing 121

manual tests
updating 147

mark
definition 619

Mark by Named Query
dialog box 132

Mark by Query
dialog box 131

marked tests
printing 131

marking commands
interactions 131

masks
applying 501
creating one that excludes all differences 502
editing 501
excluding differences 501
excluding selected areas 501
prerequisites 501
saving 503

master plan
definition 619

master plans
connecting with sub-plans 124

maximum size
Silk Test Classic files 582

MBCS
definition 620

member-of operator
using to access data 415

MemberList
customizing 464
using 468

menu
declarations 412

menu hierarchies
GUI-specific 447

Merge Results
dialog box 491, 506

merging
results, test plans 491, 506

message box
definition 619

messages sent to the result file
relationship with exceptions defined in 4test.inc 583

method
definition 619

methods
adding to existing classes 434
adding to single GUI objects 434
agent support 68
defining 434
defining for single GUI objects 434
deriving new from existing 436
recording for GUI objects 435
redefining 437

MFC
support 387

Microsoft Accessibility
improving object recognition 417

Microsoft Edge
connection string 357
iframe performance, improving 373
limitations 370
recording tests 151
support 342
testing 370

Microsoft Foundation Class
support 387

Microsoft UI Automation
recording tests 418

migrating
from the Classic Agent to the Open Agent 60

minus (-) sign
definition 619

missing peripherals
test machines 19

mobile
troubleshooting 329

mobile applications
recording 319
recording test cases 57, 150
testing 301

mobile browsers
limitations 334

Mobile Center
certificates, installing 322
enabling 320
enabling, Silk Central 321

mobile device
defining, playback 319

mobile devices
interacting with 327
performing actions against 327

mobile native applications
limitations 335

mobile recording
about 319

mobile testing
Android 301
connection string 323
iOS 307
native app, iOS Simulator 309
overview 301
releasing devices 327

642 | Index

remote locations, adding 160
replay, parallel 480
web app, iOS 310
web app, iOS Simulator 311

mobile testing devices
native app, iOS 308

mobile web
Click 338
iOS 310
legacy tests 338

mobile web applications
Android, prerequisites 301
iOS, prerequisites 308
limitations 334

mobile Web applications
configuring 264

modal
definition 619

modeless
definition 620

modified declarations
using 454

modifying identifiers
test frames 345

modules
viewing, debugging 516

MoveableWin
cannot extend class 575

moving files
between projects 79
on Files tab 78

moving folders
in a project 78

Mozilla Firefox
capabilities, setting 358
changing browser type for replay 345
configuration settings 356
extensions, testing 368
iframe performance, improving 373
limitations 368, 369
options, setting 358
parallel testing, example 481
profiles, testing 368
support 342
testing 367

MSUIA
invoking methods 419
object recognition, improving 418

multi-application environments
cs.inc 244

multi-application testing
code for template.t 242
invoking example 242
invoking example explained 242
invoking test cases 237
overview 236
template.t explained 242

multi-test case
statements 237

multibyte character set
definition 620

multiple agents

single machine 474
Multiple Application Domains (.NET)

definition 620
multiple applications

setting up the recovery system 567
single machine 474

multiple Flex applications
testing, same web page 250

multiple machines
driving 224
testing, Open Agent 212
troubleshooting 567

multiple tests
recovering 223

multiple verifications
test cases 560

multiple-application environments
test case structure 237

N

Named Query command
differences with Query 141

native mobile
invoking methods 337

native mobile applications
Android, prerequisites 301
iOS, prerequisites 308
limitations 335

native playback
comparing to, API playback 355

native user input
advantages 355

navigating to errors 507
negative testing

definition 620
nested declarations

definition 620
nesting

keywords 395
network

configuring 213
network testing

types of testing 278
networking

supported protocols, Open Agent 213
networks

enabling on remote host 214
never executing code

checking 518
New Attribute dialog box 147
new files with Unicode content

specifying file formats 459
new projects

creating 55, 73, 264
New Property Set

dialog box 544
New Testplan Query

dialog box 143
no-touch (.NET)

definition 620
non-Web applications

Index | 643

handling login windows (Open Agent) 111
not all actions captured

recorder 582
NumChildren

alternative class property 434

O
object

definition 620
object files

advantages 409
locations 409
overview 408

object properties
overview 188
verifying 188
verifying (Open Agent) 188

object recognition
agent differences 61
creating stable locators 172
dynamic 166
Exists method 171
FindAll method 172
identifying multiple objects 172
improving by defining new window 414
improving with Accessibility 417
improving, UI Automation 418
objects recognized as custom controls 448
using attributes 168

object types
locators 167

objects
checking for existence 171
internationalized 455
properties 188
verifying properties 188
verifying properties (Open Agent) 188
verifying state 190

objects recognized as custom controls
reasons 448

Open Agent
adding tests to the DefaultBaseState 106
comparison to Classic Agent, classes 63
configure ports, remote agent 49, 214
configuring ports, information service 50, 215
connection port, configuring 51, 216
migrating to from Classic Agent 60
overview 25
port numbers 49, 214
recording options, setting 156, 520, 537
recording test cases 56, 149
replay options, setting 482, 541
setting the recovery system 103
starting from script 54
stopping from script 54
testing, remote 212

Open Agent parameters
comparison to Classic Agent 67

opening
keywords 395
TrueLog Options dialog box 486

opening projects
existing 74

operators
checking precedence 517

OPT_AGENT_CLICKS_ONLY
option 26

OPT_ALTERNATE_RECORD_BREAK
option 26

OPT_APPREADY_RETRY
option 26

OPT_APPREADY_TIMEOUT
option 26

OPT_BITMAP_MATCH_COUNT
option 26

OPT_BITMAP_MATCH_INTERVAL
option 27

OPT_BITMAP_MATCH_TIMEOUT
option 27

OPT_BITMAP_PIXEL_TOLERANCE
option 28

OPT_CLASS_MAP
option 28

OPT_CLOSE_CONFIRM_BUTTONS
option 28

OPT_CLOSE_DIALOG_KEYS
option 28

OPT_CLOSE_MENU_NAME
option 28

OPT_CLOSE_WINDOW_BUTTONS
option 28

OPT_CLOSE_WINDOW_MENUS
option 29

OPT_CLOSE_WINDOW_TIMEOUT
option 29

OPT_COMPATIBILITY
option 29

OPT_COMPATIBLE_TAGS
option 29

OPT_COMPRESS_WHITESPACE
option 29

OPT_DROPDOWN_PICK_BEFORE_GET
option 30

OPT_ENABLE_ACCESSIBILITY
option 30, 532

OPT_ENABLE_EMBEDDED_CHROME_SUPPORT
options 387

OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT
option 31, 532

OPT_ENABLE_UI_AUTOMATION_SUPPORT
option 31

OPT_ENSURE_ACTIVE_WINDOW
option 31

OPT_EXTENSIONS
option 31

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES
option 31

OPT_HANG_APP_TIME_OUT
option 31

OPT_ITEM_RECORD
option 31

OPT_KEYBOARD_DELAY
option 32

OPT_KEYBOARD_LAYOUT
option 32

644 | Index

OPT_KILL_HANGING_APPS
option 32

OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE
option 32, 532

OPT_MATCH_ITEM_CASE
option 33

OPT_MENU_INVOKE_POPUP
option 33

OPT_MENU_PICK_BEFORE_GET
option 33

OPT_MOUSE_DELAY
option 33

OPT_MULTIPLE_TAGS
option 33

OPT_NO_ICONIC_MESSAGE_BOXES
option 34

OPT_PAUSE_TRUELOG
option 34

OPT_PLAY_MODE
option 34

OPT_POST_REPLAY_DELAY
option 34

OPT_RADIO_LIST
option 34

OPT_RECORD_LISTVIEW_SELECT_BY_TYPEKEYS
option 34

OPT_RECORD_MOUSE_CLICK_RADIUS
option 34

OPT_RECORD_MOUSEMOVES
option 35

OPT_RECORD_SCROLLBAR_ABSOLUT
option 35

OPT_REL1_CLASS_LIBRARY
option 35

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT
option 35, 532

OPT_REPLAY_HIGHLIGHT_TIME
option 35

OPT_REPLAY_MODE
option 35

OPT_REQUIRE_ACTIVE
option 36

OPT_RESIZE_APPLICATION_BEFORE_RECORDING
option 36

OPT_SCROLL_INTO_VIEW
option 36

OPT_SET_TARGET_MACHINE
option 36

OPT_SHOW_OUT_OF_VIEW
option 37

OPT_SYNC_TIMEOUT
option 37

OPT_TEXT_NEW_LINE
option 37

OPT_TRANSLATE_TABLE
option 37

OPT_TRIM_ITEM_SPACE
option 38

OPT_USE_ANSICALL
option 38

OPT_USE_SILKBEAN
option 38

OPT_VERIFY_ACTIVE
option 38

OPT_VERIFY_APPREADY
option 38

OPT_VERIFY_CLOSED
option 38

OPT_VERIFY_COORD
option 38

OPT_VERIFY_CTRLTYPE
option 39

OPT_VERIFY_ENABLED
option 39

OPT_VERIFY_EXPOSED
option 39

OPT_VERIFY_RESPONDING
option 39

OPT_VERIFY_UNIQUE
option 39

OPT_WAIT_ACTIVE_WINDOW
option 40

OPT_WAIT_ACTIVE_WINDOW_RETRY
option 40

OPT_WINDOW_MOVE_TOLERANCE
option 40

OPT_WINDOW_RETRY
option 41

OPT_WINDOW_SIZE_TOLERANCE
option 41

OPT_WINDOW_TIMEOUT
option 42

OPT_WPF_CHECK_DISPATCHER_FOR_IDLE
option 42

OPT_WPF_CUSTOM_CLASSES
option 42

OPT_WPF_PREFILL_ITEMS
option 43

OPT_XBROWSER_ENABLE_IFRAME_SUPPORT
option 43

OPT_XBROWSER_EXCLUDE_IFRAMES 44
OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS

