
Borland
VisiBroker® 7.0

VisiNotify Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB70VisiNotify
March 2006
PDF

i

Contents

Chapter 1
Introduction to Borland VisiBroker 1
VisiBroker Overview 1

VisiBroker features. 2
VisiBroker Documentation 2

Accessing VisiBroker online help topics
in the standalone Help Viewer 3

Accessing VisiBroker online help topics
from within the VisiBroker Console. 3

Documentation conventions 4
Platform conventions 4

Contacting Borland support 4
Online resources. 5
World Wide Web 5
Borland newsgroups 5

Chapter 2
Introduction to VisiNotify 7
OMG Event/Notification Service

Communication Model. 7
OMG Event/Notification Service Object Model 8
VisiNotify features. 10

Superior throughput and scalability 10
Superior performance with

event persistence 11
Valuetype support 11
Typed channel support. 11
Publish/Subscribe Adapter (PSA) 11
Typed pulling without using

Pull<I> interface 11
Explicit RMI and EJB support 12
Connection persistence 12
Self-adaptive asynchronous flow control 12
QoS and filter support 13
Thread on demand 13

Chapter 3
Developing supplier and consumer
applications 15

Using predefined Event/Notification Services. 15
Developing push consumer applications 16
Develop pull consumer applications 18
Developing push supplier applications. 20
Developing pull supplier applications 21

Using Typed Event/Notification Service 24
Developing type push consumer

applications 25
Developing typed push supplier

applications 28
Developing RMI/EJB applications

with VisiNotify . 30
Developing a RMI typed consumer 31
Developing a RMI typed supplier 32

Developing an EJB bean as an
Typed Notification consumer 33

Developing an EJB bean as a Structured
Notification consumer 34

VisiBroker Event Buffering/Batch 35
Disable supplier-side event buffering 35
Disable consumer-side event buffering 36
Flush buffered events in supplier application . . . 36
Initial Reference of VisiNotify 37

Chapter 4
Using the Publish Subscribe
Adapter (PSA) 39

Introduction . 39
PSA reference and PSA interface IDL 42
User examples . 45

Structured Push Consumer. 45
Typed Push Consumer 48
Structured and Typed Push

Supplier examples 51
Subscribe a subject using PSA 54

SubjectScheme. 54
Subject Reference, Observer ID, and

Properties to Subscribe() 55
Examples of Subscribe() 56
Subscribe Descriptor and

the_subject_addr() 58
Unsubscribe a Subject 58

Publish a Subject 59
SubjectScheme. 59
Subject Reference, Provider ID,

and Properties to Publish() 60
Examples of publish(). 61

Publish Descriptor and the_subject_addr() 64
Unpublish a subject. 64

Support of Typed Pulling. 65
Passive typed pull consumer 65
Active typed pull consumer 67
Typed pull supplier 68

Additional topics and summary 71
ChannelException 71
Setting Notification Service QoS in PSA 71
PSA Summary 71

Chapter 5
Setting the Quality of
Service and Filters 73

Properties of the Quality of Service (QoS) 73
Priority . 73
EventReliability 73
VBPersistentDbType 73
VBPersistentCommitSyncPolicy 74
VBPersistentStorageOverflowBlockTimeout . . . 74

ii

VBPersistentOverflowDowngradePolicy 74
ConnectionReliability 75
MaxEventsPerConsumer 75
DiscardPolicy 75
OrderPolicy . 75
VBQueueLowWaterMark 75
VBQueueHighWaterMark 75
VBProxyPushSupplierThreadModel. 76
VBProxyPushSupplierQueue

PreemptWaterMark 76
VBReceivedEventsCount 76
VBPendingEventsCount 76
VBDiscardedEventsCount. 76
VBForwardedEventsCount 76
VBFilteredEventsCount 76

Administration and Validation of QoS properties . . . 77
Interface CosNotification::QoSAdmin 77
Validating QoS in the header

of structured events 77
QoS negotiation 77

Channel Admin Properties 77
Interface CosNotification::

AdminPropertiesAdmin 77
VBPersistentStorageSize 78

Static Properties 78
vbroker.notify.console = <Boolean> 78
vbroker.notify.listener.port = <ULong>. 78
vbroker.notify.factory.name = <string>. 78
vbroker.notify.channel.name = <string> 78
vbroker.notify.channel.threadMaxIdle =

<ULong> . 79
vbroker.notify.enableEventQoS =

<Boolean> . 79
vbroker.notify.dir = <string> 79
vbroker.notify.ir = <string> 79

vbroker.notify.channel.persistent
StorageSize = <ULong> 79

vbroker.notify.channel.persistent
CommitPolicy = <Boolean>. 80

vbroker.notify.channel.persistentOverflow
BlockTimeout = <ULong> 80

vbroker.notify.channel.persistent
DowngradePolicy = <ULong> 80

vbroker.notify.channel.persistentEvent =
<Boolean> .80

vbroker.notify.channel.iorFile = <string>80
vbroker.notify.channel.passiveProxy

PersistenceMask = <Boolean>81
vbroker.notify.channel.maxDelay =

<ULong> .81
vbroker.notify.threadPool.threadMax =

<ULong> .81
vbroker.notify.threadPool.threadMin =

<ULong> .81
vbroker.notify.threadPool.threadMaxIdle =

<ULong> .81
vbroker.log.enable = <Boolean>81

Levels of Support 82
Event Filtering using Filter Objects 83

Filtering Events. 83
Forwarding Filter Evaluation83
Using Forwarding Filters84
Forwarding Filter Limitation 85
Writing Filter Constraint Expressions 85

Overview .85
Extended Trader Constraint Language

(Extended TCL)86

Index 89

Chapter 1: Introduct ion to Bor land Vis iBroker 1

C h a p t e r

Chapter 1Introduction to Borland VisiBroker
For the CORBA developer, Borland provides VisiBroker for Java, VisiBroker for C++,
and VisiBroker for .NET to leverage the industry-leading VisiBroker Object Request
Broker (ORB). These three facets of VisiBroker are implementations of the CORBA 2.6
specification.

VisiBroker Overview
VisiBroker is for distributed deployments that require CORBA to communicate between
both Java and non-Java objects. It is available on a wide range of platforms (hardware,
operating systems, compilers and JDKs). VisiBroker solves all the problems normally
associated with distributed systems in a heterogeneous environment.

VisiBroker includes:

■ VisiBroker for Java, VisiBroker for C++, and VisiBroker for .NET, three
implementations of the industry-leading Object Request Broker.

■ VisiNaming Service, a complete implementation of the Interoperable Naming
Specification in version 1.3.

■ GateKeeper, a proxy server for managing connections to CORBA Servers behind
firewalls.

■ VisiBroker Console, a GUI tool for easily managing a CORBA environment.

■ Common Object Services such as VisiNotify (implementation of Notification Service
Specification), VisiTransact (implementation of Transaction Service Specification),
VisiTelcoLog (implementation of Telecom Logging Service Specification), VisiTime
(implementation of Time Service Specification), and VisiSecure.

2 VisiBroker Vis iNot i fy Guide

VisiBroker Documentat ion

VisiBroker features

VisiBroker offers the following features:

■ “Out-of-the-box” security and web connectivity.

■ Seamless integration to the J2EE Platform, allowing CORBA clients direct access to
EJBs.

■ A robust Naming Service (VisiNaming), with caching, persistent storage, and
replication for high availability.

■ Automatic client failover to backup servers if primary server is unreachable.

■ Load distribution across a cluster of CORBA servers.

■ Full compliance with the OMG's CORBA 2.6 Specification.

■ Integration with the Borland JBuilder integrated development environment.

■ Enhanced integration with other Borland products including Borland AppServer.

VisiBroker Documentation
The VisiBroker documentation set includes the following:

■ Borland VisiBroker Installation Guide—describes how to install VisiBroker on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

■ Borland Security Guide—describes Borland's framework for securing VisiBroker,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

■ Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), the
Interface Repository, and the Interface Repository, and Web Service Support.

■ Borland VisiBroker for C++ Developer's Guide—describes how to develop
VisiBroker applications in C++. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the OAD, the QoS, Pluggable Transport Interface, RT CORBA
Extensions, and Web Service Support.

■ Borland VisiBroker for .NET Developer's Guide—describes how to develop
VisiBroker applications in a .NET environment.

■ Borland VisiBroker for C++ API Reference—provides a description of the classes
and interfaces supplied with VisiBroker for C++.

■ Borland VisiBroker VisiTime Guide—describes Borland's implementation of the
OMG Time Service specification.

■ Borland VisiBroker VisiNotify Guide—describes Borland's implementation of the
OMG Notification Service specification and how to use the major features of the
notification messaging framework, in particular, the Quality of Service (QoS)
properties, Filtering, and Publish/Subscribe Adapter (PSA).

■ Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

Chapter 1: Introduct ion to Bor land Vis iBroker 3

VisiBroker Documentat ion

■ Borland VisiBroker VisiTelcoLog Guide—describes Borland's implementation of the
OMG Telecom Log Service specification.

■ Borland VisiBroker GateKeeper Guide—describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers across
networks, while still conforming to the security restrictions imposed by web browsers
and firewalls.

The documentation is typically accessed through the Help Viewer installed with
VisiBroker. You can choose to view help from the standalone Help Viewer or from
within a VisiBroker Console. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all VisiBroker books and reference documentation, a
thorough index, and a comprehensive search page.

Important Updates to the product documentation, as well as PDF versions, are available on the
web at http://www.borland.com/techpubs.

Accessing VisiBroker online help topics in the standalone Help
Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

Windows ■ Choose Start|Programs|Borland Deployment Platform|Help Topics

■ or, open the Command Prompt and go to the product installation \bin directory,
then type the following command:

help

UNIX Open a command shell and go to the product installation /bin directory, then enter
the command:

help

Tip During installation on UNIX systems, the default is to not include an entry for bin in
your PATH. If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
help to start the help viewer.

Accessing VisiBroker online help topics from within the
VisiBroker Console

To access the online help from within the VisiBroker Console, choose Help|Help
Topics.

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

4 VisiBroker Vis iNot i fy Guide

Contact ing Bor land support

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described below to
indicate special text:

Platform conventions

The VisiBroker documentation uses the following symbols to indicate platform-specific
information:

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at: http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:

■ Name

■ Company and site ID

■ Telephone number

■ Your Access ID number (U.S.A. only)

■ Operating system and version

■ Borland product name and version

■ Any patches or service packs applied

Table 1.1 Documentation conventions

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.

... Previous argument that can be repeated.
| Two mutually exclusive choices.

Table 1.2 Platform conventions

Symbol Indicates

Windows All supported Windows platforms.

Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms

Solaris Solaris only

Linux Linux only

Chapter 1: Introduct ion to Bor land Vis iBroker 5

Contact ing Bor land support

■ Client language and version (if applicable)

■ Database and version (if applicable)

■ Detailed description and history of the problem

■ Any log files which indicate the problem

■ Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web http://www.borland.com

Online Support http://support.borland.com (access ID required)

Listserv To subscribe to electronic newsletters, use the online form at:

http://www.borland.com/products/newsletters

World Wide Web

Check http://www.borland.com/bes regularly. The VisiBroker Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

■ http://www.borland.com/products/downloads/download_visibroker.html (updated
VisiBroker software and other files)

■ http://www.borland.com/techpubs (documentation updates and PDFs)

■ http://info.borland.com/devsupport/bdp/faq/ (VisiBroker FAQs)

■ http://community.borland.com (contains our web-based news magazine for
developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the Borland
VisiBroker. Visit http://www.borland.com/newsgroups for information about joining user-
supported newsgroups for VisiBroker and other Borland products.

Note These newsgroups are maintained by users and are not official Borland sites.

6 VisiBroker Vis iNot i fy Guide

Chapter 2: Int roduct ion to VisiNot i fy 7

C h a p t e r

Chapter 2Introduction to VisiNotify
This chapter provides a general discussion on the architecture of OMG Event/
Notification Service and introduces Borland's implementation, VisiNotify.

Note It is recommended that you use this document in conjunction with the application
examples shipped with VisiNotify and the OMG Event/Notification Specification that is
available in the OMG web site.

OMG Event/Notification Service Communication Model
In the CORBA environment, the core ORB is a distribute framework for creating object-
oriented client/server applications. The communication model(s) supported by the core
ORB is intended for the client/server applications with direct (at least conceptually),
one-to-one, synchronous communication. Some of the application requirements go
beyond the core ORB facility, such as:

■ Support for distributed publish/subscribe application design, such as, many-to-many
and decoupled.

■ Support for single directional, asynchronous and buffered event distribution with a
throughput substantially higher than synchronous communication.

■ Support for quality of services (QoS), such as event/connection reliability.

■ Support for event filtering.

The requirements mentioned above have been supported by traditional message
oriented middleware (MOM) for non-CORBA applications. OMG Event/Notification
Service addresses the same set of requirements for CORBA applications.

In publish/subscribe applications, objects involved in the communication could be
arbitrary. There are two types of objects in publish/subscribe communication; the event
suppliers (providers and publishers) and event consumers (observers and
subscribers). Also, there are two event transfer models; the event pushing and event
pulling. Objects involved in the publish/subscribe communication are decoupled from
each other by the message middleware. These objects are not dependent on the
existence and status of other objects in order to work properly. Event suppliers transfer
events to the channel regardless the existence of consumers.

Note Decoupling in this instance means independence rather than security. If a supplier can
tell, implicitly, the existence of a consumer, it does not mean decoupling is broken.

8 VisiBroker Vis iNot i fy Guide

OMG Event/Not i f icat ion Service Object Model

In single directional event distribution, events flow from upstream into downstream.
Specifically, events flow from suppliers to channels and subsequently flow from
channel into subscribed consumers. Event transfer is asynchronous and buffered.
Suppliers can get acknowledgement from the message middleware, not from the
consumers. This means, event transfer routing through a message middleware could
have much higher throughput than synchronous method invocation without routing.

OMG Event/Notification Service Object Model
The main concept in OMG Event/Notification is the channel. Events are sent into an
event channel and replicated to their recipients. Multiple independent channels can be
created and used by a given application. Events are either pushed or pulled into an
event channel from supplier. The events flow inside the channel in a downstream
direction. Events in the downstream end are buffered in proxy suppliers and are
pushed to or pulled by consumers. Application level event suppliers or consumers are
connected with proxy objects to transfer events into/from the channel.

In the downstream end of a channel (consumer end):

■ Each push consumer needs to create and connect to a dedicated proxy push
supplier. It then passively waits for the channel callback to send events.

■ Pull consumers actively invokes request on proxy pull suppliers to retrieve events
from the channel.

Proxy suppliers are usually located in the channel server and are created by
applications from consumer admins. Consumer admins are created either as a default
or by applications from channels. Each channel has a default consumer admin. This
creation process forms a [channel]–[consumer(s) admin(s)]–[supplier proxy(s)]
hierarchy.

In the upstream end of a channel (supplier end):

■ Push suppliers actively invoke requests on proxy push consumer to push events
into the channel.

■ Each pull supplier needs to create and connect to a dedicated proxy pull consumer.
It then passively waits for channel callback to retrieve events.

Proxy consumers are usually located in the channel server and are created by
applications from supplier admins. Supplier admins are created either as a default or
by applications from channels. Each channel has a default supplier admin. This
creation process forms a [channel]–[supplier(s) admin(s)]–[consumer proxy(s)]
hierarchy.

Chapter 2: Introduct ion to Vis iNot i fy 9

OMG Event /Not i f icat ion Service Object Model

This diagram illustrates the event flow (upstream and downstream) within the
notification communication model:

Like most traditional message oriented middleware, the OMG Notification Service also
defines and supports Qualify of Services (QoS). VisiNotify supports most OMG defined
QoS policies along with additional VisiNotify extensions. Among those QoS policies,
two most important QoSs are event persistence and connection persistence. With
event persistence (or reliability), buffered events in the channel are temporarily stored
in persistent repository to prevent event loss due to maintenance shutdown or accident
system crash. With connection persistence (or reliability), OMG defines two QoS
functions. The first function is, images of channels, admins, proxies and their current
settings are stored in a persistent repository that allows the channel server to restore
these objects upon channel restart. The second function is, the channel can reestablish
transport connections to pull suppliers and push consumers.

Another important service defined by the OMG Event/Notification Service is event
filtering. Applications can add filter objects at admin or proxy level to selectively filter
out unwanted events.

The OMG Event/Notification Service defines four types of notification channels; the
untyped, structured, sequence, and typed. The event interfaces of the first three
channels are predefined by OMG Event/Notification specification and are referred as
“predefined” channel. The event interfaces for typed channels are not predefined by
OMG but by user applications and are referred as “user defined” typed channel.
VisiNotify supports all four types of channels with the except of the sequence pulling.