option 44
OPT_XBROWSER_INCLUDE_IFRAMES 44
OPT_XBROWSER_SYNC_EXCLUDE_URLS

option 45
OPT_XBROWSER_SYNC_MODE

option 44
OPT_XBROWSER_SYNC_TIMEOUT

option 45
optimizing replay

replay options, setting 482, 541
options

advanced 532
agents 25
OPT_ENABLE_EMBEDDED_CHROME_SUPPORT

387
recording, Classic Agent 540
recording, Open Agent 156, 520, 537
replay, Open Agent 482, 541
sets 440
sets, adding to projects 75
setting 520

options sets

Index | 645

editing in projects 75
porting 440
specifying 440
using in projects 75

Oracle DSN
data-driving test cases 199

Oracle Forms
about 297
attributes 298
prerequisites 297
supported versions 297
troubleshooting 579

organizing
projects 77

other options
Agent Options dialog box 533

outline
definition 620

overriding
default recovery system 110

overwriting data-driven scripts
Specify Data Driven Script dialog box 208

P
packaged projects

emailing 82
packaging

projects 80
page synchronization

xBrowser 352
parallel processing

spawn statement 228
statements 228

parallel replay
browsers 480
mobile tests 480

parallel statements
using 228

parallel test cases
using templates 229

parallel testing
asynchronous 227
browser example 481
tested configurations, Android 305

parameters
agent comparison 67
handling, keywords 398

parent object
definition 621

passing arguments
scripts 477
to DLL functions 425

passing data
data-driven test cases 204

password
Mobile Center, changing 323

passwords
encrypting 475

peak load testing 279
performance testing

definition 621
physical hierarchy (.NET)

definition 621

playback
selecting device 319

plus (+) sign
definition 621

polymorphism
concept 428
definition 621

popup menus
manually creating tests 373

porting tests
another GUI 438
differences between GUIs 439

ports
configuring, information service 50, 215
Open Agent 49, 214

pre-fill
setting during recording and replaying 289

predefined attributes
test plan editor 137

prerequisites
Android, mobile web applications 301
Android, native mobile applications 301
Apple Safari 359
Flex 246, 263
Google Chrome 364
iOS, mobile web applications 308
iOS, native mobile applications 308

Print
dialog box 605

Printer Setup
dialog box 605

printers
setting up 605

printing
active window contents 605
marked tests 131

priorLabel
Java AWT/Swing technology domain 297
Win32 technology domain 386
Windows Forms 284

privileges required
installing Silk Test 579
running Silk Test 579

product suite
components 20

Product Support 22
profiles

Mozilla Firefox 368
project

definition 621
Project Description

dialog box 87
Project Explorer

overview 72
sorting resources 79
turning on and off 80
Unicode characters do not display 462

project files
editing 86, 588
not loaded 85, 587

project information
storing 70

646 | Index

project-related information
storing 70

projects
about 70
accessing files 71
adding an options set 75
adding existing tests 75
adding files 77
adding folders 78
cannot load project file 85, 587
cannot save files 85, 587
creating 55, 73, 264
editing project files 86, 588
editing the options set 75
emailing packaged projects 82
exporting 84
files not found 85, 586
moving files between 79
moving files in projects 78
moving folders in projects 78
opening existing projects 74
organizing 77
packaging 80
Project Description dialog box 87
removing files 80
removing folders 79
renaming 77
renaming folders 79
sharing among a group 72
storing information 70
troubleshooting 85, 586
turning Project Explorer on and off 80
viewing associated files 80
viewing resources 80
working with folders 78

properties
definition 622
objects 188
using instead of data members 585
verifying 432

property list
confirming 437

property sets
Combine Property Sets dialog box 544
Edit Property Set dialog box 544
New Property Set dialog box 544
Property Sets dialog box 543

Property Sets
dialog box 543

protocols
networking, Open Agent 213

Q

QT
support 418

queries
building 204
combining 142
combining to create new 140
creating, named 132
creating, test plans 141

deleting 142
editing 142
including symbols 141
test plans 140

query
definition 622

Query command
differences with Named Query 141

R

recent files
files not displayed 86, 588

recognizing controls
as custom controls 447

recognizing objects
xBrowser 350

recommendations
algorithm 397

recommended keywords
keyword-driven test editor 397

Record Application State
dialog box 154

record functionality
agents 47

Record Method
dialog box 435

record options
Classic Agent 540
Open Agent 156, 520, 537

Record Testcase
dialog box 165

recorder
adding properties 574
does not capture all actions 582

Recorder Options
dialog box, Classic Agent 540

recording
actions 164
actions into existing tests 155
Apache Flex applications 262
application states 154
available actions 156
available functionality 47
cleanup stage 162
keyword-driven tests 391
keywords 393
locators using Locator Spy 153
methods for GUI objects 435
mobile applications 319
no image displayed 329
object highlighting 178
pasting recording from cleanup 162
pasting to editor 162
releasing devices 327
remote 224
resolving window declarations 160
setting classes to ignore 542
setting options, Classic Agent 540
setting options, Open Agent 156, 520, 537
setting pre-fill 289
test cases 165

Index | 647

test cases for mobile applications 57, 150
test cases, Open Agent 56, 149
test frames 408
Update Files dialog box 165
using locators or tags 160
without window declarations 185

recording a close method
Open Agent 113

recording actions
existing tests 155

recording options
setting for xBrowser 355

Recording Options
dialog box, Open Agent 156, 520, 537

recording test cases
insurance company Web site 381
linking to scripts and test cases 163
mobile applications 57, 150
Open Agent 56, 149

recording tests
Microsoft Edge 151
Microsoft UI Automation 418

recording the stages
test cases 161

recording window declarations
locator keywords 152
main window 415
menu hierarchy 415

recovery system
closing windows 109
defaults.inc file 243
definition 622
flow of control 108
modifying 109
Open Agent 102
overriding default 110
setting for the Open Agent 103
specifying new window closing procedures 113
starting the application 109
testing ability to close application dialog boxes 163

regression testing
definition 622

releasing devices
mobile testing 327
recording 327
replay 328

releasing locks
test plans 125

remote agent
about 212

remote agents
connecting, Open Agent 212

remote applications
multiple 213
single 213

remote browser testing
connection string 357

remote locations
adding 160
editing 160

remote testing
Open Agent 212

removing
unused space, result files 509

removing keywords
keyword-driven tests 394

renaming
projects 77

Replace
dialog box 604

replacing
keywords 395
strings 604

replacing values
data-driven tests 200

replay
Dialog not recognized 379
releasing devices 328
selecting device 319
setting options, Open Agent 482, 541

replay options
Agent Options dialog box 482, 541
setting, Open Agent 482, 541

replaying
setting classes to ignore 542
setting pre-fill 289

replaying test cases
insurance company Web application 382

replaying tests
remote machines 212

report types
selecting 486, 550

reporting
distributed results 233

reraise statement
error handling 556

resolving window declarations
using locators or tags 160

responsive web design
browser window, specifying size 372
visual breakpoints, detecting 372

result bitmaps
baseline bitmaps, graphical differences 503

result files
changing the color of elements 506
comparing 504
using 504

result sets
attaching comments 504
default number, changing 505

results
analyzing 485
converting to test plans 119
customizing 505
deleting 505
displaying 493
displaying a different set 509
errors and results file 489
exporting, structured files 508
extracting 508
HTML reports 485
interpreting, .res files 488
marking failed test cases 506
merging, test plans 491, 506

648 | Index

removing unused space, result files 509
results file overview 488
scripts, fixing incorrect values 506
selecting 493
starting the Bitmap Tool from the results file 500
storing 507
storing and exporting 507
viewing an individual summary 507

results file
definition 622
overview 488

results files
not opening 576
test plans, converting 119

rules and tips
finding and replacing values 201

Rumba
about 339
enabling and disabling support 339
locator attributes 339
Unix display 340

Rumba locator attributes
identifying controls 339

Run Application State
dialog box 483

Run Testcase
dialog box 483

running
active script or suite 480
global variables, test plan versus script 580
test cases, data driven 203
test plans 479
tests 477

running existing scripts
iOS 9.3 319

running multiple tests
Apple Safari 363

running test cases
stopping 482

Runtime
about 592
comparing with Silk Test Classic 592
installing 592
starting 592

Runtime Options
dialog box 523

Runtime Status
dialog box 484

S

Safari
connection string 357
limitations 361
preparing 360
prerequisites 359
running multiple tests 363
testing 359

sample applications
Component Explorer, launching 263

SAP
class reference 342

invoking methods 341
locator attributes 340
overview 340
testing 340

SauceLabs
enabling 323

saving captured bitmaps
Bitmap Tool 497

saving changes
sub-plans 125

saving existing files
Save as dialog box opens 463

sBrowserType
browsers, switching 346

screencast
not working 329

script
definition 622

script deadlocks
4Test handling 279

script file
definition 622

script files
saving 160

ScriptEnter method
overriding default recovery system 110

ScriptExit method
overriding default recovery system 110

scripting
common problems 577

scripts
adding verifications while recording 189
creating, best practices 159
deadlock handling 279
incorrect values, fixing 506
linking to by recording a test case 163
marking tests as keywords 394
passing arguments to 477
saving 160
using main function 205

scrolling
cross-browser testing 378

search scopes
locators 167

search setup example
forward case-sensitive search 204

searching
keywords, keyword-driven tests 404
strings 603

secure connections
information service 52, 217, 317

Select Data Source
dialog box 206

Select method
Apache Flex, setting 260

Select Results
dialog box 493

Select Testcase
dialog box 211

selecting items
FlexDataGrid control 252

selecting test cases

Index | 649

to data drive 200
serial number 22
Set attributes

adding members 137
removing members 137

Set Recovery System
dialog box 114

SetLocation method
Android 328

SetProperty method
Flex 249
Java 296, 299
Silverlight 291

SetText
code sample 454

setting
options 520

setting agent options
Web testing 97

setting classes to ignore
transparent classes 542

setting default agent
Runtime Options dialog box 46
toolbar 46

setting mobile device
playback 319

setting recording options
xBrowser 355

setting the recovery system
Open Agent 103

setting up IME
Unicode content 460

setting up the recovery system
multiple local applications 567

Setup Data Driven Script DSN
dialog box 207

shared data
specifying 126

sharing initialization files
test plans 125

sharing projects
groups 72

siblings
locating 173

side-by-side (.NET)
definition 622

Silk Central
configuring location 401
Mobile Center, enabling 321
SauceLabs, enabling 323
setting browser, replay 346
uploading keywords 402

Silk Central keywords
implementing 401

Silk Test Classic
about 19
not starting 86, 587

Silk Test Classic files
maximum size 582

Silverlight
invoking methods 291
locator attributes 290

object recognition 290
scrolling 292
testing 290
troubleshooting 293

Silverlight locator attributes
identifying controls 290

Simplified Chinese
definition 623

Simulator
defining, playback 319
mobile web applications, testing 311
native app, testing 309
testing 308

single applications
remote 213

single GUI objects
defining methods 434

single-application environments
test case structure 237

single-application tests
recovery-system file 243

single-byte character set (SBCS) 623
single-byte files

reusing as double-byte 457
sleep

adding to tests 474
slowing down

tests 474
smoke test 623
sorting resources

Project Explorer 79
spawn

multi-application testing example 239
spawn statement

using 228
specifiers

GUI 410
Specify Data Driven Script

dialog box 208
Specify Data Driven Testcase

dialog box 208
Specify Rows

dialog box 208
specifying

target machine for a single command 232
specifying browser

testing Web applications 98
specifying data-driven scripts

Specify Data Driven Script dialog box 208
specifying new window closing procedures

recovery system 113
specifying size

browser window 372
specifying windows to be left open

Open Agent 112
stable identifiers

about 172
stable locators

creating 173
standard applications

configuring 385
Standard Widget Toolkit (SWT) 623

650 | Index

starting
command line 406

starting Bitmap Tool
from icon 500
from the results file 500

starting from the command line
Silk Test Classic 406

starting Open Agent
scripts 54

starting the Bitmap Tool
Run dialog box 500

statement
definition 623

statements
do...except 445
parallel 228
type 446

status line 623
stdcall

DLL calling conventions 423
step into

debugging 512
step over

debugging 512
stopping

running test cases 482
stopping Open Agent

scripts 54
storing and exporting

results 507
storing results 507
str function

does not round correctly 586
stress testing 623
structured files

results, exporting 508
sub-plans

connecting with master plans 124
copying 124
opening 124
refreshing local copies 124
saving changes 125

subplan
definition 624

suite
definition 624

suites
creating 477

SupportLine 22
suppressing controls

Classic Agent 384
Open Agent 283, 299, 385

Swing
attributes 295
definition 624
overview 294

switching browsers
replay 346

symbols
assigning values 136
definition 624
including in queries 141

overview 133
specifying as arguments for testcase statements 136
using 133

symbolvalue
assigning to symbol 136

synchronization
about 491
changing settings 491
wrong timestamps 377
xBrowser 352

synchronization options
Agent Options dialog box 531
xBrowser, setting 353

synchronizing threads with semaphores 225
sys functions

agent specific differences 68
system dialog boxes

cannot display multiple languages 462

T

tables
building queries 204
definition, Open Agent 348
testing in Web applications 348
verifying in client/server applications 277

tag
definition 624

target machine
definition 624

target machines
manually enabling extensions 91

template
definition 625

templates
test plans 117

test application settings
copying 94

test applications
adding to extension dialog boxes 93
deleting from Extension Enabler dialog box 95
deleting from Extensions dialog box 95
duplicating settings 94
loading different include files for different application

versions 439
test automation

obstacles 19
synchronization 491

test case
definition 625

test case example
word processor feature 187

test case structure
multiple-application environments 237
single-application environments 237

test cases
about 181
anatomy of basic test case 182
constructing 183
creating (Open Agent) 149
data 184
data-driven 193

Index | 651

designing 183
designing and recording, Open Agent 149
example word processor feature 187
linking to by recording a test case 163
marking failed 506
overview 181
overview of recording the stages 161
recording 165
running 58, 266, 478
running data driven 203
running in animation mode 482
saving 185
stopping during execution 482
types 182
with multiple verifications 560

test description
definition 625

test frame file 625
test frames

modifying identifiers 345
overview 344
recording 408
recording, web applications (Open Agent) 345
saving 416

test machines
missing peripherals 19

test methods
marking as keywords 394

test plan 625
test plan attributes

Set attribute, adding members 137
Set attribute, removing members 137

test plan editor
adding comments 127
predefined attributes 137
symbol definition statements 135

test plan outlines
change levels 120
indent levels 120

test plan queries
creating 141
overview 140

test plan results
adding comments 120

test plan templates
inserting 121

test plans
acquiring locks 125
adding comments to results 120
adding data 126
adding data-driven test cases 204
assigning attributes and values 138
attributes 136
categorizing 130
changing colors 122
connecting sub-plans with master plans 124
copying sub-plans 124
creating 119
creating queries 141
creating sub-plans 124
creating, from results files 119
details, test cases 146

dividing into master plan and sub-plans 123
documenting manual tests 121
editor statements 127
example outline 117
generating completion reports 125
indent and change levels in outlines 120
inserting templates 121
large test plans 123
linking 128
linking manually to a test plan 129
linking scripts to using the Testplan Detail dialog box

129
linking test cases to using the Testplan Detail dialog

box 129
linking to data-driven test cases 128
linking to scripts 122, 129
linking to test cases 122, 129
linking to test cases, example 130
locks 125
marking 130
marking tests 131
marking-command interactions 131
opening sub-plans 124
overview 116
predefined attributes 137
printing marked tests 131
queries 140
refreshing local sub-plan copies 124
releasing locks 125
running 479
sharing initialization files 125
stopping 585
structure 116
templates 117
user defined attributes 137
values 136
working with 119

test results
analyzing 485
interpreting, .res files 488
reporting 233
viewing 59, 489

test scripts
creating, best practices 159
debugging 510, 511

test-cases
working with data-driven 194

testcase statements
specifying symbols as arguments 136

TestCaseEnter method
overriding default recovery system 110

TestCaseExit method
overriding default recovery system 110

testcases
designing 183
overview 181
stopping during execution 482
types 182

testdata statement
entering manually 128
entering with Testplan Details dialog box 127

testing

652 | Index

application states 160
concurrency 278
configuration 279
databases 236
driving multiple machines 224
functional 279
peak load 279
strategies 277
volume 279

testing .NET applications
Open Agent 280

testing Apple Safari
information service, installing 313, 318, 360, 363

testing applications
invalid data 197
Open Agent 212

testing asynchronous in parallel 227
testing controls

Web applications 348
testing custom controls

Flex 267
testing images

Web applications 349
testing links

Web applications 349
testing multiple applications

overview 236
window declarations 238

testing multiple machines
overview 230
running tests serially on multiple targets 231

testing recovery system
closing application dialog boxes 163

testing serially
client and server 235

testing text
Web applications 350

testing web applications
web page objects, Open Agent 347

testing Web applications
specifying browser 98
testing text 350

Testplan
dialog box 119

Testplan Completion Report
dialog box 126

Testplan Detail
dialog box 144

Testplan Detail - Testcase
dialog box 146

Testplan Detail dialog box
defining symbols 135
linking scripts to test plans 129
linking test cases to test plans 129

Testplan Details dialog box
entering testdata statement 127
linking descriptions to scripts and test cases 128

testplan editor
operator 127

Testplan Editor
predefined attributes 137
statements 127

testplan queries
overview 140

TestPlanEnter method
overriding default recovery system 110

TestPlanExit method
overriding default recovery system 110

tests
marking 131
porting to another GUI 438
recording actions 155
running 477
running and interpreting results 477
slowing down 474

text boxes
Return key 442

text click recording
overview 472

text fields
return key 442

text recognition
overview 472

textContents
xBrowser 376

threads
concurrent programming 224
logging 509
specifying target machines 232
synchronizing with semaphores 225

timestamps
wrong, cross-browser tests 377

timing options
Agent Options dialog box 527

tips and tricks
data-driven test cases 196

TotalMemory parameter 625
Traditional Chinese 626
transcript

enabling 516
Transcript dialog box 517
transparent classes

setting, recording 156, 520, 537
trapping the exception number 558
troubleshooting

4Test Editor does not display enough characters 583
Apache Flex 552
basic workflow issues, Open Agent 552
configuration test failures 280
custom error handling 556
Eclipse 300
error messages 552
exception handling 556
general tips 589
invalidated-handle error 379
Java applications 567
Java SWT 300
keyword-driven testing 404
mobile 329
Open Agent 552
Oracle Forms 579
other problems 574
projects 85, 586
recognition 589

Index | 653

Silverlight 293
testing on multiple machines 567
UI Automation 423
Web applications 590
window not found 555
writing an error-handling function 562
XPath 177

troubleshooting Unicode content
characters not displayed properly 463
compile errors 463
dialog boxes cannot display multiple languages 462
fonts look different 462
IME looks different 463
only English when clicking Language bar icon 463
only pipes are recorded 462
only pipes can be entered in files 462
pipes and squares 462
pipes and squares are displayed in Win32 AUT 462
pipes and squares in the Project tab 462
Save as dialog box when saving existing files 463
Unicode characters do not display 462