10 VisiBroker Vis iNot i fy Guide

VisiNot i fy features

With the untyped channel, events are represented as CORBA Anys. Events are sent
by invoking push() operation with CORBA::Any as an input parameter using untyped
consumer or proxy untyped consumer objects. With structured and sequence channel,
events are represented as StructuredEvent IDL structures or sequence. Events are
sent by invoking push_structured_event() or push_structured_events() on respective
consumer or proxy consumer. With typed channel, there is no predefined event
interface. Event interfaces are defined by user applications as OMG IDL interfaces.
Events are sent by invoking non-pseudo operations on consumers or proxy consumers
typed interfaces.

Note Examples of supplier and consumer applications with above event types are discussed
in chapter “Developing Supplier and Consumer Applications” of this document.

VisiNotify features
Borland VisiNotify is an industrial strength implementation of OMG Event/Notification
Service. Instead of on implementing on the user level, VisiNotify is implemented on
ORB level and registered with the Naming Service using the generic Naming Service
mechanism. See Using the VisiNaming Service (Java) and Using the VisiNaming
Service (C++) for more information. With this unique design, VisiNotify is able to work
more efficiently and to provide features that are difficult or impossible to support on the
user level. Here are the main features of VisiNotify:

Superior throughput and scalability

VisiNotify is designed to work at the GIOP message level. It directly hands over
received event payloads to the downstream consumers. When replicating any received
events, VisiNotify does not de-marshal events unless there are filters or event level
QoS in the stream. And VisiNotify does not re-marshal events even if there are filters or
event level QoS. This unique design allows VisiNotify to reach a very high event
throughput with a very low CPU usage. On handling client connect through GIOP 1.0
and 1.1, a series advanced techniques are used to adjust payload alignment without
de-marshalling and re-marshalling the events.

By leveraging Borland's event buffering/batch technology in VisiBroker 5.1, the
throughput displayed by VisiNotify is substantially higher in magnitude than any user
level notification service product on the market. Event buffering/batch optimizes
VisiNotify throughput. Different from user level batch technology, (such as sequence
event) the event buffering/batch technology is fully transparent to user applications and
has no restrictions on event type. All event types (untyped, structured, sequence or
typed) can be buffered/batched. Therefore, VisiNotify is able to reach the best end-to-
end event throughput by combining event batch with the smallest event sizes and
lowest event marshalling/de-marshalling cost of typed events.

With user level implementation, event buffering/batch is not transparent to application.
Also, only restricted event type, namely structured event, can be sent in batches.
Comparing to Borland's event buffering/batch technology, event batch using sequence
channel has no advantages. Therefore, VisiNotify only provides limited support for
sequence channel with the following restrictions:

■ Support for only end-to-end push model sequence channel. Filter constraints and
event level QoS policies are only evaluated for the first event in a sequence and the
result is applied to the entire event.

■ Maximum batch size setting is ignored.

■ Sequence pulling is not supported.

Note A real industry usage case (ITU–T CORBA/TMN notification) based throughput
benchmark test suit is shipped with this VisiNotify release (examples/vbroker/notify/
bench_cpp and bench_java).

Chapter 2: Int roduct ion to Vis iNot i fy 11

Vis iNot i fy features

Superior performance with event persistence

Many user level channel products use DynAny to unpack event from events for
persistence support. VisiNotify directly dumps event message payloads into persistent
storage without unmarshalling and unpacking them. This unique design minimizes the
overhead from event persistence. Under the default setting, VisiNotify event
persistence overhead is 5% to 15%.

Valuetype support

VisiNotify is the first and only notification channel that supports valuetypes in events.
Even with the presence of a filter in the event stream, VisiNotify can still evaluate filter
conditions using the attributes before the first valuetype in a given event.

Typed channel support

The typed channel support is documented in the Developing Supplier and Consumer
Application chapter.

VisiNotify is the first OMG Typed Event/Notification implementation that does not use
Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI). VisiNotify
does not rely on Interface Repository to work unless there is a filter constraint in the
typed event stream. These means, VisiNotify's typed channel is significantly faster than
any typed or untyped channel implementations.

Since VisiNotify does not rely on the IR when filter is not used, the key parameters
used in calling obtain_typed_..._consumer/supplier() are not necessarily to be the
event interface repository id. Therefore, applications can choose the proxy keys as an
alternative filtering strategy. Application can use proxy keys to divide a given typed
channel into multiple logical channels. This approach is more efficient and flexible than
the constraint language parsing based filtering.

Publish/Subscribe Adapter (PSA)

The Publish/Subscribe Adapter feature is documented in Publish/Subscribe Adapter
(PSA) chapter.

The PSA is a programming model and software component supported by VisiBroker
5.1. It works on top of any OMG Event/Notification Service. The basic concept of the
PSA is to provide a high level object-oriented abstraction for publish/subscribe
communication. The PSA not only simplifies the code of typed event/notification
applications and provides an elegant solution for typed pulling, it also shields the
application from directly dealing with the connection interface difference. Without PSA,
using different event types (untyped, structured, sequence and typed) or transfer
models means different connection interfaces.

Typed pulling without using Pull<I> interface

One elegant feature of the PSA is that it supports typed pulling using the original user
defined <I> interface instead of the mangled Pull<I> interface.

12 VisiBroker Vis iNot i fy Guide

VisiNot i fy features

Explicit RMI and EJB support

The explicit RMI and EJB support is documented in the Developing Supplier and
Consumer Application chapter.

VisiNotify supports two types of RMI/EJB connection scenarios. The first scenario is
the typed event RMI/EJB applications using VisiNotify's typed channel as a message
middleware. In this case, user defined RMI interface or EJB remote interface is the
definition for the typed event interface. All suppliers are RMI applications making RMI
call to push events into VisiNotify typed channel. All connected consumers are also
RMI applications with their RMI reference connected to the typed event channel.

The second scenario involves using the structured event channel. In this scenario, all
suppliers are CORBA applications sending CosNotification::StructuredEvent to
structured event channel. In the downstream end, some consumer applications can be
a CORBA application connected as structured consumers while others are consumers
that can be structured event EJB beans. A structured event EJB bean is not different
from normal session or entity bean. A structured event bean and its remote interface
implements and declares a push_structured_event() operation with
org.omg.CosNotification.StructuredEvent as input parameter. VisiNotify provides an
utility, subtool, to connect a structured event bean's remote interface to a given
VisiNotify structure event channel.

These two scenarios provide alternative and pure object-oriented solutions for event
driven J2EE applications. Comparing to Java Message Service (JMS) and Message
Driven Bean (MDB), the advantages are:

■ Static type safe RMI stubs and skeleton perform message pack/unpack

■ Event are described by user defined Java RMI interface.

Connection persistence

VisiNotify supports the connection persistence as defined by OMG specification:

■ Restore persistent channels, admins and proxies after channel restart.

■ Reestablish broken/lost transport connections to push consumers or pull suppliers.

VisiNotify restores persistent channel, admin and proxy as well as their current settings
and IDs (ChannelID, AdminID and ProxyID). VisiNotify also reestablish transport
connections. VisiNotify also supports an extended feature that automatically put a
proxy on suspended state if the connection to the connected push consumer or pull
supplier is broken. This is a better scenario than trying to reestablish the transport
connection in a loop.

Self-adaptive asynchronous flow control

In OMG Notification Service 1.0, the channel should pull for event messages from a
pull supplier when there is at least one consumer in the event stream. In OMG
Notification Service 1.3, OMG requires the proxy to pull regardless whether any
consumers are connected to the channel. The argument made from OMG is, that this
pulling of events will shield the supplier from its consumers by preventing the supplier
to know whether any consumers are present.

Chapter 2: Introduct ion to Vis iNot i fy 13

These two scenarios could lead to system and network resource waste on the
unnecessary and tight pulling. However, with self-adaptive asynchronous flow control,
the proxy pull consumer will only pull when returned events can be handed over to at
least one consumer in the downstream. This implementation requires that each logic
channel is assigned a voting slot. An upstream proxy pull consumer only pulls when the
count in its voting slot is non zero. Each downstream proxy supplier, either push or pull,
has one vote to its logic channel's voting slot. It votes to pull when the number of
events in its queue is lower than the low watermark. And it withdraws its vote when
pending events in its queue is more than the high watermark. This avoids the upstream
proxy pull consumer to pull events back only to be discard or reject by downstream
proxy consumers immediately. By setting the high and lower watermark, application
can also get OMG Notification Service 1.0 or 1.3 behaviors.

QoS and filter support

VisiNotify supports OMG QoS and VisiNotify extensions. Also, VisiNotify provides a
highly optimized and OMG compliant filter support for structured, sequence, and typed
channels. See the Setting the Quality of Service and Filters chapter.

Thread on demand

Internally, channels and active proxies (proxy pull consumer and proxy push supplier)
all require threads. However, threads are not assigned to them as dedicated servant.
They are recycled when other objects above them (hierarchically) are in idle state.
VisiNotify provides threads dynamically.

14 VisiBroker Vis iNot i fy Guide

Chapter 3: Developing suppl ier and consumer appl icat ions 15

C h a p t e r

Chapter3Developing supplier and consumer
applications

This chapter discusses how you can develop supplier and consumer application using
OMG Notification Service. The following topics are covered:

■ Using predefined Event/Notification Services

■ Using Typed Event/Notification Service

■ Developing RMI/EJB applications with VisiNotify

■ VisiBroker Event Buffering/Batch

Using predefined Event/Notification Services
The OMG Notification Service specifies three kinds of predefined channels, namely
Untyped event channel, Structured event channel, and Sequence event channel.
The advantage of predefined channel is that they are easy for user level
implementations. Thereby, almost all notification service products on the market
support predefined channels. The disadvantage of predefined channels are:

■ They are slower than user defined typed channels.

■ They usually have larger event size.

■ They require more type unsafe dynamic manual code to pack and unpack user data
into and from events.

■ They do not have a formal, unified, widely adopted event description language.

For these reasons, the predefined untyped, structured and sequence channels are not
good choice for new CORBA applications. However, they are support by VisiNotify for
OMG compliance as well as for legacy applications. New applications should consider
using the OMG Typed Notification Service. See the section Using Typed Event/
Notification Service for detailed information.

16 VisiBroker Vis iNot i fy Guide

Using predef ined Event/Not i f icat ion Services

Developing push consumer applications

A push consumer is essentially a CORBA callback server application. It provides an
push consumer object implementation. The push consumer object implementation
supports a predefined (untyped, structured or sequence) push consumer interface. The
consumer application connects this consumer object to a channel to receive events.

Developing a push consumer application involve two tasks:

1 Implement a normal push consumer server object which support a predefined
(untyped, structured or sequence) push consumer interface. This involves:

■ Implementing the consumer servant.

■ Activating the servant on POA.

■ Activating the POA manager.

2 Connect the consumer object to a channel. This involves:

■ Getting the channel reference.

■ Getting consumer admin from channel.

■ Obtaining proxy push supplier.

■ Connecting the consumer object to the proxy push supplier.

To illustrate the development of the push consumer application, the structured push
consumer is used.

C++ Note The push consumer example is located in examples/vbroker/notify/basic_cpp/
structPushConsumer.C.

// 1. Implementing the push consumer servant
 class StructuredPushConsumerImpl : public
POA_CosNotifyComm::StructuredPushConsumer,
 public virtual
PortableServer::RefCountServantBase
 {
 ...
 public:
 ...
 void push_structured_event(const CosNotification::StructuredEvent& event)

{ ... }
 ...
 };

 // The consumer server
 int main(int argc, char** argv)
 {
 // get orb and POA ...
 ...
 // allocate a push consumer servant
 StructuredPushConsumerImpl* servant = new StructuredPUshConsumerImpl;

 // 2. activate the consumer servant on a POA
 poa->activate_object(servant);

 // 3. activate the POA
 poa->the_POAManager()->activate();
 ...
 // 4. somehow, we get the channel from somewhere
 CosNotifyChannelAdmin::EventChannel_var channel = ...;

Chapter 3: Developing suppl ier and consumer appl icat ions 17

Using predef ined Event /Not i f icat ion Services

 // 5. somehow, we decide to use the default admin
 CosNotifyChannelAdmin::ConsumerAdmin_var admin

= channel->default_consumer_admin();

 // 6. obtain a proxy push supplier from the admin
 CosNotifyChannelAdmin::ProxyID pxy_id;
 CosNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

 CosNotifyChannelAdmin::StructuredProxyPushSupplier_var supplier
 = CosNotifyChannelAdmin::StructuredProxyPushSupplier::

_narrow(proxy);

 // 7. get consumer object reference and connect it to the proxy
 CORBA::Object_var obj = poa->servant_to_reference(servant);
 CosNotifyComm::StructuredPushConsumer_var consumer
 = CosNotifyComm::StructuredPushConsumer::_narrow(obj);
 supplier->connect_structured_push_consumer(consumer);

 // working loop
 orb->run();
 }

Java Note The push consumer example is located in examples/vbroker/notify/basic_java/
StructPushConsumer.java.

 import org.omg.CosNotifyComm.*;
 import org.omg.CosNotifyChannelAdmin,*;
 import org.omg.CosNotification.*;

 public class StructuredPushConsumer extends StructuredPushConsumerPOA
 {
 ...
 // 1. implement the push consumer servant
 public void push_structured_event(StructuredEvent event) { ... }
 ...
 public static int main(String[] args) {
 // get orb and POA ...
 ...
 // allocate a push consumer servant
 StructuredPushConsumer servant = new StructuredPUshConsumer();

 // 2. Activate the consumer servant on a POA
 poa.activate_object(servant);

 // 3. Activate the POA
 poa.the_POAManager().activate();
 ...
 // 4. Somehow, we get the channel from somewhere
 EventChannel channel = ...;

 // 5. Somehow, we decide to use the default admin
 ConsumerAdmin admin = channel.default_consumer_admin();

// 6. Obtain a proxy push supplier from the admin
 ProxyIDHolder pxy_id = new ProxyIDHolder();
 ProxySupplier proxy = admin.obtain_notification_push_supplier(
 ClientType.STRUCTURED_EVENT, pxy_id);

18 VisiBroker Vis iNot i fy Guide

Using predef ined Event/Not i f icat ion Services

 StructuredProxyPushSupplier supplier
 = StructuredProxyPushSupplierHelper.narrow(proxy);

 // 7. get consumer object reference and connect it to the proxy
 org.omg.CORBA::Object obj = poa.servant_to_reference(servant);
 StructuredPushConsumer consumer

= StructuredPushConsumerHelper.narrow(obj);
 supplier.connect_structured_push_consumer(consumer);

 // working loop
 orb.run();
 }
 }

Develop pull consumer applications

A pull consumer is essentially a CORBA client. It obtains a proxy object in the channel
and actively send request to the proxy to retrieve buffered events.

Developing a pull consumer application involve two tasks:

1 (Optional) Implement a pull consumer server object which support a predefined
(untyped, structured or sequence) pull consumer interface. This involves:

■ Implementing the consumer servant.

■ Activating the servant on POA.

■ Activating the POA manager.

2 Get a proxy consumer reference and retrieve events from it. This involves:

■ Getting the channel reference.

■ Getting consumer admin from channel.

■ Obtaining proxy pull supplier.

■ Connecting the consumer object (or null) to the proxy pull supplier.

■ Actively pull event from the proxy pull supplier.

To illustrate the development of the pull consumer application, the structured pull
consumer is used.

C++ Note The pull consumer example is located in examples/vbroker/notify/basic_cpp/
structPullConsumer.C.

// The consumer client
 int main(int argc, char** argv)
 {
 // get orb ...
 ...
 // 1. somehow, we get the channel from somewhere
 CosNotifyChannelAdmin::EventChannel_var channel = ...;

 // 2. somehow, we decide to use the default admin
 CosNotifyChannelAdmin::ConsumerAdmin_var admin

= channel->default_consumer_admin();

 // 3. obtain a proxy pull supplier from the admin
 CosNotifyChannelAdmin::ProxyID pxy_id;
 CosNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_notification_pull_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

Chapter 3: Developing suppl ier and consumer appl icat ions 19

Using predef ined Event /Not i f icat ion Services

 CosNotifyChannelAdmin::StructuredProxyPullSupplier_var supplier
 = CosNotifyChannelAdmin::StructuredProxyPullSupplier::

_narrow(proxy);

 // 4. connect to the proxy
 supplier->connect_structured_pull_consumer(NULL);

 // 5. Pull events from the proxy pull supplier
 for(int i=0;i<100;i++) {
 CosNotification::StructuredEvent_var event;
 event = supplier->pull_structured_event();
 ...
 }

 // 6. gracefully cleanup
 supplier->disconnect_structured_pull_supplier();
 }

Java Note The pull consumer example is located in examples/vbroker/notify/basic_java/
StructPullConsumer.java.

import org.omg.CosNotifyComm.*;
 import org.omg.CosNotifyChannelAdmin,*;
 import org.omg.CosNotification.*;

 public class StructuredPullConsumer
 {
 ...
 public static int main(String[] args) {
 // get orb ...
 ...
 // 1. Somehow, we get the channel from somewhere
 EventChannel channel = ...;

 // 2. Somehow, we decide to use the default admin
 ConsumerAdmin admin = channel.default_consumer_admin();

 // 3. Obtain a proxy pull supplier from the admin
 ProxyIDHolder pxy_id = new ProxyIDHolder();
 ProxySupplier proxy = admin.obtain_notification_pull_supplier(
 ClientType.STRUCTURED_EVENT, pxy_id);

 StructuredProxyPullSupplier supplier
 = StructuredProxyPullSupplierHelper.narrow(proxy);

 // 4. connect to the proxy
 supplier.connect_structured_pull_consumer(null);

 // 5. Pull events from the proxy pull supplier
 for(int i=0;i<100;i++) {
 StructuredEvent event = supplier.pull_structured_event();
 ...
 }

 // 6. gracefully cleanup
 supplier.disconnect_structured_pull_supplier();
 }
 }

20 VisiBroker Vis iNot i fy Guide

Using predef ined Event/Not i f icat ion Services

Developing push supplier applications

A push supplier application is a CORBA client. It actively invokes request on a proxy
consumer object to send events to the channel.