TrueLog
configuring 486, 550
enabling 486, 550
limitations 485
options for the Classic Agent 547
prerequisites 485
replacement characters for non-ASCII 486
wrong non-ASCII characters 486

TrueLog Explorer
about 485
configuring 486, 550
enabling 486, 550
overview 485
toggling at runtime using a script 487
viewing results 487

TrueLog Options - Classic Agent
dialog box 547

TrueLog Options dialog box
opening 486

type
statements 446

typographical errors
debugging 518

U

UI Automation
attribute types 421
invoking methods 419
limitations 423
locator attributes 421
object recognition, improving 418
recording tests 418
scrolling 422
troubleshooting 423

unable to connect
agent 554

unexpected Click behavior
Internet Explorer 380

unexpected values
global variables 518

unicode content
configuring Microsoft Windows XP PC 460
using DB Tester 456

Unicode content
installing language support 460
setting up IME 460
support 455
troubleshooting 461
troubleshooting display issues 461
troubleshooting file format issues 463
troubleshooting IME issues 463

uninitialized variables
debugging 519

unique data
specifying 126

Universal Windows Platform
support 383

Unix display
Rumba 340

Update Files
dialog box 165

Update Manual Tests
dialog box 147

upload app
Mac 301

uploading
keyword libraries 403
libraries 403

user data directories
Google Chrome 365

user defined attributes
test plans 137

user-defined methods
documentation examples 471

using basic workflow
enabling extensions 90

using file functions
adding information to the beginning of a file 585

UWP apps
support 383

V

values
assigning to test plans 138
finding and replacing 200
test plans 136

variable
definition 626

variables
changing values, debugging 515
executing keyword-driven tests 400
same name 518
viewing, debugging 514

verification logic
adding to scripts while recording 189

verification options
Agent Options dialog box 528

verification properties
defining 433

verification statement 626
verifications

654 | Index

adding to scripts 189
defining properties 433
fuzzy 191
overview 188

verifying
Apache Flex scripts 248, 267
control no longer displayed 192
object properties 188
window no longer displayed 192

verifying appearance
bitmaps 189

verifying bitmaps
overview 189

verifying state
objects 190

video
not displayed 329

View Module dialog box 517
View Options dialog box 494
view trace listing

enabling 516
viewing

test results 59, 489
viewing an individual summary 507
viewing class methods

Library Browser 470
viewing files

associated with projects 80
viewing resources

included within projects 80
viewing results

TrueLog Explorer 487
viewing statistics

comparing bitmaps 499
virus detectors

conflicts 578
Visual 4Test

definition 626
Visual Basic applications

standard names 94
visual breakpoints

detecting 372

W

wDynamicMainWindow object
DefaultBaseState 108

web applications
different browsers 345
objects, testing 347
recording test frames, Open Agent 345
replay, specific browser 346

Web applications
characters not displayed properly 463
columns 348
configuring 264
controls 348
custom attributes 176
empty page 590
error with IE and Accessibility 591
Extension Settings dialog box 100
images 349

links 349
no HTML elements 590
Open Agent 342
tables 348
testing text 350
troubleshooting 590
xBrowser test objects 343

Web classes
not displayed in Library Browser 471

web pages
capturing, full page 359
testing objects, Open Agent 347

Web testing
setting agent options 97

WebSync 22
Win32

pipes and squares are displayed in AUT 462
priorLabel 386

window declarations
assigning agents 25
improving 414
overview 413
recording for main window 415
recording only pipes 462
recording without 185
testing multiple applications 238

window is not active 554
window is not enabled 555
window is not exposed 555
window not found

troubleshooting 555
window not found exceptions

preventing 48
setting in agent options 48
setting manually 48

window part 626
window timeout

setting 48
setting in agent options 48
setting manually 48

windows
declarations 413
verifying that no longer displayed 192

Windows 8
limitations 388

Windows 8.1
limitations 388

Windows API-based applications
attributes 384
overview 383
testing 383

Windows Forms
attributes 280
invoking methods 281
locator attributes 280
overview 280
priorLabel 284

Windows Forms applications
custom attributes 177

Windows Presentation Foundation
controls 284
locator attributes 284

Index | 655

overview, Open Agent 284
Windows Presentation Foundation (WPF)

exposing classes 286
invoking methods 287

Windows XP
unicode content 460

WinForms
priorLabel 284

WinForms applications
custom attributes 177

workflow
data-driven 193

workflow bars
disabling 197
enabling 197

works order number 22
WPF

class reference 290
classes that derive from WPFItemsControl 286
controls 284
custom controls 286
exposing classes 286
invoking methods 287
locator attributes 284
overview, Open Agent 284
sample application 284

WPF applications
custom attributes 177

WPF locator attributes
identifying controls 284

wrong timestamps
logs, cross-browser tests 377

WStartup
handling login windows (Open Agent) 111

X

xBrowser
Apple Safari 359
browser configuration settings 356
changing browser type for replay 345
class and style not in locators 379
classes 382
configuring locator generator 354
cross-browser scripts 377
current browser type, viewing 377

Default BaseState 351
Dialog not recognized 379
DomClick not working like Click 378
exposing functionality 379
FAQs 376
FieldInputField.DomClick not opening dialog 378
font type verification 376
Google Chrome 363
innerHTML 376
innerText 376
innerText not being used in locators 377
Internet Explorer misplaces rectangles 378
link.select focus issue 378
locator attributes 351
Microsoft Edge 370
mouse move recording 379
Mozilla Firefox 367
navigating to new pages 378
object recognition 350
overview 342
page synchronization 352
playback, comparing API and native 355
recording an incorrect locator 378
recording locators 377
scrolling 378
setting recording options 355
synchronization options, setting 353
test objects 343
textContents 376
wrong timestamps, logs 377

xBrowser testing
Apple Safari, limitations 361
current browser type, viewing 377
Microsoft Edge, limitations 370

XPath
basic concepts 167
definition 626
sample queries 170
troubleshooting 177

Z

Zoom window
capturing in scan mode 496

zooming windows
Bitmap Tool 499

656 | Index

	Contents
	Licensing Information
	Getting Started
	Automation Under Special Conditions (Missing Peripherals)
	Silk Test Product Suite
	Contacting Micro Focus
	Information Needed by Micro Focus SupportLine

	What's New in Silk Test Classic
	Enhance Security with Java-based Encryption
	Usability Enhancements
	Technology Updates

	Open Agent
	How Silk Test Classic Assigns an Agent to a Window Declaration
	Agent Options
	Setting the Default Agent
	Setting the Default Agent Using the Runtime Options Dialog Box
	Setting the Default Agent Using the Toolbar Icons

	Connecting to the Default Agent
	Creating a Script that Uses Both Agents
	Overview of Record Functionality Available for the Silk Test Agents
	Setting the Window Timeout Value to Prevent Window Not Found Exceptions
	Manually Setting the Window Timeout Value
	Setting the Window Timeout Value in the Agent Options Dialog Box

	Configuring the Connections Between the Silk Test Classic Components
	Configuring the Port to Connect to the Information Service
	Configuring the Port to Connect to the Open Agent
	Editing the Properties of the Silk Test Information Service
	Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

	Stopping the Open Agent After Test Execution
	Enabling the Classic Agent

	Basic Workflow for the Open Agent
	Creating a New Project
	Configuring Applications
	Recording Test Cases for Standard and Web Applications
	Recording Test Cases for Mobile Applications
	Running a Test Case
	Viewing Test Results

	Migrating from the Classic Agent to the Open Agent
	Differences for Agent Options Between the Silk Test Agents
	Differences in Object Recognition Between the Silk Test Agents
	Differences in the Classes Supported by the Silk Test Agents
	Differences in the Parameters Supported by the Silk Test Agents
	Overview of the Methods Supported by the Silk Test Agents
	SYS Functions Supported by the Open Agent and the Classic Agent

	Silk Test Classic Projects
	Storing Project Information
	Accessing Files Within Your Project
	Sharing a Project Among a Group
	Project Explorer
	Creating a New Project
	Opening an Existing Project
	Converting Existing Tests to a Project
	Using Option Sets in Your Project
	Editing an Options Set

	Silk Test Classic File Types
	Organizing Projects
	Adding Existing Files to a Project
	Renaming Your Project
	Working with Folders in a Project
	Adding a Folder to the Files Tab of the Project Explorer
	Moving Files and Folders
	Removing a Folder from the Files tab of the Project Explorer
	Renaming a Folder on the Files Tab of the Project Explorer
	Sorting Resources within the Global Tab of the Project Explorer

	Moving Files Between Projects
	Removing Files from a Project
	Turning the Project Explorer View On and Off
	Viewing Resources Within a Project

	Packaging a Silk Test Classic Project
	Emailing a Project

	Exporting a Project
	Troubleshooting Projects
	Files Not Found When Opening Project
	Silk Test Classic Cannot Load My Project File
	Silk Test Classic Cannot Save Files to My Project
	Silk Test Classic Does Not Run
	My Files No Longer Display In the Recent Files List
	Cannot Find Items In Classic 4Test
	Editing the Project Files

	Project Description Dialog Box

	Enabling Extensions for Applications Under Test
	Extensions that Silk Test Classic can Automatically Configure
	Extensions that Must be Set Manually
	Extensions on Host and Target Machines
	Enabling Extensions Automatically Using the Basic Workflow
	Enabling Extensions on a Host Machine Manually
	Manually Enabling Extensions on a Target Machine
	Enabling Extensions for Embedded Browser Applications that Use the Classic Agent
	Enabling Extensions for HTML Applications (HTAs)
	Adding a Test Application to the Extension Dialog Boxes
	Verifying Extension Settings
	Why Applications do not have Standard Names
	Duplicating the Settings of a Test Application in Another Test Application
	Deleting an Application from the Extension Enabler or Extensions Dialog Box
	Disabling Browser Extensions
	Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box
	Configuring the Browser
	Setting Agent Options for Web Testing
	Specifying a Browser for Silk Test Classic to Use in Testing a Web Application
	Specifying your Default Browser

	Enable Extensions Dialog Box (Classic Agent)
	Extension Information Dialog Box
	Extension Settings Dialog Box (.NET)
	Extension Settings Dialog Box (Web)
	Extension Settings Dialog Box (Client/Server)
	Extension Settings Dialog Box (Java)

	Understanding the Recovery System for the Open Agent
	Setting the Recovery System for the Open Agent
	Base State
	Modifying the Base State (Open Agent)
	DefaultBaseState Function
	Adding Tests that Use the Open Agent to the DefaultBaseState
	DefaultBaseState and the wDynamicMainWindow Object
	Flow of Control
	The Non-Web Recovery Systems Flow of Control
	How the Non-Web Recovery System Closes Windows
	How the Non-Web Recovery System Starts the Application

	Modifying the Default Recovery System
	Overriding the Default Recovery System
	Handling Login Windows
	Handling Login Windows in Non-Web Applications that Use the Open Agent

	Specifying Windows to be Left Open for Tests that Use the Open Agent
	Specifying New Window Closing Procedures
	Specifying Buttons, Keys, and Menus that Close Windows
	Recording a Close Method for Tests that Use the Open Agent

	Set Recovery System Dialog Box

	Test Plans
	Structure of a Test Plan
	Overview of Test Plan Templates
	Example Outline for Word Search Feature
	Converting a Results File to a Test Plan
	Working with Test Plans
	Creating a New Test Plan
	Indent and Change Levels in an Outline
	Adding Comments to Test Plan Results
	Documenting Manual Tests in the Test Plan
	Describing the State of a Manual Test
	Inserting a Template
	Changing Colors in a Test Plan
	Linking the Test Plan to Scripts and Test Cases
	Insert Testplan Template Dialog Box

	Working with Large Test Plans
	Determining Where Values are Defined in a Large Test Plan
	Dividing a Test Plan into a Master Plan and Sub-Plans
	Creating a Sub-Plan
	Copying a Sub-Plan
	Opening a Sub-Plan
	Connecting a Sub-Plan with a Master Plan
	Refreshing a Local Copy of a Sub-Plan
	Sharing a Test Plan Initialization File
	Saving Changes
	Overview of Locks
	Acquiring and Releasing a Lock
	Generating a Test Plan Completion Report
	Testplan Completion Report Dialog Box

	Adding Data to a Test Plan
	Specifying Unique and Shared Data
	Adding Comments in the Test Plan Editor
	Testplan Editor Statements
	The # Operator in the Testplan Editor
	Using the Testplan Detail Dialog Box to Enter the testdata Statement
	Entering the testdata Statement Manually

	Linking Test Plans
	Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box
	Linking a Test Plan to a Data-Driven Test Case
	Linking to a Test Plan Manually
	Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box
	Linking the Test Plan to Scripts and Test Cases
	Example of Linking a Test Plan to a Test Case

	Categorizing and Marking Test Plans
	Marking a Test Plan
	How the Marking Commands Interact
	Marking One or More Tests
	Printing Marked Tests
	Mark By Query Dialog Box
	Mark By Named Query Dialog Box

	Using Symbols
	Overview of Symbols
	Symbol Definition Statements in the Test Plan Editor
	Defining Symbols in the Testplan Detail Dialog box
	Assigning a Value to a Symbol
	Specifying Symbols as Arguments when Entering a testcase Statement

	Attributes and Values
	Predefined Attributes
	User Defined Attributes
	Adding or Removing Members of a Set Attribute
	Rules for Using + and -
	Defining an Attribute and the Values of the Attribute
	Assigning Attributes and Values to a Test Plan
	Assigning an Attribute from the Testplan Detail Dialog Box
	Modifying the Definition of an Attribute

	Queries
	Overview of Test Plan Queries
	Overview of Combining Queries to Create a New Query
	Guidelines for Including Symbols in a Query
	The Differences between Query and Named Query Commands
	Creating a New Query
	Edit a Query
	Delete a Query
	Combining Queries
	Combine Testplan Queries Dialog Box
	New/Edit Testplan Query Dialog Box
	Create Session Dialog Box

	Testplan Detail Dialog Box
	Testplan Detail - Testcase Dialog Box
	Define Attributes Dialog Box
	New Attribute Dialog Box
	Update Manual Tests Dialog Box
	Duplicate Test Descriptions dialog box

	Designing and Recording Test Cases with the Open Agent
	Creating Test Cases with the Open Agent
	Recording Test Cases for Standard and Web Applications
	Recording Test Cases for Mobile Applications
	Recording a Test on Microsoft Edge
	Recording Window Declarations that Include Locator Keywords
	Recording Locators Using the Locator Spy
	Recording an Application State
	Recording Additional Actions Into an Existing Test
	Actions Available During Recording
	Setting Recording Options for the Open Agent
	Best Practices for Creating Test Scripts
	Specifying Whether to Use Locators or Tags to Resolve Window Declarations
	Saving a Script File
	Testing an Application State
	Editing Remote Locations
	Overview of Recording the Stages of a Test Case
	Recording the Cleanup Stage and Pasting the Recording
	Testing the Ability of the Recovery System to Close the Dialog Boxes of Your Application
	Linking to a Script and Test Case by Recording a Test Case
	Recording Actions
	Locator Spy Dialog Box
	Record Testcase Dialog Box
	Update Files Dialog Box

	Dynamic Object Recognition
	XPath Basic Concepts
	Object Type and Search Scope
	Using Attributes to Identify an Object

	Locator Syntax
	XPath Samples
	Supported Locator Attributes
	Using Locators
	Using Locators to Check if an Object Exists
	Identifying Multiple Objects with One Locator
	Locator Customization
	Stable Identifiers
	Creating Stable Locators
	Example: Locating Siblings of a Control
	Example: Locating the Expand Icon in a Dynamic GWT Tree

	Custom Attributes
	Custom Attributes for Apache Flex Applications
	Java SWT Custom Attributes
	Custom Attributes for Web Applications
	Custom Attributes for Windows Forms Applications
	Custom Attributes for WPF Applications

	Troubleshooting Performance Issues for XPath

	Highlighting Objects During Recording
	Overview of the Locator Keyword
	Test Cases
	Overview of Test Cases
	Anatomy of a Basic Test Case
	Types of Test Cases
	Test Case Design
	Constructing a Test Case
	Data in Test Cases
	Saving Test Cases
	Recording Without Window Declarations
	Overview of Application States
	Behavior of an Application State Based on NONE
	Example: A Feature of a Word Processor

	Verification
	Verifying Object Properties
	Verifying Object Properties (Open Agent)
	Adding a Verification to a Script while Recording

	Overview of Verifying Bitmaps
	Verifying Appearance Using a Bitmap

	Overview of Verifying an Objects State
	Fuzzy Verification
	Verifying that a Window or Control is No Longer Displayed

	Data-Driven Test Cases
	Data-Driven Workflow
	Working with Data-Driven Test Cases
	Code Automatically Generated by Silk Test Classic
	Tips And Tricks for Data-Driven Test Cases
	Testing an Application with Invalid Data
	Enabling and Disabling Workflow Bars
	Data Source for Data-Driven Test Cases
	Configuring Your DSN
	Setting Up a Data Source
	Using an Oracle DSN to Data Drive a Test Case

	Creating the Data-Driven Test Case
	Selecting a Test Case to Data Drive
	Finding and Replacing Values
	Rules and Tips for Finding and Replacing Values in the Data-Driven Workflow
	Running a Data-Driven Test Case
	Running a Test Case Using a Sample Record for Each Table Used by the Data-Driven Test Case
	Passing Data to a Test Case
	Example Setup for Forward Case-Sensitive Search
	Building Queries
	Adding a Data-Driven Test Case to a Test Plan
	Using a main Function in the Script
	Using do...except to Handle an Exception

	Select Data Source Dialog Box
	Setup Data Driven Script DSN Dialog Box
	Specify Data Driven Script Dialog Box
	Specify Data Driven Testcase Dialog Box
	Specify Rows Dialog Box
	Go to Testcase Dialog Box
	Select Testcase Dialog Box

	Characters Excluded from Recording and Replaying

	Testing in Your Environment with the Open Agent
	Distributed Testing with the Open Agent
	Remote Testing with the Open Agent
	Testing with a Remote Open Agent
	Connecting to a Remote Open Agent
	Networking Protocols Used by the Open Agent
	Single Remote Applications
	Multiple Remote Applications
	Configuring a Network of Computers
	Enabling Networking on a Remote Host
	Configuring the Connections Between the Silk Test Classic Components
	Configuring the Port to Connect to the Information Service
	Configuring the Port to Connect to the Open Agent
	Editing the Properties of the Silk Test Information Service
	Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

	Client/Server Testing Configurations

	Running Test Cases in Parallel
	Concurrency
	Global Variables
	Recovering Multiple Tests
	Remote Recording
	Threads and Concurrent Programming
	Driving Multiple Machines
	Protecting Access to Global Variables
	Synchronizing Threads with Semaphores
	Testing In Parallel but Not Synchronously
	Statement Types
	Parallel Processing Statements
	Using Parallel Statements
	Using a Spawn Statement

	Using Templates
	Using the Parallel Template
	Client/Server Template

	Testing Multiple Machines
	Running Tests on One Remote Target
	Running Tests Serially on Multiple Targets
	Specifying the Target Machine Driven By a Thread
	Specifying the Target Machine For a Single Command
	Reporting Distributed Results
	Alternative Machine Handle Operator
	Testing Clients Concurrently
	Testing Clients Plus Server Serially
	Testing Databases