Developing a push supplier application involve two tasks:

1 (Optional) Implement a push supplier server object which support a predefined
(untyped, structured or sequence) pull consumer interface. This involves:

■ Implementing the consumer servant.

■ Activating the servant on POA.

■ Activating the POA manager.

2 Get a proxy supplier reference and send events to it. This involves:

■ Getting the channel reference.

■ Getting supplier admin from channel.

■ Obtaining proxy push consumer.

■ Connecting the supplier object (or null) to the proxy push consumer.

■ Actively push events to the proxy push consumer.

To illustrate the development of the push supplier application, the structured push
supplier is used.

C++ Note The push supplier example is located in examples/vbroker/notify/basic_cpp/
structPushSupplier.C.

// The push supplier client
 int main(int argc, char** argv)
 {
 // get orb ...
 ...
 // 1. somehow, we get the channel from somewhere
 CosNotifyChannelAdmin::EventChannel_var channel = ...;

 // 2. somehow, we decide to use the default admin
 CosNotifyChannelAdmin::SupplierAdmin_var admin

= channel->default_supplier_admin();

 // 3. obtain a proxy push consumer from the admin
 CosNotifyChannelAdmin::ProxyID pxy_id;
 CosNotifyChannelAdmin::ProxyConsumer_var proxy
 = admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

 CosNotifyChannelAdmin::StructuredProxyPushConsumer_var supplier
 = CosNotifyChannelAdmin::StructuredProxyPushConsumer::

_narrow(proxy);

 // 4. connect to the proxy
 supplier->connect_structured_push_supplier(NULL);

 // 5. Push events to the proxy push consumer
 for(int i=0;i<100;i++) {
 CosNotification::StructuredEvent_var event = ...;
 Consumer->push_structured_event(event);
 }

Chapter 3: Developing suppl ier and consumer appl icat ions 21

Using predef ined Event /Not i f icat ion Services

 // 6. Gracefully cleanup
 consumer->disconnect_structured_push_consumer();
 }

Java Note The push supplier example is located in examples/vbroker/notify/basic_java/
StructPushSupplier.java.

import org.omg.CosNotifyComm.*;
 import org.omg.CosNotifyChannelAdmin,*;
 import org.omg.CosNotification.*;

 public class StructuredPushSupplier
 {
 ...
 public static int main(String[] args) {
 // get orb ...
 ...
 // 1. Somehow, we get the channel from somewhere
 EventChannel channel = ...;

 // 2. Somehow, we decide to use the default admin
 ConsumerAdmin admin = channel.default_supplier_admin();

 // 3. Obtain a proxy consumer from the admin
 ProxyIDHolder pxy_id = new ProxyIDHolder();
 ProxyConsumer proxy = admin.obtain_notification_push_consumer (
 ClientType.STRUCTURED_EVENT, pxy_id);

 StructuredProxyPushConsumer consumer
 = StructuredProxyPushConsumerHelper.narrow(proxy);

 // 4. Connect to the proxy
 consumer.connect_structured_push_supplier(null);

 // 5. Push events to the proxy push consumer
 for(int i=0;i<100;i++) {
 StructuredEvent event = ...;
 Consumer.push_structured_event(event);
 }

 // 6. Gracefully cleanup
 consumer.disconnect_structured_push_consumer();
 }
 }

Developing pull supplier applications

A pull supplier application is a CORBA callback server. It provides an pull supplier
object implementation. The pull supplier object implementation supports a predefined
(untyped, structured or sequence) pull supplier interface. The supplier application
needs to connect this supplier object to a channel to supply events.

Developing a pull supplier application involve two tasks:

1 Implement a normal pull supplier server object which support a predefined (untyped,
structured or sequence) pull supplier interface. This involves:

■ Implementing the supplier servant.

■ Activating the servant on POA.

■ Activating the POA manager.

22 VisiBroker Vis iNot i fy Guide

Using predef ined Event/Not i f icat ion Services

2 Connect the supplier object to a channel. This involves:

■ Getting the channel reference.

■ Getting supplier admin from channel.

■ Obtaining proxy pull consumer.

■ Connecting the pull supplier object to the proxy pull consumer.

To illustrate the development of the pull supplier application, the structured pull supplier
is used.

C++ Note The pull supplier example is located in examples/vbroker/notify/basic_cpp/
structPullSupplier.C.

// 1. Implement the pull supplier servant
 class StructuredPullSupplierImpl : public
POA_CosNotifyComm::StructuredPullSupplier,
 public virtual
PortableServer::RefCountServantBase
 {
 ...
 public:
 ...
 CosNotification::StructuredEvent* pull_structured_event() { ... }
 CosNotification::StructuredEvent* try_pull_structured_event

(CORBA::Boolean& has_event) { ... }
 ...
 };

 // The supplier server
 int main(int argc, char** argv)
 {
 // get orb and POA ...
 ...
 // allocate a pull supplier servant
 StructuredPullSupplierImpl* servant = new StructuredPullSupplierImpl;

 // 2. activate the consumer servant on a POA
 poa->activate_object(servant);

 // 3. activate the POA
 poa->the_POAManager()->activate();
 ...
 // 4. somehow, we get the channel from somewhere
 CosNotifyChannelAdmin::EventChannel_var channel = ...;

 // 5. somehow, we decide to use the default admin
 CosNotifyChannelAdmin::SupplierAdmin_var admin

= channel->default_supplier_admin();

 // 6. obtain a proxy pull consumer from the admin
 CosNotifyChannelAdmin::ProxyID pxy_id;
 CosNotifyChannelAdmin::ProxyConsumer_var proxy
 = admin->obtain_notification_pull_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

 CosNotifyChannelAdmin::StructuredProxyPullConsumer_var supplier
 = CosNotifyChannelAdmin::StructuredProxyPullConsumer::

_narrow(proxy);

Chapter 3: Developing suppl ier and consumer appl icat ions 23

Using predef ined Event /Not i f icat ion Services

 // 7. get supplier object reference and connect it to the proxy
 CORBA::Object_var obj = poa->servant_to_reference(servant);
 CosNotifyComm::StructuredPullSupplier_var supplier
 = CosNotifyComm::StructuredPullSupplier::_narrow(obj);
 consumer->connect_structured_pull_supplier(supplier);

 // working loop
 orb->run();
 }

Java Note The pull supplier example is located in examples/vbroker/notify/basic_java/
StructPullSupplier.java.

import org.omg.CosNotifyComm.*;
 import org.omg.CosNotifyChannelAdmin,*;
 import org.omg.CosNotification.*;

 public class StructuredPullSupplier extends StructuredPullSupplierPOA
 {
 ...
 // 1. implement the push consumer servant
 public StructuredEvent pull_structured_event() { ... }
 public StructuredEvent try_pull_structured_event

(org.omg.CORBA.BooleanHolder has_event) {...}
 ...
 public static int main(String[] args) {
 // get orb and POA ...
 ...
 // allocate a pull supplier servant
 StructuredPullSupplier servant = new StructuredPullSupplier();

 // 2. Activate the supplier servant on a POA
 poa.activate_object(servant);

 // 3. Activate the POA
 poa.the_POAManager()Activate();
 ...
 // 4. Somehow, we get the channel from somewhere
 EventChannel channel = ...;

 // 5. Somehow, we decide to use the default admin
 ConsumerAdmin admin = channel.default_supplier_admin();

 // 6. Obtain a proxy pull consumer from the admin
 ProxyIDHolder pxy_id = new ProxyIDHolder();
 ProxyConsumer proxy = admin.obtain_notification_pull_consumer(
 ClientType.STRUCTURED_EVENT, pxy_id);

 StructuredProxyPullConsumer consumer
 = StructuredProxyPullConsumerHelper.narrow(proxy);

 // 7. Get supplier object reference and connect it to the proxy
 org.omg.CORBA::Object obj = poa.servant_to_reference(servant);
 StructuredPullSupplier supplier

= StructuredPullSupplierHelper.narrow(obj);
 consumer.connect_structured_pull_supplier(supplier);

 // working loop
 orb.run();
 }
 }

24 VisiBroker Vis iNot i fy Guide

Using Typed Event/Not i f icat ion Service

Using Typed Event/Notification Service
The predefined events (untyped, structured, sequence) in OMG Event/Notification
Service present a message-oriented approach. The disadvantages of this approach
are:

■ They are slower than user defined typed channels.

■ They usually have larger event size.

■ They require more type unsafe dynamic manual code to pack and unpack user data
into/from events.

■ They do not have a formal, unified, widely adopted event description language.

Therefore, in developing new applications, it is recommended to use a user defined
typed event and the OMG Typed Event/Notification Service. By using the OMG Typed
Event/Notification Service, event interfaces are not predefined by OMG but rather by
user applications using OMG IDL language. Using this approach will results in the
following:

■ Application event throughput can be significantly higher.

■ Event size can be substantially smaller.

■ Event pack and unpack operation utilize type safe IDL generated static stub/
skeleton code.

■ Events are formally defined by IDL.

There are minor short falls in using the OMG Typed Event/Notification service. They
include:

■ Connecting to Typed Event/Notification Service is slightly complicated than
connecting to (predefined) Event/Notification Service. Applications need to provide
an additional handler implementation or/and perform additional connection
operations (for example, get_typed_consumer()). However, the tradeoff to get
mentioned advantages is worthwhile.

■ Directly using Event/Notification service to do typed pulling is not appropriately
defined by OMG. The OMG solution requires substantial work.

VisiBroker Publish/Subscribe Adapter (PSA) architecture resolves these two issue.
See Publish/Subscribe Adapter (PSA) for additional information. The PSA simplifies
and unifies the connection procedure to notification and typed notification services. It
also presents an elegant solution for typed pulling.

Note This chapter only discusses how to develop typed push applications directly using
OMG Typed Notification Service. Typed pulling and PSA will be discussed in PSA
chapter.

As the user defined event type, the following IDL interface definition is used throughout
the examples in this chapter:

// TMN.idl: typed event definition

// user defined pragma
pragma prefix "example.borland.com"

// user defined module
module TMN {

Chapter 3: Developing suppl ier and consumer appl icat ions 25

Using Typed Event /Not i f icat ion Service

 // user defined event interface
 interface TypedEvent {
 void attributeValueChange(...);
 void qosAlarm(...);
 ...
 };
};

Developing type push consumer applications

A typed push consumer is essentially a CORBA callback server application. It provides
an user defined typed consumer object implementation. The typed push consumer
object implementation supports the user defined IDL interface. The consumer
application connects this consumer object to a typed channel to receive typed events.

Developing a typed push consumer application involves two tasks:

1 Implement a normal consumer server object which support a user defined IDL
interface. This involves:

■ Implementing the user defined typed consumer servant, such as the <I> interface
servant.

■ Implementing a handler servant. This handler servant support the
CosTypedNotifyComm::TypedPushConsumer interface and its
get_typed_consumer() operation, which returns a reference of the user defined
typed consumer object (for example, returns the <I> interface).

■ Activating the user defined typed servant on a POA and get its reference.

■ Activating this handler object and pass it to the user defined typed consumer
object reference (such as the <I> interface).

■ Activating the POA manager.

2 Connect the consumer object to a channel. This involves:

■ Getting the typed channel reference.

■ Getting typed consumer admin from channel.

■ Obtaining typed proxy push supplier.

■ Connecting the handler object to the typed proxy push supplier.

The following example compares the procedure of using predefined event interface.
Notice that using typed event requires an additional implementation on a push
consumer application.

C++ Note The typed push consumer example is located in examples/vbroker/notify/basic_cpp/
typedPushConsumer.C.

 // 1. Implement the user defined typed consumer servant
 class TMNTypedEventImpl : public POA_TMN::TypedEvent,
 public virtual PortableServer::RefCountServantBase
 {
 ...
 public:
 ...
 void attributeValueChange (...) { ... }
 void qosAlarm(...) { ... }
 ...
 };

26 VisiBroker Vis iNot i fy Guide

Using Typed Event/Not i f icat ion Service

 // 2. Implement the handler servant
 class HandlerImpl : public POA_CosTypedNotifyComm::TypedPushConsumer,
 public virtual PortableServer::RefCountServantBase
 {
 CORBA::Object_var _the_typed_consumer; // the <I> interface

 public:
 HandlerImpl(CORBA::Object_ptr ref)
 : _the_typed_consumer(CORBA::Object::_duplicate(ref)) {}

 CORBA::Object_ptr get_typed_consumer() {
 // return the <I> interface
 return CORBA::Object::_duplicate(_the_typed_consumer); }
 ...
 };

 // The typed consumer server
 int main(int argc, char** argv)
 {
 // get orb and POA ...
 ...
 // allocate a push consumer servant
 TMNTypedEventImpl* servant = new TMNTypedEventImpl;

 // 3. activate the typed consumer on a POA
 poa->activate_object(servant);

 // 4. Get typed consumer reference
 CORBA::Object_var obj = poa->servant_to_reference(servant);

 // 5. allocate a handler servant and pass it the typed
consumer reference

 HandlerImpl* handler = new HandlerImpl(obj);

 // 6. Activate the handler object on a POA
 poa->activate_object(handler);

 // 7. Activate the POA(s)
 poa->the_POAManager()->activate();
 ...
 // 8. somehow, we get a typed channel from somewhere
 CosTypedNotifyChannelAdmin::TypedEventChannel_var channel = ...;

 // 9. somehow, we decide to use the default admin
 CosTypedNotifyChannelAdmin::TypedConsumerAdmin_var admin

= channel->default_consumer_admin();

 // 10. obtain a proxy push supplier from the admin using the event
 // repository id "IDL:example.borland.com/TMN/TypedEvent:1.0"
 // as the key.
 CosNotifyChannelAdmin::ProxyID pxy_id;
 CosTypedNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_typed_notification_push_supplier(
 "IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id);

Chapter 3: Developing suppl ier and consumer appl icat ions 27

Using Typed Event /Not i f icat ion Service

 // 11. get handler object reference and connect it to the proxy
 CORBA::Object_var ref = poa->servant_to_reference(handler);
 CosTypedNotifyComm::TypedPushConsumer_var consumer
 = CosTypedNotifyComm::TypedPushConsumer::_narrow(ref);
 proxy->connect_typed_push_consumer(consumer);

 // working loop
 orb->run();
 }

Java Note The typed push consumer example is located in examples/vbroker/notify/basic_java/
TypedPushConsumerImpl.java.

// 1. Implement the user defined typed consumer servant
 class TMNTypedEventImpl extends TMN.TypedEventPOA {
 ...
 public void attributeValueChange (...) { ... }
 public void qosAlarm(...) { ... }
 ...
 }

 // 2. Implement the handler servant
 public class TypedPushConsumerImpl
 extends org.omg.CosTypedNotifyComm.TypedPushConsumer {
 org.omg.CORBA.Object _the_typed_consumer = null; // the <I> interface

 TypedPushConsumerImpl(org.omg.CORBA.Object ref) {
 _the_typed_consumer = ref;
 }
 org.omg.CORBA.Object get_typed_consumer() {
 // return the <I> interface
 return _the_typed_consumer; }
 ...
 public static void main(int argc, char** argv) {
 // get orb and POA ...
 ...
 // allocate a push consumer servant
 TMNTypedEventImpl servant = new TMNTypedEventImpl();

 // 3. activate the typed consumer on a POA
 poa.activate_object(servant);

 // 4. Get typed consumer reference
 org.omg.CORBA.Object obj = poa.servant_to_reference(servant);

 // 5. allocate a handler servant and pass it the typed
consumer reference

 TypedPushConsumerImpl handler = new TypedPushConsumerImpl(obj);

 // 6. Activate the handler object on a POA
 poa.activate_object(handler);

 // 7. Activate the POA(s)
 poa.the_POAManager()Activate();
 ...
 // 8. somehow, we get a typed channel from somewhere
 org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel channel = ...;

 // 9. somehow, we decide to use the default admin
 org.omg.CosTypedNotifyChannelAdmin.TypedConsumerAdmin admin

= channel.default_consumer_admin();

28 VisiBroker Vis iNot i fy Guide

Using Typed Event/Not i f icat ion Service

 // 10. Obtain a proxy push supplier from the admin using the event
 // repository id "IDL:example.borland.com/TMN/TypedEvent:1.0"
 // as the key.
 org.omg.CosNotifyChannelAdmin.ProxyIDHolder pxy_id_holder
 = new org.omg.CosNotifyChannelAdmin.ProxyIDHolder();
 org.omg.CosTypedNotifyChannelAdmin.ProxySupplier proxy
 = admin.obtain_typed_notification_push_supplier(
 "IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id_holder);

 // 11. Get handler object reference and connect it to the proxy
 org.omg.CORBA.Object ref = poa.servant_to_reference(handler);
 org.omg.CosTypedNotifyComm.TypedPushConsumer consumer
 = org.omg.CosTypedNotifyComm.TypedPushConsumerHelper.narrow(ref);
 proxy.connect_typed_push_consumer(consumer);

 // working loop
 orb.run();
 }
 }

Developing typed push supplier applications

A typed push supplier application is a CORBA client. It actively invokes request on a
typed consumer proxy object to send typed events to the channel.

Developing a typed push supplier application involves two tasks:

1 (Optional) Implement a typed push supplier server object. This involves:

■ Implementing the supplier servant.

■ Activating the servant on POA

■ Activating the POA manager.

2 Get the proxy supplier reference and send event to it.. This involves:

■ Getting the typed channel reference.

■ Getting supplier admin from the typed channel.

■ Obtaining typed proxy push consumer.

■ Calling get_typed_consumer() on the typed proxy push consumer to get the <I>
interface reference.

■ Actively push events to the <I> interface reference.

The following example compares the procedure of using predefined event interface.
Notice that using typed event requires an additional procedure, such as
get_typed_consumer().

C++ Note The typed push supplier example is located in examples/vbroker/notify/basic_cpp/
typedPushSupplier.C.

 // The typed push supplier client
 int main(int argc, char** argv)
 {
 // get orb ...
 ...
 // 1. Somehow, we get the typed channel from somewhere
 CosTypedNotifyChannelAdmin::TypedEventChannel_var channel = ...;

 // 2. Somehow, we decide to use the default admin
 CosTypedNotifyChannelAdmin::TypedSupplierAdmin_var admin

= channel->default_supplier_admin();

Chapter 3: Developing suppl ier and consumer appl icat ions 29

Using Typed Event /Not i f icat ion Service

// 3. obtain a typed proxy push consumer from the admin using the event
 // repository id "IDL:example.borland.com/TMN/TypedEvent:1.0"
 // as the key.
 CosTypedNotifyChannelAdmin::ProxyID pxy_id;
 CosTypedNotifyChannelAdmin::TypedProxyPushConsumer_var proxy
 = admin->obtain_typed_notification_push_consumer(
 "IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id);

 // 4. connect to the proxy
 proxy->connect_typed_push_supplier(NULL);

 // 5. Get the <I> interface
 CORBA::Object_var obj = proxy->get_typed_consumer();
 TMN::TypedEvent_var consumer = TMN::TypedEvent::_narrow(obj);

 // 6. Push events to the <I> interface
 for(int i=0;i<100;i++) {
 consumer->attributeValueChange(...);
 consumer->qosAlarm(...);
 }

 // 7. Flush buffered events
 consumer->_non_existent();

 // 8. Gracefully cleanup
 proxy->disconnect_typed_push_consumer();
 }

Java Note The typed push consumer example is located in examples/vbroker/notify/basic_java/
TypedPushSupplier.java.

import org.omg.CosTypedNotifyComm.*;
 import org.omg.CosTypedNotifyChannelAdmin,*;
 import org.omg.CosNotification.*;

 public class TypedPushSupplierImpl
 {
 ...
 // The typed push supplier client
 public static void main(String[] args) {
 // get orb ...
 ...
 // 1. Somehow, we get the typed channel from somewhere
 org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel_var channel

= ...;

 // 2. Somehow, we decide to use the default admin
 org.omg.CosTypedNotifyChannelAdmin.TypedSupplierAdmin admin

= channel.default_supplier_admin();

 // 3. obtain a typed proxy push consumer from the admin
using the event

// repository id "IDL:example.borland.com/TMN/TypedEvent:1.0"
 // as the key.
 Org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder pxy_id
 = new
org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder();
 CosTypedNotifyChannelAdmin::TypedProxyPushConsumer_var proxy
 = admin.obtain_typed_notification_push_consumer(
 "IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id);

30 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

 // 4. connect to the proxy
 proxy.connect_typed_push_supplier(null);

 // 5. Get the <I> interface
 org.omg.CORBA.Object obj = proxy.get_typed_consumer();
 TMN.TypedEvent consumer = TMN.TypedEventHelper.narrow(obj);

 // 6. Push events to the <I> interface
 for(int i=0;i<100;i++) {
 consumer.attributeValueChange(...);
 consumer.qosAlarm(...);
 }

 // 7. Flush buffered events
 consumer._non_existent();

 // 8. Gracefully cleanup
 proxy.disconnect_typed_push_consumer();
 }
 }

Developing RMI/EJB applications with VisiNotify
With the introduction of J2EE 1.3, RMI-over-IIOP has been standardized in the J2EE
implementations. Therefore, the interoperation and interconnection between CORBA
and J2EE environments have become seamlessJ2EE is basically a framework for
client/server applications. However, J2EE technology does not provide adequate
support for publish/subscribe applications. The only solutions defined in J2EE are Java
Messaging Service (JMS) and Message Driver Bean (MDB). JMS is purely a message-
oriented service that is mainly used for integrating or interconnecting with legacy
message middleware. MDB is simply defined following the use of JMS and allows
legacy message middleware to send messages to an enterprise bean through JMS. In
this regard, the JMS and MDB based solutions usually share the same disadvantages
of legacy message oriented middlewares. They include:

■ They are slower than user defined object-oriented typed channels.

■ They have relatively larger event size.

■ They require more nonstandard or type unsafe dynamic manual code to pack and
unpack user data into/from events.

■ They do not have a formal, unified, widely adopted event description language.

The OMG Typed Event/Notification Service resolves these issues. A typed notification
can be used as a publish/subscribe middleware for RMI/EJB application. In addition,
VisiNotify offers support for direct connection between OMG Structured channel and
RMI/EJB. Besides, VisiNotify provides direct support of CORBA valuetypes (either in
standard marshalling or in customer marshalling) as well as Java serializeable objects.
With these standard facilities from OMG Typed Event/Notification Service, J2EE 1.3,
and VisiNotify extensions, event driven RMI/EJB applications can be developed as
normal object oriented applications rather than mapping OMG Notification Service as a
JMS provider and then using JMS/MDB . The advantages of this approach are:

■ Significant performance improvement.

■ Smaller event size.

■ Static type safe RMI stubs and skeleton perform message pack/unpack.

■ Event are described by user defined Java RMI interface.

Chapter 3: Developing suppl ier and consumer appl icat ions 31

Developing RMI/EJB appl icat ions wi th Vis iNot i fy

This section describes how OMG Typed Event/Notification Service VisiNotify is used in
the RMI/EJB environments.

This user defined Java RMI remote interface is used as either an RMI server interface
or an EJB consumer bean remote interface throughout the examples in this section. .

package TMN;

 import java.rmi.Remote;
 import java.rmi.RemoteException;

 public interface Notification extends Remote {
 void attributeValueChange(...) throws RemoteException;
 void qosAlarm(...) throws RemoteException;
 ...
 }

Developing a RMI typed consumer

A RMI typed push consumer is essentially a RMI callback application connected to the
OMG Typed Notification service. The typed push consumer RMI object implements
user defined RMI interface. A RMI typed consumer is very similar to a CORBA typed
consumer with slight differences. They include:

■ The RMI object does not need to be explicitly activated on POA.

■ The application needs to get RMI object's CORBA object reference as the <I>
interface (see step 4 in example below).

This code example shows a RMI typed push consumer:

 // 1. Implement the user defined typed consumer RMI object
 class RMINotifyImpl
 extends PortableRemoteObject
 implements TMN.Notification {
 ...
 public void attributeValueChange (...) { ... }
 public void qosAlarm(...) { ... }
 ...
 }

 // 2. Implement the handler servant
 public class TypedPushConsumerImpl
 extends org.omg.CosTypedNotifyComm.TypedPushConsumer {
 org.omg.CORBA.Object _the_typed_consumer = null; // the <I> interface

 TypedPushConsumerImpl(org.omg.CORBA.Object ref) {
 _the_typed_consumer = ref;
 }
 org.omg.CORBA.Object get_typed_consumer() {
 // return the <I> interface
 return _the_typed_consumer; }
 ...
 public static void main(int argc, char** argv) {
 // get orb and POA ...
 ...
 // 3. allocate a RMI consumer object
 RMINotifyImpl consumer = new RMINotifyImpl();

 // 4. get the CORBA object reference of the RMI consumer
 org.omg.CORBA.Object corba_obj
 = javax.rmi.CORBA.Util.getTie(consumer).thisObject();

32 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

 // 5. allocate a handler servant and pass it the typed consumer
reference

 TypedPushConsumerImpl handler = new TypedPushConsumerImpl(corba_obj);

 // 6. Activate the handler object on a POA
 poa.activate_object(handler);

 // 6. Activate the POA(s)
 poa.the_POAManager()Activate();
 ...
 // 7. somehow, we get a typed channel from somewhere
 org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel channel = ...;

 // 8. somehow, we decide to use the default admin
 org.omg.CosTypedNotifyChannelAdmin.TypedConsumerAdmin admin

= channel.default_consumer_admin();

 // 9. obtain a proxy push supplier from the admin
 org.omg.CosNotifyChannelAdmin.ProxyIDHolder pxy_id_holder

= new org.omg.CosNotifyChannelAdmin.ProxyIDHolder();
 org.omg.CosTypedNotifyChannelAdmin.ProxySupplier proxy

= admin.obtain_typed_notification_push_supplier
("RMI.Test" , pxy_id_holder);

 // 10. Get handler object reference and connect it to the proxy
 org.omg.CORBA.Object ref = poa.servant_to_reference(handler);
 org.omg.CosTypedNotifyComm.TypedPushConsumer consumer
 = org.omg.CosTypedNotifyComm.TypedPushConsumerHelper.narrow(ref);
 proxy.connect_typed_push_consumer(consumer);

 // working loop
 orb.run();
 }
 }

Developing a RMI typed supplier

A RMI typed supplier is very similar to its CORBA counterpart except for the <I>
reference, which is returned from get_typed_consumer(), should be narrowed into the
correspondent RMI stub (see step 6 in example below).

This code example shows a RMI typed push supplier:

 import org.omg.CosTypedNotifyComm.*;
 import org.omg.CosTypedNotifyChannelAdmin,*;
 import org.omg.CosNotification.*;

 public class TypedPushSupplierImpl
 {
 ...
 // The typed push supplier client
 public static void main(String[] args) {
 // get orb ...
 ...
 // 1. Somehow, we get the typed channel from somewhere
 org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel_var channel

= ...;

Chapter 3: Developing suppl ier and consumer appl icat ions 33

Developing RMI/EJB appl icat ions wi th Vis iNot i fy

 // 2. Somehow, we decide to use the default admin
 org.omg.CosTypedNotifyChannelAdmin.TypedSupplierAdmin admin

= channel.default_supplier_admin();

 // 3. obtain a typed proxy push consumer from the admin
 Org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder pxy_id
 = new
org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder();
 CosTypedNotifyChannelAdmin::TypedProxyPushConsumer_var proxy
 = admin.obtain_typed_notification_push_consumer(
 "RMI.Test, pxy_id);

 // 4. connect to the proxy
 proxy.connect_typed_push_supplier(null);

 // 5. Get the <I> interface
 org.omg.CORBA.Object obj = proxy.get_typed_consumer();

 // 6. Narrowing the CORBA object reference into RMI stub.
 TMN.Notification consumer = (TMN.Notification)PortableRemoteObject.
 narrow(obj, TMN.Notification.class);

 // 7. Push events to the <I> RMI stub
 for(int i=0;i<100;i++) {
 consumer.attributeValueChange(...);
 consumer.qosAlarm(...);
 }

 // 8. Flush buffered events
 com.inprise.vbroker.orb.BufferedEvents.flush();

 // 9. Gracefully cleanup
 proxy.disconnect_typed_push_consumer();
 }
 }

Developing an EJB bean as an Typed Notification consumer

An EJB typed event bean can be any type of bean (session or entity, stateless or
stateful), except for an MDB. The EJB typed event bean implements event operations
as declared in the given associated user defined remote interface.

This code example shows an EJB bean as a push consumer of user defined
TMN.Notification remote interface:

import javax.ejb.*;

 // 1. The bean implementation
 public class TMNNotifyBean implements SessionBean {
 ...
 // implement operations declared in bean's remote interface
 public void attributeValueChange (...) { ... }
 public void qosAlarm(...) { ... }
 ...
 }

34 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

After building and deploying this typed EJB bean implementation, your application can:

■ Get its home interfaces from JNDI name.

■ Get its remote interface from the home interface.

■ Connect its remote interface to an OMG Typed Notification channel.

In this release, a command line utility, subtool, is provided to subscribe an EJB bean as
a typed RMI consumer by knowing its JNDI name. To connect a typed event EJB bean
to an OMG Typed Notification channel, use subtool command:

% subtool [-channel <ior>|-admin <ior>] \
 -home <jndi_name> \
 -type typed \
 -key <proxy_key>

where,

■ The -channel or -admin option specify the channel or consumer admin object as the
subscribe point.

■ The -home <jndi_name> tells subtool the JNDI name of the bean's Home interface.

■ The -type typed option tells subtool to connect the bean's remote interface as typed
consumer.

■ The -key <proxy_key> option tells the subtool what should be the key parameter for
obtain_typed_notification_push_supplier().

This example shows using subtool to subscribe a typed event bean to a OMG Typed
Notification Channel:

 % subtool -channel corbaloc::127.0.0.1:14100/default_channel \
 -home stock_home -type typed -key Stock

Developing an EJB bean as a Structured Notification consumer

An EJB structured event bean can be any type of EJB bean (session or entity,
stateless or stateful), except for an MDB. This EJB structured event bean can connect
to an VisiNotify Structured Notification Service and receive structured event originated
from non-RMI CORBA applications. An EJB structured event bean implements, among
other mandatory operations, a void push_structured_event
(org.omg.CosNotification.StructuredEvent) operation. This operation should not be
overloaded in this bean and its remote interface.

Unlike typed event bean, support of structured event bean is a VisiNotify extension.
VisiNotify does a special translation to convert a StructuredEvent structure that is sent
into the channel from a CORBA Structured supplier application into a StructuredEvent
valuebox when it detects the connected consumer is a structured event EJB bean.

This example shows an EJB bean as a structured push consumer:

 import javax.ejb.*;

 // The bean implementation
 public class MyStructuredNotifyBean implements SessionBean {
 ...
 public void push_structured_event(

org.omg.CosNotification.StructuredEvent event) { ... }
 ...
 }

Chapter 3: Developing suppl ier and consumer appl icat ions 35

VisiBroker Event Buf fer ing/Batch

After building and deploying this structured event bean, connect its remote interface to
the given VisiNotify's structured event channel. The remote interface of this bean
should declare the push_structured_event() operation. This code example shows the
connection as:

 import java.rmi.Remote;
 import java.rmi.RemoteException;

 // The bean's remote interface
 public interface MyStructuredInterface extends Remote {
 public void push_structured_event(
 org.omg.CosNotification.StructuredEvent event) throws
RemoteException;
 ...
 }

It is prohibited by ORB type system to directly connect this structure event bean's
remote interface as a structured event consumer to OMG Notification Service
structured channel. Therefore, to connect a structured event bean to a VisiNotify
Structured Notification channel, use the subtool command:

 % subtool [-channel <ior>|-admin <ior>] \
 -home <jndi_name> \
 -type struct

where,

■ The -channel or -admin option specify the channel or consumer admin object as the
subscribe point.

■ The -home <jndi_name> tells subtool the JNDI name of the bean's Home interface.

■ The -type struct option tells subtool to connect the bean's remote interface as
structured consumer.

This example shows using subtool to subscribe a structured event bean to a VisiNotify
Structured Notification Channel:

% subtool -channel corbaloc::127.0.0.1:14100/default_channel \
 -home stock_home -type struct

VisiBroker Event Buffering/Batch
Event buffering/batch is a mechanism implemented in VisiBroker 5.1 to optimize
VisiNotify event throughput. By default, event are buffered in supplier-side stubs before
flushed to VisiNotify as a larger batch message. Also, if VisiNotify detects that the
consumer is working on top of VisiNotify 5.1, it will try to buffering/batch events
together.