	Testing Multiple Applications
	Overview of Multi-Application Testing
	Test Case Structure in a Multi-Application Environment
	Invoking a Test Case in a Multi-Application Environment
	Test Case Structure in a Single-Application Environment
	Window Declarations for Multi-Application Testing
	Concurrency Test Example Code
	Concurrency Test Explained
	Code for template.t
	template.t Explained
	defaults.inc
	cs.inc
	Include File Size

	Troubleshooting Distributed Testing
	Handling Limited Licenses

	Testing Apache Flex Applications
	Overview of Apache Flex Support
	Configuring Security Settings for Your Local Flash Player
	Configuring Flex Applications to Run in Adobe Flash Player
	Configuring Flex Applications for Adobe Flash Player Security Restrictions
	Customizing Apache Flex Scripts
	Styles in Apache Flex Applications
	Locator Attributes for Apache Flex Controls
	Dynamically Invoking Apache Flex Methods
	Testing Multiple Flex Applications on the Same Web Page
	Adobe AIR Support
	Apache Flex Exception Values
	Overview of the Flex Select Method Using Name or Index
	Selecting an Item in the FlexDataGrid Control
	Enabling Your Flex Application for Testing
	Linking Automation Packages to Your Flex Application
	Precompiling the Flex Application for Testing
	Loading at Run-Time
	Run-Time Loading

	Using the Command Line to Add Configuration Information
	Passing Parameters into a Flex Application
	Passing Parameters into a Flex Application Before Runtime
	Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

	Creating Testable Flex Applications
	Flex AutomationName and AutomationIndex Properties
	Setting the Flex automationName Property
	Setting the Flex Select Method to Use Name or Index

	Coding Flex Containers
	Adding and Removing Containers from the Automation Hierarchy
	Multiview Containers

	Flex Automation Testing Workflow
	Flex Automated Testing Initialization
	Flex Automated Testing Recording
	Flex Automated Testing Playback

	Testing the Component Explorer
	Configuring Security Settings for Your Local Flash Player
	Launching the Component Explorer
	Creating a New Project
	Configuring Web Applications
	Recording a Sample Test Case for the Component Explorer
	Running a Test Case
	Customizing Apache Flex Scripts

	Testing Flex Custom Controls
	Defining a Custom Control in the Test Application
	Testing a Custom Control Using Dynamic Invoke
	Testing a Custom Control Using Automation Support
	Implementing Automation Support for a Custom Control
	Flex Class Definition File

	Client/Server Application Support
	Client/Server Testing Challenges
	Verifying Tables in ClientServer Applications
	Evolving a Testing Strategy
	Incremental Functional Test Design
	Network Testing Types
	Concurrency Testing
	Configuration Testing
	Functional Testing
	Peak Load Testing
	Volume Testing

	How 4Test Handles Script Deadlock
	Troubleshooting Configuration Test Failures

	Testing .NET Applications with the Open Agent
	Windows Forms Applications
	Locator Attributes for Windows Forms Applications
	Dynamically Invoking Windows Forms Methods
	Suppressing Controls (Open Agent)
	Determining the priorLabel in the Windows Forms Technology Domain

	WPF Applications
	Supported Controls for WPF
	Locator Attributes for Windows Presentation Foundation (WPF) Controls
	Classes that Derive from the WPFItemsControl Class
	Custom WPF Controls
	Setting WPF Classes to Expose During Recording and Playback
	Dynamically Invoking WPF Methods
	Setting Pre-Fill During Recording and Replaying
	WPF Class Reference

	Microsoft Silverlight Applications
	Locator Attributes for Silverlight Controls
	Dynamically Invoking Silverlight Methods
	Scrolling in Silverlight
	Troubleshooting when Testing Silverlight Applications
	Silverlight Class Reference

	Java AWT/Swing Support
	Configuring a Test Application that Uses the Java Network Launching Protocol (JNLP)
	Custom Attributes
	Attributes for Java AWT/Swing Applications
	Dynamically Invoking Java Methods
	invokeMethods Example: Draw a Line in a Text Field
	Determining the priorLabel in the Java AWT/Swing Technology Domain
	Oracle Forms Support
	Prerequisites for Testing Oracle Forms
	Attributes for Oracle Forms Applications

	Testing Java SWT and Eclipse Applications with the Open Agent
	Suppressing Controls (Open Agent)
	Attributes for Java SWT Applications
	Dynamically Invoking Java Methods
	Java SWT Classes for the Open Agent
	Troubleshooting Java SWT and Eclipse Applications

	Testing Mobile Applications
	Android
	Prerequisites for Testing Mobile Applications on Android
	Testing Mobile Applications on Android
	Testing Hybrid Applications on Android
	Installing a USB Driver
	Enabling USB-Debugging
	Recommended Settings for Android Devices
	Configuring the Android Emulator for Silk Test Classic
	Tested Configurations for Parallel Test Execution

	iOS
	Prerequisites for Testing Mobile Applications on iOS
	Testing Native Mobile Applications on a Physical iOS Device
	Testing Native Mobile Applications on an iOS Simulator
	Testing Mobile Web Applications on a Physical iOS Device
	Testing Mobile Web Applications on an iOS Simulator
	Testing Hybrid Applications on iOS
	Preparing an iOS Device for Testing
	Preparing an iOS App for Testing
	Installing the Silk Test Information Service on a Mac
	Preparing a Mac to Test Mobile Applications on iOS
	Using a Personal Team Profile for Testing on Physical iOS Devices
	Editing the Properties of the Silk Test Information Service
	Uninstalling the Silk Test Information Service from a Mac
	Recommended Settings for iOS Devices
	Running Existing Scripts on iOS Using XCUITest

	Recording Mobile Applications
	Selecting the Mobile Device for Test Replay
	Using Devices from Mobile Center Directly from Silk Test Classic
	Using Devices from Mobile Center through Silk Central
	Installing the Certificate for an HTTPS Connection to Mobile Center
	Changing the Mobile Center Password
	Using SauceLabs Devices
	Connection String for a Mobile Device
	Interacting with a Mobile Device
	Releasing a Mobile Device
	Releasing a Mobile Device After Recording
	Releasing a Mobile Device After Replay

	Using the setLocation Method when Testing a Mobile Application
	Troubleshooting when Testing Mobile Applications
	Limitations for Testing Mobile Web Applications
	Limitations for Testing Native Mobile Applications
	Dynamically Invoking Methods for Native Mobile Apps
	Clicking on Objects in a Mobile Website
	Using Existing Mobile Web Tests

	Testing Rumba Applications
	Enabling and Disabling Rumba
	Locator Attributes for Identifying Rumba Controls
	Testing a Unix Display
	Rumba Class Reference

	Testing SAP Applications
	Locator Attributes for SAP Controls
	Dynamically Invoking SAP Methods
	Configuring Automation Security Settings for SAP
	SAP Class Reference

	Cross-Browser Testing with the Open Agent
	Test Objects for xBrowser
	Overview of Test Frames
	Recording the Test Frame for a Web Application (Open Agent)
	Modifying the Identifiers

	Testing Web Applications on Different Browsers
	Changing the Browser Type When Replaying Tests from the UI
	Setting the Browser when Running Automated Tests
	Testing Objects in a Web Page with the Open Agent
	Testing Columns and Tables
	Definition of a Table (Open Agent)
	Testing Controls
	Testing Images
	Testing Links
	Testing Text in Web Applications

	Object Recognition for xBrowser Objects
	xBrowser Default BaseState
	Locator Attributes for xBrowser controls
	Page Synchronization for xBrowser
	Setting xBrowser Synchronization Options

	Configuring the Locator Generator for xBrowser
	Comparing API Playback and Native Playback for xBrowser
	Setting Recording Options for xBrowser
	Browser Configuration Settings for xBrowser
	Connection String for a Remote Desktop Browser
	Setting Capabilities for WebDriver-Based Browsers
	Capturing the Contents of a Web Page
	Testing with Apple Safari on a Mac
	Prerequisites for Testing with Apple Safari on a Mac
	Preparing Apple Safari for Testing
	Installing the Silk Test Information Service on a Mac
	Limitations for Testing with Apple Safari
	Running Multiple Apple Safari Tests at the Same Time
	Uninstalling the Silk Test Information Service from a Mac

	Testing with Google Chrome
	Prerequisites for Replaying Tests with Google Chrome
	Testing Google Chrome Extensions
	Testing Google Chrome with User Data Directories
	Limitations for Testing with Google Chrome
	Limitations for Testing with Google Chrome on macOS

	Testing with Mozilla Firefox
	Testing Mozilla Firefox with Profiles
	Testing Mozilla Firefox Extensions
	Limitations for Testing with Mozilla Firefox
	Limitations for Testing with Mozilla Firefox on macOS

	Testing with Microsoft Edge
	Limitations for Testing with Microsoft Edge

	Responsive Web Design Testing
	Detecting Visual Breakpoints
	Manually Creating Tests for Dynamic Popup Menus
	Finding Hidden Input Fields
	Improving iframe Performance
	Cross-Browser Testing: Frequently Asked Questions
	How do I Verify the Font Type Used for the Text of an Element?
	What is the Difference Between textContents, innerText, and innerHtml?
	I Configured innerText as a Custom Class Attribute, but it Is Not Used in Locators
	What Should I Take Care Of When Creating Cross-Browser Scripts?
	How Can I See Which Browser I Am Currently Using?
	Which Locators are Best Suited for Stable Cross Browser Testing?
	Logging Output of My Application Contains Wrong Timestamps
	My Test Script Hangs After Navigating to a New Page
	Recorded an Incorrect Locator
	Rectangles Around Elements in Internet Explorer are Misplaced
	Link.Select Does Not Set the Focus for a Newly Opened Window in Internet Explorer
	DomClick(x, y) Is Not Working Like Click(x, y)
	FileInputField.DomClick() Will Not Open the Dialog
	How can I scroll in a browser?
	The Move Mouse Setting Is Turned On but All Moves Are Not Recorded. Why Not?
	I Need Some Functionality that Is Not Exposed by the xBrowser API. What Can I Do?
	Why Are the Class and the Style Attributes Not Used in the Locator?
	Dialog is Not Recognized During Replay
	Why Do I Get an Invalidated-Handle Error?
	Why Are Clicks Recorded Differently in Internet Explorer 10?