Disable supplier-side event buffering

Supplier applications can disable supplier-side event buffering by setting
vbroker.orb.supplier.eventBatch to false. For example:

 % typedPushSupplier ... -Dvbroker.orb.supplier.eventBatch=false

or

% vbj ... StructPushSupplier ... -Dvbroker.orb.supplier.eventBatch=false

36 VisiBroker Vis iNot i fy Guide

VisiBroker Event Buffer ing/Batch

Disable consumer-side event buffering

Consumer applications can also disable VisiNotify from sending events in batch by
setting vbroker.orb.consumer.eventBatch to false. For example:

% typedPushConsumer ... -Dvbroker.orb.consumer.eventBatch=false

or

% vbj ... StructPushConsumerImpl ... -Dvbroker.orb.consumer.eventBatch=false

Flush buffered events in supplier application

The supplier-side VisiBroker runtime will flush an event when these conditions occur:

Event buffer is full: This is a per-stub level flush. The default size of this stub level
event buffer is 32K. A given supplier application can use
vbroker.orb.supplier.eventBufferSize to change this size between 8K and 64K. For
example:

% typedPushSupplier ... -Dvbroker.orb.supplier.eventBufferSize=48000

Number of buffered events reaches the maximum batch size: This is a per-stub
level flush. The default maximum number of events that a stub can hold in its buffer is
128. A supplier application can use vbroker.orb.supplier.maxBatchSize to change this
size to any value less than 256. For example:

% vbj ... UntypedPushSupplier ... -Dvbroker.orb.supplier.eventBatchSize=32

Internal buffer flush timeout: This is a global flush. On timeout, all events buffered in
all stubs will be flushed out. The default timeout interval is 2,000 milliseconds (2
seconds). A supplier application can use
vbroker.orb.supplier.eventBatchTimerInterval to change this time between 100
millisecond (0.1 second) and 10,000 milliseconds (10 seconds). For example:

% typedPushSupplier ... -Dvbroker.orb.supplier.eventBatchTimerInterval=5000

Supplier invoked a non-bufferable operation on the stub: This is a per-stub level
flush and includes:

■ For untyped proxy consumer stub, only the push() operation is bufferable.

■ For structured proxy consumer stub, only the push_structured_event() operation is
bufferable.

■ For sequence proxy consumer stub, only the push_structured_events() operation is
bufferable.

Note Therefore, invoking disconnect_..._push_consumer() operations or
_non_existent()on the proxy stubs (above) will flush out all buffered events.

■ For the <I> interface stub of a typed channel, all non-pseudo operations are
bufferable.

Therefore, a supplier application can invoke _non_existent() operation on an <I>
interface stub to flush its buffered events. Notice that the calling
disconnect_typed_push_consumer() on a typed proxy consumer stub will not cause the
buffer in a corresponding <I> stub to be flushed. The application should explicitly call
_non_existent() on an <I> interface stub before calling
disconnect_typed_push_consumer() on proxy stub.

Java application calling BufferedEvent.flush()

A Java supplier application can explicitly call
com.inprise.vbroker.orb.BufferedEvents.flush() to flush. This is a global level event
flush. It is to support VisiBroker RMI applications because there is no pseudo operation
on a java.rmi.Remote interface, which can be used for event flush. Calling this static
method will flush out all events in every stub.

Chapter 3: Developing suppl ier and consumer appl icat ions 37

VisiBroker Event Buf fer ing/Batch

Initial Reference of VisiNotify

By default, VisiNotify uses TCP port number 14100 unless -
Dvbroker.notify.listener.port=<port> is used in the command line. Therefore, as
specified by OMG Notification Service, the URL of the Channel factory and typed
channel factory are:

corbaloc::<host>:14100/NotificationService
corbaloc::<host>:14100/TypedNotificationService

where, <host> is the domain name or dotted IP address of the VisiNotify host machine.
The VisiNotify server also creates a default channel. The URL of this default channel is:

corbaloc::<host>:14100/default_channel

This URL can be registered to supplier or consumer application's ORB using these two
OMG standardized scenarios:

1 –ORBInitRef ORB_init() command line option. Examples:

-ORBInitRef NotificationService=corbaloc::127.0.0.1:14100/NotificationService

or

-ORBInitRef TypedNotificationService=corbaloc::127.0.0.1:14100/
TypedNotificationService

2 ORB::register_initial_reference(). Examples:

 orb.register_initial_reference(
 "TypedNotificationService",
 orb.string_to_object("corbaloc::127.0.0.1:14100/
TypedNotificationService");

After registering them as an initial service, application can use
resolve_initial_reference().

38 VisiBroker Vis iNot i fy Guide

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 39

C h a p t e r

Chapter 4Using the Publish Subscribe
Adapter (PSA)

This chapter introduces VisiBroker Publish/Subscribe Adapter (PSA). The PSA is
primarily a programming model and a component that works in conjunction with OMG
Event/Notification Service. It is interoperable with applications that use low-level OMG
Notification Service interfaces.

Introduction
As “one of the best client/server middleware products,” CORBA provides solid support
for traditional client/server applications that are based on OMG object-oriented ORB
architecture. However, there are some short falls with CORBA in respect to supporting
publish/subscribe applications. For many enterprise business applications, the publish/
subscribe communication model is as important as the client/server model. Direct
support of the publish/subscribe communication model in the CORBA middleware
infrastructure substantially reduces the development effort by allowing developers
focus on implementing business logic rather than redesigning system solutions.

Notwithstanding, the ORB level support of the publish/subscribe communication model
has been virtually omitted within OMG along with third-party ORB vendors. The
publish/subscribe communication model is considered as a “second class subject”
within the CORBA development sphere. Consequently, application developers have to
resort to COS level solutions, such as Event/Notification Services, which are more or
less message oriented rather than object oriented. In COS Event/Notification Service,
the publish/subscribe is modeled as replicated client/server communications. The
disadvantages of this modeling are:

■ The object abstraction is at a very low level. A large semantic gap has to be filled by
application developers. They have to directly manipulate low level concepts and
objects of client/server communications, such as consumer proxy, supplier proxy,
and so forth, including direct rearrangement of their interconnections.

■ Usage of tight coupling in the object model. Although the channel connection model,
message format (structured, typed, etc.) and message transfer model (push/pull)
are orthogonal, they are tightly coupled. A change in one part of these components
will impact other parts, especially when changing structured to typed channel or
typed push to typed pull.

40 VisiBroker Vis iNot i fy Guide

Introduct ion

Note CORBA is not the only distributed object middleware that does not provide support for
non-classic communication models at the same object abstraction level. For instance,
within the RMI/EJB environment, instead of extending the original Java and RMI object
model, a message oriented model (namely, JMS/MDB) is used.

The Publish/Subscribe Adapter (PSA) described in this chapter addresses the
problems previously mentioned. PSA is mainly a programming model and a software
component working on top of OMG standardized Notification Service . Therefore, PSA
can be used along with third party OMG Notification Service implementations and is
also interchangeable with applications which are directly built with low-level OMG
Notification Service interfaces.

One of the basic functions of the PSA is to hide the details pertaining to channel
connections. Typically, when designing a CORBA publish/subscribe application, the
main goal is to make the application consumer object receive events from a given
channel. The channel is usually specified by its channel reference or consumer admin
reference. The consumer object is usually specified by its POA and object id. By using
OMG Notification Service directly, the application requires multiple steps in connecting
the consumer object to the channel. However, by using PSA, the application only
needs a single operation to complete this connection.

To introduce the basic concept of PSA, this example shows how a typed event
consumer application is coded. Assume that the typed event is defined by the IDL
interface:

// TMN.idl: typed event definition
#pragma prefix "examples.borland.com"
module TMN {
 interface TypedEvent {
 void attributeValueChange(...);
 ...
 };
};

First, in order for the typed event consumer to be able to receive events, it needs to
provide a servant implementation that derives from the user defined event interface
skeleton, POA_TMN::TypedEvent:

// 1. Implement typed servant
include "TMNEvents_s.hh"
class TMNTypedEventImpl : public POA_TMN::TypedEvent,
 public PortableServer::RefCountServantBase
{
 public:
 void attributeValueChange(...) { ... };
 ...
};

Next, activate this servant on a POA:

int main(argc, argv)
{
 ...
 // 2. get orb and poa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
 // 3. allocate the typed servant
 TMNTypedEventImpl* servant = new TMNTypedEventImpl();
 // 4. activate it on poa
 poa->activate_object(servant);

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 41

Introduction

Up to this point, the typed event application is treated as a normal typed consumer
application and nothing special has been added. If this was a normal client/server
example, then, the application would create an object reference from POA and pass it
to clients. In any case, this example is of a publish/subscribe consumer, therefore, the
application does not need to pass its reference directly to a client, which is the event
publisher. Instead, the consumer needs to connect to a given channel or consumer
admin object reference.

With PSA, instead of “connecting” the consumer to the channel, you simple “subscribe”
it to the channel:

 // 5. Somehow, this consumer is given a channel reference
 CORBA::Object_var channel = ... ;
 // 6. Get object id of the consumer servant
 PortableServer::ObjectId_var oid = poa->servant_to_id(servant);
 // 7. Narrow the POA to PSA
 PortableServerExt::PSA_var psa = PortableServerExt::PSA::_narrow(poa);
 // 8. Subscribe to the channel
 PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
 psa->subscribe(scheme, channel, oid, CORBA::NameValuePairSeq());
 // 9. Consumer working loop
 poa->the_POAManager()->activate();
 orb->run();
}

As shown in the code, the application only needs to create the typed servant
implementation with PSA. The application does not need to have the
CosTypedNotifyComm::TypedPushConsumer servant to support
get_typed_consumer(). Also, notice that the subscribe is one step procedure instead of
multiple (six steps) operations to make a “connect.”

Here is the Java code example equivalence:

import com.inprise.vbroker.PortableServerExt.*;
// 1. Implement typed servant
public class TMNTypedEventImpl : extend TMN.TypedEventPOA,
{
 public void attributeValueChange(...) { ... }
};
public class TypedPushConsumerImpl
{
 public static void main(String[] args)
 {
 ...
 // 2. get orb and psa environment
 org.omg.CORBA.ORB orb = ORB_init(args, null);
 org.omg.PortableServer.POA poa
 =
org.omg.PortableServer.POA.orb.resolve_initial_references("RootPOA");
 // 3. allocate the typed servant
 TMNTypedEventImpl servant = new TMNTypedEventImpl();
 // 4. activate it on root psa
 poa.activate_object(servant);
 // 5. somehow, this consumer is given a channel reference
 org.omg.CORBA.Object channel = ...;
 // 6. Get object id of the consumer servant
 org.omg.PortableServer.ObjectId oid = psa.servant_to_id(servant);

42 VisiBroker Vis iNot i fy Guide

PSA reference and PSA interface IDL

 // 7. narrow the org.omg.PortableServer.POA to com.inprise.vbroker.PSA
 PSA psa = PSA.narrow(poa);
 // 8. subscribe to the channel
 SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL:example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PUSH_EVENT);
 psa.subscribe(scheme, channel, oid, null);
 // 9. working loop
 poa.the_POAManager().activate();
 orb.run();
 }
}

This example clearly shows how the PSA works in conjunction with OMG Event/
Notification Service or Typed Event/Notification Service. More importantly, it shows
how it simplifies the CORBA publish/subscribe application by shielding it from the low
level notification service objects such as admins/proxies and operations.

Later in this chapter, you will see how the PSA decouples connection logic from event
interface and transfer model. Connection logic, such as subscribe, in the PSA is not
affected by event interface and transfer model. For instance, changing a structured
consumer to a typed consumer or changing a typed consumer from push to pull,
requires no change on consumer subscribe logic but only a flag change on subject
scheme. These kind of changes would require major code modifications to consumer
connection logic if the PSA is not used. Additionally, this chapter provides examples
that covers the various application cases and show the power and usage of the PSA.

PSA reference and PSA interface IDL
PSA is an extension of POA and supports all operations defined for POA. A POA
reference in VisiBroker 5.1 can be narrowed down to a PSA reference and
resolve_initial_references() with “RootPOA” and “RootPSA,” which actually return the
same internal reference.

This code example shows how to get root PSA.

C++ // getting root PSA in C++
CORBA::Object_var ref = orb->resolve_initial_references("RootPSA");
PortableServerExt::PSA_var psa = PortableServerExt::_narrow(ref);

Java // getting root PSA in Java
// get publisher/subscriber adapter
org.omg.CORBA.Object ref = orb.resolve_initial_references("RootPOA");
PSA psa = PSAHelper.narrow(ref);

PSA is defined in PortableServerExt module and (in-directly) derived from
PortableServer::POA.

module PortableServerExt {
 interface POA : PortableServer::POA {
 readonly attribute CORBA::PolicyList the_policies;
 };
 enum SubjectAddressScheme {
 SUBSCRIBE_ADMIN_ADDR,
 PUBLISH_ADMIN_ADDR,
 CHANNEL_ADDR,
 SUBJECT_ADDR
 };

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 43

PSA reference and PSA interface IDL

 enum SubjectInterfaceScheme {
 TYPED_SUBJECT,
 UNTYPED_SUBJECT,
 STRUCTURED_SUBJECT,
 SEQUENCE_SUBJECT
 };
 enum SubjectDeliveryScheme {
 PUSH_EVENT,
 PULL_EVENT
 };
 typedef string SubjectInterfaceId;
 struct SubjectScheme {
 SubjectAddressScheme address_scheme;
 SubjectInterfaceScheme interface_scheme;
 SubjectInterfaceId interface_id;
 SubjectDeliveryScheme delivery_scheme;
 };
 typedef Object Subject;
 typedef CORBA::OctetSequence PublishSubscribeDesc;
 typedef PublishSubscribeDesc SubscribeDesc;
 typedef PublishSubscribeDesc PublishDesc;
 exception InvalidSubjectScheme { long error; };
 exception InvalidSubscribeDesc { long error; };
 exception InvalidPublishDesc { long error; };
 exception InvalidProperties { CORBA::StringSequence names; };
 exception ChannelException { string repository_id; }
 // The Publisher/Subscriber Adapter
 interface PSA : POA {
 // register subject observer
 SubscribeDesc subscribe(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_observer_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);
 // register subject provider
 PublishDesc publish(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_pullable_publisher_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);
 // unregister observer from subject
 void unsubscribe(
 in SubscribeDesc the_subscribe_desc)
 raises(InvalidSubscribeDesc,
 ChannelException);
 // unregister (pull mode) provider
 void unpublish(
 in PublishDesc the_publish_desc)
 raises(InvalidPublishDesc,
 ChannelException);
 // suspend subject to push into the registered
 // observer or suspend subject to pull from the
 // registered provider

44 VisiBroker Vis iNot i fy Guide

PSA reference and PSA interface IDL

 void suspend(
 in PublishSubscribeDesc the_desc)
 raises(ChannelException);
 // resume subject to push into the registered
 // observer or resume subject to pull from the
 // registered provider.
 Void resume(
 in PublishSubscribeDesc the_desc)
 raises(ChannelException);
 // pull (typed) event and dispatch it to a registered
 // observer.
 unsigned long pull_and_dispatch(
 in SubscribeDesc the_subscribe_desc,
 in unsigned long max_count,
 in boolean block_pulling,
 in Boolean async_dispatch)
 raises(InvalidSubscribeDesc,
 InvalidSubjectScheme,
 ChannelException);

 // pull (typed) event and accept a given visitor to
 // 'visit' the event.
 Unsigned long pull_and_visit(
 in SubscribeDesc the_subscribe_desc,
 in unsigned long max_count,
 in Boolean block_pulling,
 in PortableServer::Servant the_visitor)
 raises(InvalidSubscribeDesc,
 InvalidSubjectScheme,
 ChannelException);
 Subject the_subject_addr(
 in PublishSubscribeDesc the_desc)
 raises(InvalidSubjectScheme);
 // low level access
 Object the_proxy_addr(
 in PublishSubscribeDesc the_desc)
 raises(InvalidSubjectScheme);
 };
 ...
 };

In VisiBroker (5.1 and later), all POAs are internally implemented as PSAs. Therefore,
any POA reference in VisiBroker 5.1 can always be narrowed into a PSA reference.

This code example shows the narrowing POA to PSA.

C++ // narrowing a POA into a PSA in C++
PortableServer::POA_var poa = parent_poa->create_POA(...);
PortableServerExt::PSA_var psa = PortableServerExt::_narrow(poa);

Java // narrowing a POA into a PSA in Java
org.omg.PortableServer.POA poa = parent_poa.create_POA(...);
com.inprise.vbroker.PortableServerExt.PSA psa
 = com.inprise.vbroker.PortableServerExt.PSAHelper.narrow(poa);

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 45

User examples

User examples
The following examples compare application code written with the COS notification
method and PSA. The examples are:

■ Structured Push Consumer
■ Typed Push Consumer
■ Structured Push Supplier
■ Typed Push Supplier

Structured Push Consumer

The table below compares the same structured push consumer application written in
notification connection method (left column) and PSA (right column). The noticeable
difference are:

■ PSA simplifies the connection code from three steps to one.

■ Push consumers using PSA is very similar to a normal server application.