	Testing the Insurance Company Sample Web Application
	Creating a New Project for the Insurance Company Web Application
	Configuring the Insurance Company Web Application
	Recording a Test Case for the Insurance Company Web Site
	Replaying a Test Case for the Insurance Company Web Site

	xBrowser Classes

	Universal Windows Platform Support
	Testing Windows API-Based Applications
	Overview of Windows API-Based Application Support
	Locator Attributes for Windows API-Based Applications
	Suppressing Controls (Classic Agent)
	Suppressing Controls (Open Agent)
	Configuring Standard Applications
	Determining the priorLabel in the Win32 Technology Domain
	Testing Embedded Chrome Applications
	Microsoft Foundation Class Support

	Limitations for Testing on Microsoft Windows 8 and Microsoft Windows 8.1

	Keyword-Driven Tests
	Advantages of Keyword-Driven Testing
	Keywords
	Creating a Keyword-Driven Test in Silk Test Classic
	Recording a Keyword-Driven Test in Silk Test Classic
	Setting the Base State for a Keyword-Driven Test in Silk Test Classic
	Implementing a Keyword in Silk Test Classic
	Recording a Keyword in Silk Test Classic
	Marking a Test Method in a Script as a Keyword
	Editing a Keyword-Driven Test
	Managing Keywords in a Test in Silk Central
	Which Keywords Does Silk Test Classic Recommend?
	Using Parameters with Keywords
	Example: Keywords with Parameters
	Combining Keywords into Keyword Sequences
	Replaying a Keyword-Driven Test with Specific Variables
	Integrating Silk Test Classic with Silk Central
	Implementing Silk Central Keywords in Silk Test Classic
	Uploading a Keyword Library to Silk Central
	Uploading a Keyword Library to Silk Central from the Command Line
	Searching for a Keyword
	Filtering Keywords
	Troubleshooting for Keyword-Driven Testing

	Using Advanced Techniques with the Open Agent
	Starting from the Command Line
	Starting Silk Test Classic from the Command Line

	Recording a Test Frame
	Overview of Object Files
	Advantages of Object Files
	Object File Locations
	Specifying where Object Files Should be Written To and Read From

	Declarations
	GUI Specifiers
	Overview of Dialog Box Declarations
	Main Window and Menu Declarations

	Window Declarations
	Improving Silk Test Classic Window Declarations
	Improving Object Recognition by Defining a New Window
	Recording Window Declarations for the Main Window and Menu Hierarchy
	Use the member-of Operator to Access Data

	Overview of Identifiers
	Save the Test Frame
	Specifying How a Dialog Box is Invoked

	Improving Object Recognition with Microsoft Accessibility
	Using Accessibility with the Open Agent
	Enabling Accessibility for the Open Agent

	Microsoft UI Automation
	Recording a Test Against an Application with an Implemented UI Automation Provider Interface
	Dynamically Invoking UI Automation Methods
	Locator Attributes for Identifying Controls with UI Automation
	Scrolling in UI Automation Controls
	Limitations when Using UI Automation
	Troubleshooting when Testing with UI Automation Support Enabled

	Calling Windows DLLs from 4Test
	Aliasing a DLL Name
	Calling a DLL from within a 4Test Script
	Passing Arguments to DLL Functions
	Using DLL Support Files Installed with Silk Test Classic

	Extending the Class Hierarchy
	Classes
	Overview of Classes
	Polymorphism
	CursorClass, ClipboardClass, and AgentClass
	Defining New Classes with the Open Agent
	Defining New Class Properties
	DesktopWin
	Logical Classes
	Class Hierarchy (Open Agent)

	Verifying Attributes and Properties
	Attribute Definition and Verification
	Defining a New Attribute for an Existing Class
	Defining New Verification Properties
	Syntax for Attributes
	Hidecalls Keyword
	An Alternative to NumChildren as a Class Property

	Defining Methods and Custom Properties
	Defining a New Method
	Defining a New Method for a Single GUI Object
	Recording a Method for a GUI Object
	Deriving a New Method from an Existing One
	Defining Custom Verification Properties
	Redefining a Method
	Confirming the Property List

	Examples
	Example: Adding a Method to TextField Class
	Example: Adding Tab Method to DialogBox Class
	Example: Defining a Custom Verification Property

	Porting Tests to Other GUIs
	Handling Differences Among GUIs
	Conditionally Loading Include Files
	Load Different Include Files for Different Versions of the Test Application
	Different Error Messages
	One Logical Control can Have Two Implementations
	Options Sets and Porting
	Specifying Options Sets
	Supporting Differences in Application Behavior
	Text Box Requires Return Keystroke
	Using Cross-Platform Methods in Your Scripts

	About GUI Specifiers
	Class Declarations
	Conditional Compilation
	Conditionally Compile Code
	GUI with Inheritance
	GUI with Global Variables
	Marking 4Test Code as GUI Specific
	Syntax of a GUI Specifier
	What Happens when the Code is Compiled
	Where You Use GUI Specifiers
	do...except Statements
	Type Statements

	Supporting GUI-Specific Objects
	Supporting GUI-Specific Captions
	Supporting GUI-Specific Executables
	Supporting GUI-Specific Menu Hierarchies

	Supporting Custom Controls
	Why Silk Test Classic Sees Controls as Custom Controls
	Reasons Why Silk Test Classic Sees the Control as a Custom Control
	Supporting Graphical Controls
	Custom Controls (Open Agent)
	Dynamic Invoke
	Frequently Asked Questions About Dynamic Invoke
	Which Methods Can I Call With the DynamicInvoke Method?
	Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?
	How Can I Simplify My Scripts When I Use Many Calls To DynamicInvokeMethods?

	Testing Apache Flex Custom Controls
	Managing Custom Controls (Open Agent)
	Supporting a Custom Control
	Custom Controls Dialog Box

	Using Clipboard Methods
	Get and Set Text Sample Code
	Using the Modified Declaration

	Filtering Custom Classes
	Invisible Containers

	Supporting Internationalized Objects
	Overview of Silk Test Classic Support of Unicode Content
	Using DB Tester with Unicode Content
	Issues Displaying Double-Byte Characters
	Learning More About Internationalization
	Silk Test Classic File Formats
	Reusing Silk Test Classic Single-Byte Files as Double-Byte
	Specifying File Formats for Existing Files with Unicode Content
	Specifying File Formats for New Files with Unicode content

	Working with Bi-Directional Languages
	Configuring Your Environment
	Configuring Your Microsoft Windows XP PC for Unicode Content
	Installing Language Support
	Setting Up Your Input Method Editor

	Displaying Double-Byte Characters
	Displaying Double-Byte Characters in Dialog Boxes
	Displaying Double-Byte Characters in the Editor

	Using an IME with Silk Test Classic

	Troubleshooting Unicode Content
	Display Issues
	Why Are My Window Declarations Recording Only Pipes?
	What Are Pipes and Squares Anyway?
	Why Can I Only Enter Pipes Into a Silk Test Classic File?
	Why Do I See Pipes and Squares in the Project Tab?
	Why Cannot My System Dialog Boxes Display Multiple Languages?
	Why Do I See Pipes and Squares in My Win32 AUT?
	Why Do the Fonts on My System Look so Different?
	Why Do Unicode Characters Not Display in the Silk Test Project Explorer
	Why Is My Web Application Not Displaying Characters Properly?

	File Formats
	Why Am I Getting Compile Errors?
	Why Does Silk Test Classic Open Up the Save As Dialog Box when I Try to Save an Existing File?

	Working with Input Method Editors
	Why is English the Only Language Listed when I Click the Language Bar Icon?
	Why Does This IME Look so Different from Other IMEs I Have Used

	Using Autocomplete
	Overview of AutoComplete
	Customizing your MemberList
	Frequently Asked Questions about AutoComplete
	Turning AutoComplete Options Off
	Using AppStateList
	Using DataTypeList
	Using FunctionTip
	Using MemberList

	Overview of the Library Browser
	Library Browser Source File
	Adding Information to the Library Browser
	Add User-Defined Files to the Library Browser with Silk Test Classic
	Viewing Functions in the Library Browser
	Viewing Methods for a Class in the Library Browser
	Examples of Documenting User-Defined Methods
	Web Classes Not Displayed in Library Browser
	Library Browser

	Text Recognition Support
	Slowing Down Tests
	Testing Applications in Multiple UI Sessions on a Single Machine
	Encrypting Passwords

	Running Tests and Interpreting Results
	Running Tests
	Creating a Suite
	Passing Arguments to a Script
	Running a Test Case
	Running a Test Plan
	Running the Currently Active Script or Suite
	Running Tests in Parallel
	Example: Running a Test in Parallel

	Setting Replay Options for the Open Agent
	Stopping a Running Test Case Before it Completes
	Setting a Test Case to Use Animation Mode
	Run Application State Dialog Box
	Run Testcase Dialog Box
	Runtime Status Dialog Box

	Analyzing Test Results
	HTML Reports
	Analyzing Results with the Silk TrueLog Explorer
	TrueLog Explorer
	TrueLog Limitations and Prerequisites
	Why is TrueLog Not Displaying Non-ASCII Characters Correctly?

	Opening the TrueLog Options Dialog Box
	Setting TrueLog Options
	Toggle TrueLog at Runtime Using a Script
	Viewing Results Using the TrueLog Explorer

	Interpreting Results in Result Files
	Overview of the Results File
	Viewing Test Results
	Errors And the Results File
	Viewing Differences
	Merging Test Plan Results
	How Does Silk Test Classic Synchronize Tests?
	Selecting which Results to Display
	Export Results Dialog Box
	View Options Dialog Box
	Compare Two Results Dialog Box

	Analyzing Bitmaps
	Overview of the Bitmap Tool
	When to use the Bitmap Tool
	Capturing Bitmaps with the Bitmap Tool
	Capturing a Bitmap with the Bitmap Tool
	Capturing a Bitmap During Recording
	Capturing All or Part of the Zoom Window in Scan Mode
	Saving Captured Bitmaps

	Comparing Bitmaps
	Rules for Using Comparison Commands
	Bitmap Functions
	Baseline and Result Bitmaps
	Designating a Bitmap as a Baseline
	Designating a Bitmap as a Results File
	Un-Setting a Designated Bitmap

	Zooming the Baseline Bitmap, Result Bitmap, and Differences Window
	Looking at Statistics
	Viewing Statistics by Comparing the Baseline Bitmap and the Result Bitmap

	Exiting from Scan Mode
	Starting the Bitmap Tool
	Starting the Bitmap Tool from its Icon and Opening Bitmap Files
	Starting the Bitmap Tool from the Results File
	Starting the Bitmap Tool from the Run Dialog Box

	Using Masks
	Prerequisites for the Masking Feature
	Applying a Mask
	Editing an Applied Mask
	Creating and Applying a Mask that Excludes Some Differences or Just Selected Areas
	Creating and Applying a Mask that Excludes All Differences
	Saving a Mask

	Analyzing Bitmaps for Differences
	Scanning Bitmap Differences
	Showing Areas of Difference
	Graphically Show Areas of Difference Between a Baseline and a Result Bitmap
	Moving to the Next or Previous Difference
	Zooming in on the Differences

	Working with Result Files
	Attaching a Comment to a Result Set
	Comparing Result Files
	Customizing results
	Deleting Results
	Change the default number of result sets
	Changing the Colors of Elements In the Results File
	Fix incorrect values in a script
	Marking Failed Test Cases
	Merging Test Plan Results
	Navigating to errors
	Viewing an individual summary
	Storing and Exporting Results
	Storing results
	Extracting Results
	Exporting Results
	Displaying a different set of results
	Removing the Unused Space from a Result File
	Logging Elapsed Time, Thread, and Machine Information

	Debugging Test Scripts
	Designing and Testing with Debugging in Mind
	Executing a Script in the Debugger
	Debugging a Test Script
	Debugger Menus
	Stepping Into and Over Functions
	Working with Scripts During Debugging
	Exiting the Debugger
	Breakpoints
	Setting Breakpoints
	Viewing Breakpoints
	Deleting Breakpoints
	Add Breakpoint Dialog Box
	Delete Breakpoint Dialog Box
	Breakpoint Dialog Box

	Viewing Variables
	Changing the Value of a Variable
	Globals Dialog Box
	Locals Dialog Box
	Expressions
	Evaluating Expressions

	Enabling View Trace Listing
	Viewing a List of Modules
	View Module Dialog Box
	Viewing the Debugging Transcripts
	Transcript Dialog Box
	Call Stack Dialog Box
	Debugging Tips
	Checking the Precedence of Operators
	Checking for Code that Never Executes
	Global and Local Variables with the Same Name
	Handling Global Variables with Unexpected Values
	Incorrect Usage of Break Statements
	Incorrect Values for Loop Variables
	Infinite loops
	Typographical Errors
	Uninitialized Variables

	Setting Silk Test Classic Options
	Setting General Options
	Setting the Editor Font
	Setting the Editor Colors
	Runtime Options Dialog Box
	Compiler Constants Dialog Box

	Agent Options Dialog Box
	Timing Tab
	Verification Tab
	Close Tab
	Bitmap Tab
	Bitmap Agent Options

	Synchronization Tab
	Setting Advanced Options
	Other Tab
	Compatibility Tab

	Extensions Dialog Box
	Extension Details Dialog Box

	Setting Recording Options for the Open Agent
	Setting Recording Options for the Classic Agent
	Setting Replay Options for the Open Agent
	Defining which Custom Locator Attributes to Use for Recognition
	Setting Classes to Ignore
	Custom Controls Dialog Box
	Property Sets Dialog Box
	New Property Set Dialog Box
	Combine Property Sets Dialog Box

	DOM Extensions Dialog Box
	Extension Application Dialog Box
	Extension Options (ActiveX) Dialog Box
	Extension Options Dialog Box (Java)
	TrueLog Options - Classic Agent Dialog Box
	Setting TrueLog Options

	Troubleshooting the Open Agent
	Troubleshooting Apache Flex Applications
	Why Cannot Silk Test Classic Recognize Apache Flex Controls?

	Troubleshooting Basic Workflow Issues with the Open Agent
	Error Messages
	Agent not responding
	Control is not responding
	Functionality Not Supported on the Open Agent
	Unable to Connect to Agent
	Window is not active
	Window is not enabled
	Window is not exposed
	Window not found

	Handling Exceptions
	Default Error Handling
	Custom Error Handling
	Trapping the exception number
	Defining Your Own Exceptions
	Using do...except Statements to Trap and Handle Exceptions
	Programmatically Logging an Error
	Performing More than One Verification in a Test Case
	Writing an Error-Handling Function
	Exception Values

	Troubleshooting Java Applications
	What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?
	What Can I Do If Java Controls In an Applet Are Not Recognized?

	Multiple Machines Testing
	Setting Up the Recovery System for Multiple Local Applications
	two_apps.t
	two_apps.inc

	Other Problems
	Adding a Property to the Recorder
	Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic
	Cannot Extend AnyWin, Control, or MoveableWin Classes
	Cannot open results file
	Common DLL Problems
	Common Scripting Problems
	Conflict with Virus Detectors
	Displaying the Euro Symbol
	Do I Need Administrator Privileges to Run Silk Test Classic?
	Does Silk Test Classic Support Oracle Forms?
	General Protection Faults
	Running Global Variables from a Test Plan Versus Running Them from a Script
	Include File or Script Compiles but Changes are Not Picked Up
	Library Browser Not Displaying User-Defined Methods
	Maximum Size of Silk Test Classic Files
	Recorder Does Not Capture All Actions
	Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File
	The 4Test Editor Does Not Display Enough Characters
	Silk Test Classic Support of Delphi Applications
	Stopping a Test Plan
	Using a Property Instead of a Data Member
	Using File Functions to Add Information to the Beginning of a File
	Why do I get error 07002 when updating an Excel sheet?
	Why Does the Str Function Not Round Correctly?

	Troubleshooting Projects
	Files Not Found When Opening Project
	Silk Test Classic Cannot Load My Project File
	Silk Test Classic Cannot Save Files to My Project
	Silk Test Classic Does Not Run
	My Files No Longer Display In the Recent Files List
	Cannot Find Items In Classic 4Test
	Editing the Project Files

	Recognition Issues
	How Can the Application Developers Make Applications Ready for Automated Testing?

	Tips
	Example Test Cases for the Find Dialog Box
	When to use the Bitmap Tool

	Troubleshooting Web Applications
	What Can I Do If the Page I Have Selected Is Empty?
	Why Do I Get an Error Message When I Set the Accessibility Extension?

	Using the Runtime Version of Silk Test Classic
	Installing the Runtime Version
	Starting the Runtime Version
	Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands

	Working with Files
	Creating a New File
	Searching for a String in a File
	Replacing a String in a File
	4Test Editor
	Setting Up a Printer
	Printing the Contents of the Active Window
	Confirm Test Description Identifier Dialog Box

	Glossary
	4Test Classes
	4Test-Compatible Information or Methods
	Abstract Windowing Toolkit
	accented character
	agent
	applet
	application state
	attributes
	Band (.NET)
	base state
	bidirectional text
	Bytecode
	call stack
	child object
	class
	class library
	class mapping
	Classic 4Test
	client area
	custom object
	data-driven test case
	data member
	declarations
	DefaultBaseState
	diacritic
	Difference Viewer
	double-byte character set (DBCS)
	dynamic instantiation
	dynamic link library (DLL)
	enabling
	exception
	frame file
	fully qualified object name
	group description
	handles
	hierarchy of GUI objects
	host machine
	hotkey
	Hungarian notation
	identifier
	include file
	internationalization or globalization
	Java Database Connectivity (JDBC)
	Java Development Kit (JDK)
	Java Foundation Classes (JFC)
	Java Runtime Environment (JRE)
	Java Virtual Machine (JVM)
	JavaBeans
	Latin script
	layout
	levels of localization
	load testing
	localization
	localize an application
	locator
	logical hierarchy
	manual test
	mark
	master plan
	message box
	method
	minus (-) sign
	modal
	modeless
	Multibyte Character Set (MBCS)
	Multiple Application Domains (.NET)
	negative testing
	nested declarations
	No-Touch (.NET)
	object
	outline
	Overloaded method
	parent object
	performance testing
	physical hierarchy (.NET)
	plus (+) sign
	polymorphism
	project
	properties
	query
	recovery system
	regression testing
	results file
	script
	script file
	side-by-side (.NET)
	Simplified Chinese
	Single-Byte Character Set (SBCS)
	smoke test
	Standard Widget Toolkit (SWT)
	statement
	status line
	stress testing
	subplan
	suite
	Swing
	symbols
	tag
	target machine
	template
	test description
	test frame file
	test case
	test plan
	TotalMemory parameter
	Traditional Chinese
	variable
	verification statement
	Visual 4Test
	window declarations
	window part
	XPath