This code example shows the connection/subscribe structured consumer to a channel
in C++:

Structured Push
Consumer using

Notification Service
interface (basic/cpp/

structPushConsumer.C)

// implement consumer servant
class StructuredPushConsumerImpl :
 public POA_CosNotifyComm:: StructuredPushConsumer,
 Public PortableServer::RefCountServantBase
{
 public:
 void push_structured_event(...) {...}
 ...
};
using namespace CosNotifyChannelAdmin;
int main(int argc, char** argv)
{
 // get orb and poa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb-> resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
 // get channel reference
 EventChannel_var channel = ...;
 // allocate the consumer servant
 StructuredPushConsumerImpl* servant = new StructuredPushConsumerImpl();
 // activate it on root poa
 poa->activate_object(servant);
 // get consumer object reference
 CORBA::Object_var obj = poa->servant_to_reference(servant);
 CosNotifyComm::StructuredPushConsumer_var
 consumer = CosNotifyComm::StructuredPushConsumer::_narrow(obj);
 // connect to channel
 // 1. get default admin
 ConsumerAdmin_var admin = channel->default_consumer_admin();
 // 2. create a proxy
 ProxyID proxy_id;
 ProxySupplier_var proxy = admin->
 obtain_notification_push_supplier(STRUCTURED_EVENT, proxy_id);
 // narrow to the stub
 StructuredProxyPushSupplier_var supplier = StructuredProxyPushSupplier::
 _narrow(proxy);

46 VisiBroker Vis iNot i fy Guide

User examples

 // 3. connect proxy supplier
 supplier-> connect_structured_push_consumer(consumer);
 // working loop
 orb->run();
}

Structured Push
Consumer using

PSA(psa/cpp/
structPushConsumer.C)

// implement consumer servant
class StructuredPushConsumerImpl :
 public POA_CosNotifyComm::StructuredPushConsumer,
 Public PortableServer::RefCountServantBase
{
 public:void push_structured_event(...) {...}
 ...
};
// no channel type specific namespace
int main(int argc, char** argv)
{
 // get orb and psa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb-> Resolve_initial_references("RootPSA");
 PortableServerExt::PSA_var psa = PortableServerExt::PSA::_narrow(obj);
 // get channel reference
 CORBA::Object_var channel = ...;
 // allocate the consumer servant
 StructuredPushConsumerImpl* servant = new StructuredPushConsumerImpl();
 // activate it on root psa
 psa->activate_object(servant);
 // get consumer object id
 PortableServer::ObjectId_var oid = poa->servant_to_id(servant);
 // subscribe to channel

 // specify the subject scheme
 PortableServerExt::SubjectScheme scheme =
 { PortableServerExt::CHANNEL_ADDR, PortableServerExt::STRUCTURED_SUBJECT,
 (const char*)"", PortableServerExt::PUSH_EVENT };
 // 1. Subscribe
 psa->subscribe(scheme, channel, oid, CORBA::NameValuePairSeq());
 // working loop
 orb->run();
}

This is the Java equivalence.

Structured push
consumer using

Notification service
interface (basic_java/

StructPushConsumerImpl
.java)

Import org.omg.CORBA.*;
import org.omg.PortableServer.*;
Import org.omg.CosNotifyComm.*;
// implement consumer servant
public class StructuredPushConsumerImpl : extend StructuredPushConsumerPOA
{
 public void push_structured_event(...) {...}
 ...
 public static void main(String[] args){
 // get orb and poa environment
 ORB orb = ORB_init(args, null);
 Object obj = orb.resolve_initial_references("RootPOA");
 POA poa = POA.narrow(obj);
 // get channel reference
 EventChannel channel = ...;
 // allocate the consumer servant
 StructuredPushConsumerImpl servant = New StructuredPushConsumerImpl();
 // activate it on root poa

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 47

User examples

 poa.activate_object(servant);
 // get consumer object reference
 Object ref = poa.servant_to_reference(servant);
 StructuredPushConsumer consumer = StructuredPushConsumer.narrow(ref);
 // connect to channel
 // 1. get default admin
 ConsumerAdmin admin = channel.default_consumer_admin();
 // 2. Create a proxy
 ProxyID proxy_id;
 ProxySupplier proxy
 = admin.obtain_notification_push_supplier(STRUCTURED_EVENT, proxy_id);
 // narrow to the stub
 StructuredProxyPushSupplier supplier

= StructuredProxyPushSupplier.narrow(proxy);
 // 3. Connect proxy supplier
 supplier.Connect_structured_push_consumer(Consumer);
 // working loop
 orb.run();
}

Structured push
consumer using PSA

(psa_java/
structPushConsumer.

java)

import org.omg.CORBA.*;
Import com.inprise.vbroker.PortableServerExt.*;
// Implement consumer servant
public class StructuredPushConsumerImpl :
extend CosNotifyComm.StructuredPushConsumer
{
 public void push_structured_event(...) {...}
 ...
 public static void main(String[] args) {
 // get orb and psa environment
 ORB orb = ORB_init(args, null);
 Object obj = orb.resolve_initial_references("RootPSA");
 PSA psa = PSA.narrow(obj);
 // get channel reference
 CORBA.Object. channel = ...;
 // allocate the consumer servant
 StructuredPushConsumerImpl servant = New StructuredPushConsumerImpl();
 // activate it on root psa
 psa.activate_object(servant);
 // get consumer object id
 org.omg.PortableServer.ObjectId oid = psa.servant_to_id(servant);
 // subscribe to channel

 // specify the subject scheme
 SubjectScheme scheme = new SubjectScheme(SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.STRUCTURED_SUBJECT, (const char*)"",

SubjectDeliveryScheme.PUSH_EVENT);
 // 1. Subscribe
 psa.subscribe(scheme, channel, oid, null);
 // working loop
 orb.run();
}

48 VisiBroker Vis iNot i fy Guide

User examples

Typed Push Consumer

The table below shows the code written with the notification connection method (left
column) and PSA (right column). The noticeable difference are:

■ PSA simplifies the connection code from six steps to one.

■ Typed consumer application using PSA does not require the application to provide a
proxy object for get_typed_consumer(). PSA transparently supplies this function.

■ Typed push consumer using PSA is very similar to a normal server application.

■ Typed push consumer using PSA is almost identical to the PSA structured push
consumer, where the PSA shields applications from any changes of different
channels.

This code example show the connection/subscribe typed consumer to a channel in
C++:

Typed push consumer
using Notification service

interface (basic/cpp/
typedPushConsumer.C)

// Implement proxy consumer servant
class TypedPushConsumerImpl :
 public POA_CosTypedNotifyComm::TypedPushConsumer,
 Public PortableServer::RefCountServantBase
{
 CORBA::Object_var _I;
 Public:TypedPushConsumerImpl(
 CORBA::Object_ptr I) : _I(
 CORBA::Object::_duplicate(I)) {}
 CORBA::Object_ptr get_typed_consumer() {
 return CORBA::Object::_duplicate(_I);
 }
 ...
};
// implement typed servant
class TMNTypedEventImpl : public POA_TMN::TypedEvent,
 public PortableServer::RefCountServantBase
{
 public:void attributeValueChange(...);
 ...
};
using namespace CosTypedNotifyChannelAdmin;
int main(int argc, char** argv)
{
 // get orb and poa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb-> resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
 // get channel reference
 TypedEventChannel channel = ... ;
 // allocate the typed servant
 TMNTypedEventImpl* typed_servant = new TMNTypedEventImpl();
 // activate it on poa
 poa->activate_object(typed_servant);
 // get its reference
 CORBA::Object_var typed_ref = poa->servant_to_reference(typed_servant);
 // connect to channel
 // 1. allocate the proxy consumer
 TypedPushConsumerImpl* servant = new TypedPushConsumerImpl(typed_ref);
 // 2. activate it on root poa
 poa->activate_object(servant);
 // 3. get consumer object reference/
 obj = poa->servant_to_reference(servant);

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 49

User examples

 CosTypedNotifyComm::TypedPushConsumer_var
 consumer = CosTypedNotifyComm::TypedPushConsumer::_narrow(obj);
 // 4. Get default admin
 TypedConsumerAdmin_var admin = channel->default_consumer_admin();
 // 5. Create a proxy
 CosNotifyChannelAdmin::ProxyID proxy_id;
 TypedProxySupplier_var proxy = admin->obtain_notification_push_supplier(
 "IDL:example.borland.com/"
 "TMN/TypedEvent:1.0", proxy_id);
 // 6. Connect proxy supplier
 proxy->connect_typed_push_consumer(consumer);
 // working loop
 orb->run();
}

Typed push using PSA
(psa/cpp/

typedPushConsumer.C)

// No need to implement the proxy consumer.
// PSA transparently supplies a proxy to
// support get_typed_consumer().
// implement typed servant
class TMNTypedEventImpl : public POA_TMN::TypedEvent,
 public PortableServer::RefCountServantBase
{
 public:void attributeValueChange (...) ;
 ...
};

// no channel typed specific namespace
int main(int argc, char** argv)
{
 // get orb and psa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->Resolve_initial_references("RootPSA");
 PortableServerExt::PSA_var psa = PortableServerExt::PSA::_narrow(obj);
 // get channel reference
 CORBA::Object_var channel = ... ;
 // allocate the typed servant
 TMNTypedEventImpl* typed_servant = new TMNTypedEventImpl();
 // activate it on root psa
 psa->activate_object(typed_servant);
 // get its object id
 PortableServer::ObjectId_var oid = poa->servant_to_id(typed_servant);
 // subscribe to channel
 // specify the subject scheme
 PortableServerExt::SubjectScheme scheme = { PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT, (const char*)"IDL:example.borland.com"

"TMN/TypedEvent:1.0", PortableServerExt::PUSH_EVENT };
 // 1. Subscribe
 psa->subscribe(scheme, channel, oid, CORBA::NameValuePairSeq());
 // working loop
 orb->run();
}

50 VisiBroker Vis iNot i fy Guide

User examples

This code example show the connection/subscribe typed consumer to a channel in
Java:

Typed push consumer
using Notification service

interface (basic_java/
TypedPush

ConsumerImpl.C)

import org.omg.CORBA.*;
Import org.omg.PortableServer.*;
Import org.omg.CosNotifyComm.*;
// Implement typed servant
public class TMNTypedEventImpl : extend TMN.TypedEventPOA,
{
 public void attributeValueChange(...);
 ...
}
public class TypedPushConsumerImpl : extend TypedPushConsumerPOA
{
 Object _I = null;
 public TypedPushConsumerImpl(Object I) { _I = I; }
 // Implement get_typed_consumer();
 public object get_typed_consumer({return _I; }
 ...
 public static void main(String[] args){
 // get orb and poa environment
 ORB orb = ORB_init(args, null);
 Object obj = orb.resolve_initial_references("RootPOA");
 POA poa = POA.narrow(obj);
 // get channel reference
 TypedEventChannel channel = ... ;
 // allocate the typed servant
 TMNTypedEventImpl typed_servant = new TMNTypedEventImpl();
 // activate it on poa
 poa.activate_object(typed_servant);

 // get its reference
 Object typed_ref = poa.servant_to_reference(typed_servant);
 // connect to channel
 // 1. Allocate the proxy consumer
 TypedPushConsumerImpl servant = New TypedPushConsumerImpl(typed_ref);
 // 2. activate it on root poa
 poa.activate_object(servant);
 // 3. get consumer object reference
 obj = poa->servant_to_reference(servant);
 TypedPushConsumer Consumer = TypedPushConsumer.narrow(obj);
 // 4. Get default admin
 TypedConsumerAdmin admin = Channel.default_consumer_admin();
 // 5. Create a proxy
 CosNotifyChannelAdmin::ProxyID proxy_id;
 TypedProxySupplier proxy = admin.Obtain_notification_push_supplier(
 "IDL:example.borland.com/"
 "TMN/TypedEvent:1.0", proxy_id);
 // 6. Connect proxy supplier
 proxy.connect_typed_push_consumer(consumer);
 // working loop
 orb.run();
}

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 51

User examples

Typed push consumer
using PSA (psa_java/

TypedPushConsumerImp
l.C)

import org.omg.CORBA.*;
Import com.inprise.vbroker.PortableServerExt.*;
// Implement typed servant
public class TMNTypedEventImpl : extend TMN.TypedEventPOA,
{
 public void attributeValueChange(...);
 ...
}
public class TypedPushConsumerImpl
{
 // No need to implement the proxy
 // consumer. PSA transparently supplies
 // a proxy to support
 // get_typed_consumer().
 Public static void main(String args) {
 // get orb and psa environment
 ORB orb = ORB_init(args, null);
 Object obj = orb.resolve_initial_references("RootPSA");
 PSA psa = PSA.narrow(obj);
 // get channel reference
 Object channel = ... ;
 // allocate the typed servant
 TMNTypedEventImpl typed_servant = new TMNTypedEventImpl();
 // activate it on root psa
 psa.activate_object(typed_servant);
 // get its object id
 PortableServer::ObjectId oid = psa.servant_to_id(typed_servant);

 // subscribe to channel
 // specify the subject scheme
 SubjectScheme scheme = new
 (SubjectAddressScheme.CHANNEL_ADDR, SubjectInterfaceScheme.TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com" "TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PUSH_EVENT);
 // 1. Subscribe
 psa.subscribe(scheme, channel, oid, null);
 // working loop
 orb.run();
}

These two examples clearly illustrates how PSA drastically simplifies and unifies the
procedures of connecting to a notification channel for both structured and typed
consumers. It also shows how PSA decouples the event format selection and
connecting logic. The application code between structured and typed channel are
substantially different when low level COS Notification Service is directly used. With
PSA, the two examples have almost no difference on subscribing logic.

Structured and Typed Push Supplier examples

In these two examples, a typed push supplier and a structured push supplier
applications are written in notification connection method (left column) and PSA (right
column). The noticeable difference is that the typed push supplier using PSA is almost
identical to the PSA structured push supplier. In both cases, the PSA shields the
application from the different makeup of each channel.

52 VisiBroker Vis iNot i fy Guide

User examples

Structured Supplier to a Channel

This code example show the connection/subscribe structured supplier to a channel in
C++:

Structured push supplier
using Notification service

interface (basic_cpp/
structPushSupplier.C)

Using namespace CosNotifyChannelAdmin;
int main(int argc, char** argv)
{
 // get orb and poa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->Resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
 // get channel reference
 EventChannel channel = ... ;
 // connect to channel
 // 1. Get default admin
 ConsumerAdmin_var admin = Channel->default_supplier_admin();
 // 2. Create a proxy
 ProxyID proxy_id;
 ProxyConsumer_var proxy = admin->
 obtain_notification_push_consumer(STRUCTURED_EVENT, proxy_id);
 // 3. Get the StructuredProxyConsumer
 StructuredProxyPushConsumer_var consumer

= StructuredProxyPushConsumer::_narrow(proxy);
 // Push typed events interface
 for(;;) {consumer->push_structured_event(...);
 ...
 }
 ...
}

Structured push supplier
using Notification service

interface (basic_cpp/
structPushSupplier.C)

int main(int argc, char** argv)
{
 // get orb and psa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->Resolve_initial_references("RootPSA");
 PSA_var psa = PSA::_narrow(obj);

 // get channel reference
 CORBA::Object_var channel = ... ;
 // publish to channel
 // 1. Publish
 PortableServerExt::SubjectScheme scheme = { PortableServerExt::CHANNEL_ADDR,

PortableServerExt::STRUCTURED_SUBJECT, (const char*)"",
PortableServerExt::PUSH_EVENT };

PortableServerExt::PublishDesc_var desc = psa->publish(scheme, channel,
PortableServer::ObjectId(), CORBA::NameValuePairSeq());

 // 2. Get the StructuredProxyConsumer
 CORBA::Object_var obj = psa->the_subject_addr(desc);
 StructuredProxyPushConsumer_var consumer
 = StructuredProxyPushConsumer::_narrow(proxy);

 // Push typed events interface
 for(;;) {consumer->push_structured_event(...);
 ...
 }
 ...
}

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 53

User examples

Typed Supplier to a Channel

This code example show the connection/subscribe typed supplier to a channel in C++:

Typed push supplier
using Notification service

interface (basic_cpp/
typedPushSupplier.C)

using namespace CosTypedNotifyChannelAdmin;
int main(int argc, char** argv)
{
 // get orb and poa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->Resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
 // get channel reference
 TypedEventChannel channel = ... ;
 // connect to channel
 // 1. Get default admin
 TypedConsumerAdmin_var admin = Channel->default_supplier_admin();
 // 2. Create a proxy
 CosNotifyChannelAdmin::ProxyID proxy_id;
 TypedProxyConsumer_var proxy = admin->obtain_notification_push_consumer(

"IDL:example.borland.com/" "TMN/TypedEvent:1.0", proxy_id);
 // 3. Get the <I> interface
 CORBA::Object_var obj = proxy->get_typed_consumer();
 TMN::TypedEvent_var consumer = TMN::TypedEvent::_narrow(obj);
 // Push typed events interface
 for(;;) {consumer->attributeValueChange(...);
 ...
 }
 ...
}

Typed push using
PSA(psa_cpp/

typedPushSupplier.C)

int main(int argc, char** argv)
{
 // get orb and psa environment
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->Resolve_initial_references("RootPSA");
 PSA_var psa = PSA::_narrow(obj);

 // get channel reference
 CORBA::Object_var channel = ... ;
 // publish to channel
 // 1. Publish
 PortableServerExt::SubjectScheme scheme =
 { PortableServerExt::CHANNEL_ADDR, PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com" "TMN/TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
 PortableServerExt::PublishDesc_var desc = psa->publish(scheme, channel,

PortableServer::ObjectId(), CORBA::NameValuePairSeq());
 // 2. Get the <I> interface
 CORBA::Object_var obj = psa->the_subject_addr(desc);
 TMN::TypedEvent_var consumer = TMN::TypedEvent::_narrow(obj);

 // Push typed events interface
 for(;;) {consumer->attributeValueChange(...);
 ...
 }
 ...
}

54 VisiBroker Vis iNot i fy Guide

Subscr ibe a subject using PSA

These examples illustrate that there is a noticeable difference between the code and
procedure for making a connection for structured and typed supplier applications when
using the Notification Service interface. More importantly, while using the PSA, the
connection code and procedures were almost identical for both applications.

Note All examples used in this chapter are condensed from shipped VisiNotify and PSA
examples. These examples are located in the directory: examples/vbroker/notify/
basic_<cpp|java> and examples/vbroker/notify/psa_<cpp|Java>.

Subscribe a subject using PSA
The subscribe operation in PSA allows a consumer object to attach to a notification/
event source for receiving (either push or pull) event messages. This is a very broad
concept which can covers all possible publish/subscribe scenarios such as:

■ Connecting to an OMG notification/event channel.

■ Joining a multicast group and establish the external key to internal consumer id
mapping.

■ Connecting to an non-IIOP message oriented middle.

PSA supports these scenarios under one single programming model regardless of the
low level transport mechanism and type of the channel/message format. In this
release, PSA only supports subscribe to OMG notification/event channel (all four
channel types). PSA subscribe operation is defined as:

SubscribeDesc subscribe(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_observer_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);

When PSA is used on top of COS Notification, this operation performs all low-level
operations of getting consumer admin, obtaining proxy suppliers and making the
connection. For subscribing to a typed subject, the PSA also creates and manages the
handler proxy object internally to support the get_typed_consumer() operation and only
require the application to supply the observer servant implementation that support the
application specified typed <I> interface.

SubjectScheme

The first parameter to the subscribe() is SubjectScheme and is defined as:

struct SubjectScheme {
SubjectAddressScheme address_scheme;
 SubjectInterfaceScheme interface_scheme;
 SubjectInterfaceId interface_id;
 SubjectDeliveryScheme delivery_scheme;
};

The SubjectScheme specifies what is the subject reference's address scheme,
interface scheme, interface repository id (for typed channel only), and delivery scheme.

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 55

Subscr ibe a subject using PSA

The address_scheme field specifies the subject reference. For example, an address
can be specified, which can be used directly for push event or an address to only do
subscribe. Currently, there are three values on this field for subscribing;
SUBSCRIBE_ADMIN_ADDR, CHANNEL_ADDR, and SUBJECT_ADDR, which
indicates the subject reference to the subscribe() operation is a OMG Notification
Consumer Admin, a OMG Notification Channel (or typed channel) or an event direct
pushing address, respectively.

The three values for the address_scheme field allow the application to subscribe in the
following manner:

■ SUBSCRIBE_ADMIN_ADDR—The subject reference to subscribe() is a OMG
Notification Consumer Admin reference, PSA simply calls obtain_<...>_supplier() on
the admin to allocate a proxy on the admin and then calls connect_<...>_consumer()
on the proxy. The consumer reference connected to the proxy is either null (for pull
mode consumer) or a push consumer object reference created from this PSA with
the observer_id parameter. For typed channels, the get_typed_consumer() and
get_typed_supplier() are automatically handled by PSA.

■ CHANNEL_ADDR—The subject reference to subscribe() is an OMG Notification
Channel (or typed channel). PSA simply calls _get_default_consumer_admin() on
the channel to get the default admin and then handles it as a connection through
this consumer admin reference.

■ SUBJECT_ADDR—The subject reference to subscribe() is a direct event pushing
address. For example, it could be a multicast IOR, or a typed <I> interface. For any
other channel than typed, it is a proxy push consumer. PSA calls _get_MyAdmin()/
_get_MyChannel()/_get_default_consumer_admin() and then handles it as a
connection through consumer admin. For typed channel, this is already a push <I>
interface. PSA looks into the reference for a consumer admin component (not
currently supported) and handles as a connection through consumer admin.

Additionally, applications need to specify SubjectInterfaceScheme and
SubjectDeliveryScheme.

For SubjectInterfaceScheme the valid values are:

■ TYPED_SUBJECT—Subject uses either multicast or OMG Typed Notification
Channel.

■ UNTYPED_SUBJECT—Subject uses OMG Untyped Notification Channel.

■ STRUCTURED_SUBJECT—Subject uses OMG Structured Notification Channel.

■ SEQUENCE_SUBJECT—Subject uses OMG Sequence Notification Channel.

For SubjectDeliveryScheme the valid values are:

■ PUSH_EVENT—Subject uses either multicast or OMG Push Notification mode (any
of the four OMG event types).

■ PULL_EVENT—Subject uses OMG Pull Notification mode (any of the four OMG
event types).

For connecting to a typed channel, the repository id of <I> interface must also be
specified. This repository is used as the implicit event filter.

Subject Reference, Observer ID, and Properties to Subscribe()

The second and third parameters to subscribe() are the reference of the subject and
the object id of a passive consumer object. The subject reference's interpretation is
specified by the SubjectScheme as the first parameter to subscribe() and has been
described above. The passive consumer object id specifies which consumer object, a
received event, can be dispatched to.

56 VisiBroker Vis iNot i fy Guide

Subscr ibe a subject using PSA

There are two kind of consumer objects; passive and active. All push consumers are
passive consumers and all pull consumers, except for typed consumer using
pull_and_dispatch(), are active.

Passive consumers need to be subscribed with a valid object id and the consumer
servant should be activated or able to be activated (such as, by servant manager) in
the subscribing PSA (i.e. POA). Active consumers, on the other hand, do not need a
valid object id to subscribe(). In fact, PSA ignores the actual object id parameter when
subscribe() is called to subscribe an active consumer. Also, active consumers do not
need to be activated or able to be activated.

Examples of Subscribe()

Example
This example shows how to connect to an untyped service through channel reference
as a push consumer.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::UNTYPED_SUBJECT,
 (const char*)"",
 PortableServerExt::PUSH_EVENT };
PortableServerExt::SubscribeDesc_var desc psa->subscribe(
 scheme, channel, observer_oid, CORBA::NameValuePairSeq());

Java // Java code to connect to an untyped service through channel reference as a
push consumer
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,

 SubjectInterfaceScheme.UNTYPED_SUBJECT,
 "",
 SubjectDeliveryScheme.PUSH_EVENT);
SubscribeDesc desc = psa.subscribe(scheme, channel, observer_oid, null);

Example
This example shows how to connect to an untyped service through channel reference
as a pull consumer.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::UNTYPED_SUBJECT,
 (const char*)"",
 PortableServerExt::PULL_EVENT };
PortableServerExt::SubscribeDesc_var desc = psa->subscribe(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

Java // Java code to connect to an untyped service through channel reference as a
push consumer
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.UNTYPED_SUBJECT,
 "",
 SubjectDeliveryScheme.PULL_EVENT);
SubscribeDesc desc = psa.subscribe(scheme, channel, null, null);

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 57

Subscr ibe a subject using PSA

Example
This example shows how to connect to an structured service through channel
reference as a push consumer.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::STRUCTURED_SUBJECT,
 (const char*)"",
 PortableServerExt::PUSH_EVENT };
PortableServerExt::SubscribeDesc_var desc psa->subscribe(
scheme, channel, observer_oid, CORBA::NameValuePairSeq());

Java // Java code to connect to a structured service through channel reference as a
push consumer
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.STRUCTURED_SUBJECT,
 "",
 SubjectDeliveryScheme.PUSH_EVENT);
SubscribeDesc desc = psa.subscribe(scheme, channel, observer_oid, null);

Example
This example shows how to connect to an structured service through channel
reference as a pull consumer.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::STRUCTURED_SUBJECT,
 (const char*)"",
 PortableServerExt::PULL_EVENT };
PortableServerExt::SubscribeDesc_var desc = psa->subscribe(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

Java // Java code to connect to a structured service through channel reference as a
pull consumer
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.STRUCTURED_SUBJECT,
 "",
 SubjectDeliveryScheme.PULL_EVENT);
SubscribeDesc desc = psa.subscribe(scheme, channel, null, null);

Example
This example shows how to connect to a typed service through channel reference as a
push consumer.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
PortableServerExt::SubscribeDesc_var desc psa->subscribe(
scheme, channel, observer_oid, CORBA::NameValuePairSeq());

Java // Java code to connect to an typed service through channel reference as a push
consumer
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL:example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PUSH_EVENT);
SubscribeDesc desc = psa.subscribe(scheme, channel, observer_oid, null);

58 VisiBroker Vis iNot i fy Guide

Subscr ibe a subject using PSA

Example
This example shows how to connect to a typed service through channel reference as a
pull consumer.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PULL_EVENT };
PortableServerExt::SubscribeDesc_var desc = psa->subscribe(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

Java // Java code to connect to a typed service through channel reference as a pull
consumer
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL:example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PULL_EVENT);
SubscribeDesc desc = psa.subscribe(scheme, channel, null, null);

Subscribe Descriptor and the_subject_addr()

Object the_subject_addr(in PublishSubscribeDesc the_desc);

After a successful subscribe() operation, a subscribe descriptor is returned which
encapsulates all information and mapping to make other operations on the
subscription, such as unsubscribe(), suspend(), resume(). Also, this descriptor can be
saved into a persistent repository and can be later loaded into the same consumer
process session or a new restarted consumer process session. However, the format of
this descriptor is internal to the given ORB which created it. Therefore, like the object
key, a subscribe descriptor must be used by the same ORB that created it.

For a subscribed push consumer, channel will actively push events to the consumer
servants activated with the specified observer ids. After a successful subscribe()
operations, applications with untyped/structured/sequence pull consumers can get
their pull addresses (proxy pull suppliers) from PSA's the_subject_addr() along with the
subscribe descriptor. The subscribe descriptor was returned from the PSA subscribe()
method, as a parameter.

Example
This example shows how to get a proxy untyped/structured/sequence pull supplier
from subscribe descriptor:

C++ CORBA::Object_var proxy_pull_supplier = psa->the_subject_addr(the_desc);

Java org.omg.CORBA.Object proxy_pull_supplier = psa.the_subject_addr(the_desc);

After narrowing this reference to a specified proxy, the application can pull event from
the supplier with pull()/try_pull()/pull_structured_event() and
try_pull_structured_event().

Typed pull consumer is discussed in “Support of Typed Pull Consumer” section.

Unsubscribe a Subject

PSA unsubscribe() disconnects the consumer from a connected channel and cleans up
any local resource, if necessary (for multicast case, it remove the subject key to
observer id mapping). If the consumer is connected to an untyped and typed channel,
the PSA invokes disconnect_push/pull_supplier() to the proxy.

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 59

Publ ish a Subject

If the consumer is connected to structured or sequence channel, the PSA, respectively,
invokes disconnect_structured_push/pull_supplier() or disconnect_sequence_push/
pull_supplier().

This code example shows how to unsubscribe a subject:

void unsubscribe(in SubscribeDesc the_subscribe_desc)

Publish a Subject
Publish in PSA model is defined as an operation, which attaches a supplier object or
source to a notification/event channel that provides (either push or pull) event
messages.

This is a very broad concept that covers all possible publish/subscribe scenarios such
as:

■ Connections to a OMG notification/event channel.

■ Attachments to a multicast channel. However, native UDP multicast, publish() does
nothing but only creates and returns a wrapper publish descriptor.

■ Connections to a non-IIOP message oriented middle.

PSA supports many publish/subscribe scenarios under one single programming model
regardless the low level transport mechanism and the type of the channel/message
format. Currently, the PSA only supports connect to OMG notification/event channel
(all four channel types). The PSA operation to subscribe a consumer (such as,
observer) to a given subject is:

PublishDesc publish(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_provider_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);

When the publish operation is used on top of the COS Notification, it performs all
operation of getting supplier admin, obtaining proxy consumers, and connecting to
them. Additionally, when the publish operation used with a typed subject, PSA also
calls get_typed_consumer() on the proxy consumers to get the <I> reference.

SubjectScheme

SubjectScheme is the first parameter to publish() and is defined as:

struct SubjectScheme {
 SubjectAddressScheme address_scheme;
 SubjectInterfaceScheme interface_scheme;
 SubjectInterfaceId interface_id;
 SubjectDeliveryScheme delivery_scheme;
};

The SubjectScheme parameters specify what are the subject reference's address
scheme, interface scheme, interface repository id (for typed channel only) and delivery
scheme.

60 VisiBroker Vis iNot i fy Guide

Publ ish a Subject

The address_scheme field specifies the subject reference, such as, whether it is an
address that can directly push events or an address that can only subscribe. Currently,
VisiBroker supports three valid values for this field, which indicates that the subject
reference to the publish() operation is an OMG notification consumer admin, an OMG
notification channel (or typed channel) or an event direct pushing address,
respectively.

The supports three address schemes for subscribe are:

■ PUBLISH_ADMIN_ADDR—The subject reference to publish() is an OMG
notification supplier admin reference, PSA simply calls obtain_<...>_consumer() on
the admin reference to allocate a proxy on the admin and then calls
connect_<...>_supplier() on the proxy. The supplier reference connected to the
proxy is either null (for push supplier) or a pull supplier reference create from this
PSA with provider_id parameter. For typed channels, get_typed_consumer()
operation and get_typed_supplier() implementation are automatically handled by
PSA.

■ CHANNEL_ADDR—The subject reference to publish() is an OMG notification
channel (or typed channel). PSA simply calls _get_default_supplier_admin() on the
channel to get the default supplier admin. It handles it as connect through this
consumer admin reference.

■ SUBJECT_ADDR—The subject reference to subscribe() is a direct event pushing
address. For example, it could be a multicast IOR or a typed <I> interface. This is a
trivial case. PSA simply wraps a publisher descriptor and returns.

Your application will also need to specify SubjectInterfaceScheme and
SubjectDeliveryScheme.

The valid SubjectInterfaceScheme values are:

■ TYPED_SUBJECT—Subject uses either multicast or OMG typed notification
channel.

■ UNTYPED_SUBJECT—Subject uses OMG untyped notification channel.

■ STRUCTURED_SUBJECT—Subject uses OMG structured notification channel.

■ SEQUENCE_SUBJECT—Subject uses OMG sequence notification channel.

The valid SubjectDeliveryScheme values are:

■ PUSH_EVENT—Subject uses either multicast or OMG push notification mode (any
of the four OMG event types).

■ PULL_EVENT—Subject uses OMG pull notification mode (any of the four OMG
event types).

To connect to a typed channel, you must also specify the repository id of <I> interface.
This repository is actually used for narrowing a typed push reference returned from
get_typed_consumer() into <I> stub, which is also used as a filtering key for both push
and pull events.

Subject Reference, Provider ID, and Properties to Publish()

The subject reference's interpretation is specified by the SubjectScheme as the first
parameter to publish() operation. The second and third parameters to publish() are the
reference of the subject and the object id of a passive supplier (such as, a supplier)
object. The passive supplier object id specifies which supplier object should be used by
PSA to pull events for publishing.

There are two kind of supplier objects; passive and active. All push suppliers are active
while all pull suppliers are passive.

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 61

Publ ish a Subject

Passive suppliers need to be published with a valid object id and the publish servant
should be activated or able to be activated (for example, by the servant manager) in
the publishing PSA (such as, POA). Active publishes, on the other hand, do not need a
valid object id to call publish(). In fact, PSA ignores the actual object id parameter when
publish() is called to publish an active supplier. Also, active suppliers do not need to be
activated or able to be activated. Active suppliers do not even need servant
implementations.

Note Active suppliers do not even need servant implementations.

Examples of publish()

Example
This example shows how to connect to an untyped service through channel reference
as a push supplier using namespace PortableServerExt.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::UNTYPED_SUBJECT,
 PortableServerExt::(const char*)"",
 PortableServerExt::PUSH_EVENT };
PortableServerExt::PublishDesc_var desc psa->publish(
 Scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

Java SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.UNTYPED_SUBJECT,
 "",
 SubjectDeliveryScheme.PUSH_EVENT);
Byte[] desc = psa.publish(scheme, channel, null, null);

As specified by the scheme, the given subject reference is actually a COS Notification
Service channel reference. PSA internally performs the following operations:

■ Gets the default supplier admin from this channel.

■ Obtains an untyped proxy push consumer from the admin.

■ Encapsulates the proxy push consumer's reference inside the returned subscribe
descriptor.

Example
This example shows how connects to an untyped service through channel reference as
a pull supplier using namespace PortableServerExt.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::UNTYPED_SUBJECT,
 (const char*)"",
 PortableServerExt::PULL_EVENT };
PortableServerExt::PublishDesc_var desc = psa->publish(
 scheme, channel, provider_id, CORBA::NameValuePairSeq());

Java SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.UNTYPED_SUBJECT,
 "",
 SubjectDeliveryScheme.PULL_EVENT);
PublishDesc desc = psa.publish(scheme, channel, provider_id, null);

62 VisiBroker Vis iNot i fy Guide

Publ ish a Subject

As specified by the scheme, the given subject reference is actually a COS Notification
Service channel reference. PSA performs following operations:

■ Gets the default supplier admin from this channel.

■ Obtains an untyped proxy pull consumer from the admin.

■ Creates an pull supplier object reference from PSA with the provider_id parameter
as object id.

■ Connects to the proxy with this pull supplier reference.

■ Encapsulates the proxy pull consumer's reference inside the returned subscribe
descriptor.

Example
This example shows how to connect to an structured service through channel
reference as a push supplier using namespace PortableServerExt.

C++ SubjectScheme scheme = {
 CHANNEL_ADDR, STRUCTURED_SUBJECT, (const char*)"", PUSH_EVENT };
PublishDesc_var desc = psa->publish(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

Java SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.STRUCTURED_SUBJECT,
 "",
 SubjectDeliveryScheme.PUSH_EVENT);
PublishDesc desc = psa.publish(scheme, channel, null, null);

As specified by the scheme, the given subject reference is actually a COS Notification
Service channel reference. PSA performs following operations:

■ Gets the default supplier admin from this channel.

■ Obtains an structured proxy push consumer from the admin.

■ Encapsulates the proxy push consumer's reference inside the returned subscribe
descriptor.

Example
This example shows how C++ code connects to an structured service through channel
reference as a push supplier using namespace PortableServerExt.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::STRUCTURED_SUBJECT,
 (const char*)"",
 PortableServerExt::PULL_EVENT };

PortableServerExt::PublishDesc_var desc = psa->publish(
 scheme, channel, provider_id, CORBA::NameValuePairSeq());

Java SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.STRUCTURED_SUBJECT,
 "",
 SubjectDeliveryScheme.PULL_EVENT);
Byte[] desc = psa.publish(scheme, channel, provider_id, null);

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 63

Publ ish a Subject

As specified by the scheme, the given subject reference is actually a COS Notification
Service channel reference. PSA performs following operations:

■ Gets the default supplier admin from this channel.

■ Obtains a structured proxy pull consumer from the admin.

■ Creates an pull supplier object reference from the PSA with the provider_id
parameter as object id.

■ Connects to the proxy with this pull supplier reference.

■ Encapsulates the proxy pull consumer's reference inside the returned subscribe
descriptor.

Example
This example shows how to connect to typed service through channel reference as a
push supplier using namespace PortableServerExt.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
PortableServerExt::PublishDesc_var desc psa->publish(
 scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

Java SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "",
 SubjectDeliveryScheme.PUSH_EVENT);
PublishDesc desc = psa.publish(scheme, channel, null, null);

As specified by the scheme, the given subject reference is actually a COS Notification
Service channel reference. PSA performs following operations:

■ Gets the default supplier admin from this channel.

■ Obtains a typed proxy pull consumer from the admin.

■ Calls get_typed_consumer() on the proxy reference to get the <I> interface.

■ Connects to the proxy with this pull supplier reference.

■ Encapsulates the proxy push consumer's reference and the <I> interface reference
inside the returned subscribe descriptor.

Example
This example shows how to connect to typed service through channel reference as a
pull supplier using namespace PortableServerExt.

C++ PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PULL_EVENT };
PortableServerExt::PublishDesc_var desc = psa->publish(
 scheme, channel, provider_id, CORBA::NameValuePairSeq());

Java SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "",
 SubjectDeliveryScheme.PULL_EVENT);
PublishDesc desc = psa.publish(scheme, channel, provider_id, null);

64 VisiBroker Vis iNot i fy Guide

Publ ish Descr iptor and the_subject_addr()

As specified by the scheme, the given subject reference is actually a COS Notification
Service channel reference. PSA performs following operations:

■ Gets the default supplier admin from this channel.

■ Obtains a typed proxy pull consumer from the admin.

■ Creates a typed pull supplier object reference from this PSA with the provider_id
parameter as object id.

■ Creates an internal proxy supplier implementation to return the reference from the
get_typed_supplier() method.

■ Creates a reference for this proxy implementation.

■ Connects to the proxy consumer with this proxy implementation's reference.

■ Encapsulates the proxy pull consumer's reference inside the returned subscribe
descriptor.

Publish Descriptor and the_subject_addr()
Object the_subject_addr(in PublishSubscribeDesc the_desc);

After a successful publish() operation, a publish descriptor is returned. It contains
information/mapping to implement other publish() operations, such as unpublish(),
suspend(), and resume(). This descriptor can be saved into a persistent repository and
reloaded into the same supplier process session or a restart of a new supplier session.
However, the format of this descriptor is internal to the ORB that creates it. Therefore,
like the object key, a subscribe descriptor should only be used by the same ORB.

For a published passive supplier(such as, pull), the channel will pull events from the
supplier servant that is activated with the specified provider id.

After a successful publish() operation, applications with active (push) suppliers, can get
push addresses (the proxy push consumers or for typed channel with the <I> interface
references from PSA's the_subject_addr() using the publish descriptor. The publish
descriptor is returned from the PSA publish() method, as a parameter.

Example
This example shows how to get proxy untyped/structured/sequence pull supplier from
a subscribe descriptor:

C++ CORBA::Object_var proxy_pull_supplier = psa->the_subject_addr(the_desc);

Java org.omg.CORBA.Object proxy_pull_supplier = psa.the_subject_addr(the_desc);

After narrowing this reference to a specified proxy or <I> interface stubs, applications
can push events into the connected channels.

Note Typed pull supplier is discussed in the “Support of Typed Pulling” section.

Unpublish a subject

void unpublish(in PublishDesc the_publish_desc)
 raises(InvalidPublishDesc,
 ChannelException);

The PSA unpublish() disconnects the supplier from a connected channel and cleans up
any local resource. If the supplier is connected to an untyped and typed channel, the
PSA invokes disconnect_push/pull_consumer() to the proxy. If it is connected to
structured or sequence channel, the PSA respectively invokes
disconnect_structured_push/pull_consumer() or disconnect_sequence_push/
pull_consumer().

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 65

Support of Typed Pul l ing

Support of Typed Pulling
One major problem of the Notification Service is dealing with typed pulling. The
programming model defined by OMG makes it difficult to use. It requires a pull
consumer to use a mangled “Pull <I>” interface and a pull supplier to implement a “Pull
<I>” servant. Changing from typed push <I> consumer/supplier to typed “Pull<I>”
consumer/supplier requires a substantial code change and refinement to the
application designs. In addition, the “Pull<I>” interfaces are operation specific. For
example, pulling a typed event from a channel, it requires the pull consumer to be
selective on the operation associated with the event. This does not parallel with either
typed push consumer nor structured pull consumer. In typed push consumer, the
pushing consumers do not specify which operation should be associated with the next
arrived events. In structured event case, a structured pull consumer is not selective on
the type_name (a counterpart of operation in typed event) of next returned event.

The PSA resolves all issues (mentioned above). The PSA has the following unique
advantages:

■ Like the typed push consumers, the typed pull consumers implement original <I>
interfaces instead of the mangled “Pull<I>” interfaces. This makes the PSA's model
intuitive, easy to use and can use existing tools (such as, a normal IDL pre-compiler)
to generate type safe code. Pull consumer applications developed with PSA are
always easy to understand than using the “Pull<I>” interface.

■ Like the typed push suppliers, the typed pull suppliers use original <I> interface
stubs instead of implementing a type specific “Pull<I>” servant.

■ The typed pull consumers are not selective on the operations for returned events.
This is consistent with typed push consumer and structured pull consumer.

■ The PSA supports active typed pull consumer and passive typed pull consumer to
meet different application requirements.

The PSA supports three kinds of typed pulling implementation:

■ Passive typed pull consumer

■ Active typed pull consumer

■ Typed pull supplier

Passive typed pull consumer

At the code level, the passive typed pull consumer is similar to a typed push consumer.
Actually, changing a typed push consumer application into a passive typed pull
consumer application requires nearly no code change. To create a passive typed
consumer, a consumer object still needs to be available on the POA and requires it to
be subscribed to the subject with associated object id. The only difference between
passive typed pull consumer and typed push consumer is:

■ For a normal typed push consumer: the typed events are asynchronously pushed
into the consumer process from the channel, and then, dispatched to the push
consumer object.

■ For a passive typed pull consumer: the typed events are synchronously pulled back
to the consumer server from the channel by the consumer application and
dispatched to the passive typed consumer object by the PSA as if it is an active
typed push.

66 VisiBroker Vis iNot i fy Guide

Support of Typed Pul l ing

Therefore, to subscribe a passive typed pull consumer, a valid object id is needed in
PSA subscribe() operation. After the subscribe(), application uses PSA's
pull_and_dispatch() method to pull typed event from channel and dispatches into the
passive consumer. Passive typed pull consumer is designed for applications that want
to use passive consumer along with the control of incoming events from consumer
applications.

Example
This example is of the passive typed pull consumer.

C++ // (examples/vbroker/notify/psa_cpp/typedPullConsumer1.C)
// Implement an active visitor
include "TMNEvents_s.hh"
class TMNTypedEventVisitor : public POA_TMN::TypedEvent
{
 ...
 public:
 void attributeValueChange(...) { ... }
 ...
 void qosAlarm(...) { ... }
};
int main(argc, argv)
{
 ...
 // subscribe to the channel as typed pull consumer
 PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PULL_EVENT };
 PortableServerExt::SubscribeDesc_var desc = psa->subscribe(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());
 // create a visitor instance
 TMNTypedEventVisitor visitor;
 // pull and visit max 100 events using block mode.
 psa->pull_and_visit(desc, 100, (CORBA::Boolean)1, &visitor);
 ...
 }

Compare to pushed consumer application, the only difference is how it gets the typed
event. Passive typed consumer require explicit pull (using pull_and_dispatch()) by the
application using PSA, instead of blocking on the ORB run() and waiting for the
channel to send event asynchronously.

The logic and procedure of a passive typed pull consumer can be summarized as:

■ Write a consumer servant implementation derive from POA skeleton.

■ Activate the servant on a POA and get its object id.

■ Subscribe to the channel in with SubjectDeliveryScheme to be PULL_EVENT.

■ Calls pull_and_dispatch() on the subscribe PSA with the subscribe descriptor as
parameters.

■ The pull backed events will be dispatched to specified consumer servant
asynchronously.

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 67

Support of Typed Pul l ing

Active typed pull consumer

For active typed pull consumer, consumer servant is not registered to a POA, neither a
POA need to be activated. The replied typed events are directly visited (think about
visitor pattern) by a visitor implement derived from POA_<I> servant skeleton. The
visitor implementation is directly specified on each call of pull_and_visit() and does not
need to associate with/registered on any POA. An active typed pull consumer is more
like conventional typed pulling except it implements POA_<I> to backward visit the
event instead of the “Pull<I>” stub.

Example
This example is of the active typed pull consumer.

C++ // (examples/vbroker/notify/psa_cpp/typedPullConsumer1.C)
// Implement an active visitor
include "TMNEvents_s.hh"
class TMNTypedEventVisitor : public POA_TMN::TypedEvent
{
 ...
 public:
 void attributeValueChange(...) { ... }
 ...
 void qosAlarm(...) { ... }
};
int main(argc, argv)
{
 ...
 // subscribe to the channel as typed pull consumer
 PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PULL_EVENT };
 PortableServerExt::SubscribeDesc_var desc = psa->subscribe(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());
 // create a visitor instance
 TMNTypedEventVisitor visitor;
 // pull and visit max 100 events using block mode.
 psa->pull_and_visit(desc, 100, (CORBA::Boolean)1, &visitor);
 ...
 }

Java // (examples/vbroker/notify/psa_java/TypedPullConsumer1.java)
import com.inprise.vbroker.PortableServerExt.*;
// Implement an active visitor
class TMNTypedEventVisitor extends TMN.TypedEventPOA {
{
 public void attributeValueChange(...) { ... }
 ...
 public void qosAlarm(...) { ... }
};
public class TypedPullConsumer1 {
 public static void main(String[] args) {
 ...
 // subscribe to the channel as typed pull consumer
 SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL::example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PULL_EVENT };

68 VisiBroker Vis iNot i fy Guide

Support of Typed Pul l ing

 SubscribeDesc desc = psa.subscribe(scheme, channel, null, null);
 // create a visitor instance
 TMNTypedEventVisitor visitor = new TMNTypedEventVisitor();
 // pull and visit max 100 events using block mode.
 psa.pull_and_visit(desc, 100, true, visitor);
 }
 }

The logic and procedure of an active typed pull consumer can be summarized as:

■ Write a visitor (servant) implementation derive from POA skeleton.

■ Subscribe to the channel with SubjectDeliveryScheme to be PULL_EVENT.

■ Calls pull_and_visit() on the subscribe PSA with the subscribe descriptor and a
visitor instance as parameters.

■ The pull backed events will be invoked on the specified visitor synchronously.

Typed pull supplier

The PSA supports typed pull supplier using the “piggybacked reflective callback”
technology. The reflective callback allows pull supplier to be pulled and still issue
events in the same <I> interface originally defined for push mode.

Simple reflective callback without piggyback works as:

■ A pull supplier implements, instantiates, and activates a predefined typed
unspecified callback handler, for example, the TypedCallback::PullEvent handler
that only has one single operation, such as, the pull_typed_event(). The operation
has an event receiver object reference as input parameter.

■ When publishing a pull supplier, the reference of this callback handler is connected
to channel.

Here are some characteristics when a channel pulls the supplier:

■ The channel prepares an event receive object and gets its reference.

■ The channel callbacks pull supplier's TypedCallback::PullEvent handler's
pull_typed_event() operation with the event receiver reference.

■ The pull supplier narrows the event receive reference to <I> interface. It directly
invokes the operation defined on <I> interface to send specific events to typed
channel.

■ The channel gets the event from event receiver and supplies it to the consumers.

The advantage of simple reflective callback is that it does not require special support
on pull supplier side ORB. The disadvantage is that each pull operation requires two
remote round trips. The first round trip requires the callback from channel to supplier.
The second round trip requires the callback from supplier to the event receiver.

The PSA and VisiNotify support and implement piggybacked reflective callback.
Piggybacked reflective callback is a variation of a simple reflective callback with the
following mechanism:

■ The PSA creates an internal agent object (resides in a separate internal singleton
POA) which supports pull_typed_event() method without input parameters.

■ A pull supplier implements, instantiates, and activates the predefined application
interface independent TypedCallback::PullEvent handler.

■ When application publishes a pull supplier, a callback reference that points to the
ORB internal agent and also encapsulates the callback handler reference is
connected to channel. The application handler is not actually connected to channel.

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 69

Support of Typed Pul l ing

■ The channel callback to the agent's pull_typed_event() method has no input
parameter.

■ Agent resolves the real handler's reference from the object id and creates a local
event receiver.

■ Agent makes local call on handler's pull_typed_event() with this local event receiver
reference as input parameter.

■ An application can narrow this local event receiver reference to <I> and issues a
typed event locally.

■ An agent can unpacks the event from the local event receiver and sends it back as a
reply from the channel's pull_typed_event() call.

The piggybacked reflective callback is transparent to applications. For example, the
application code is independent from simple or piggybacked reflective callback.
Piggybacked reflective callback needs only one round trip for each pull. However,
piggybacked reflective callback requires pull supplier side ORB to support. VisiBroker
PSA supports piggybacked reflective callback and VisiNotify only uses piggybacked
reflective callback for efficient reason.

Example
This example is of the typed pull supplier.

C++ // (examples/vbroker/notify/psa_cpp/typedPullSupplier.C)
// implement the TypedCallback::PullEvent handler,
// with piggybacked double callback, this handler is called back by
// local PSA instead of by remote proxy pull consumer. Therefore,
// the event receiver is also a local object.
include <TypedCallback_s.hh>
include "TMNEvents_c.hh"
class PullEventHandlerImpl : public POA_TypedCallback::PullEvent,
 public virtual PortableServer::RefCountServantBase
 {
 public:
 // on typed pulling
 void pull_typed_event(
CORBA::Object_ptr event_receiver,
CORBA::Boolean block)
 {
 // narrow to typed stub
 TMN::TypedEvent_ptr stub
= TMN::TypedEvent::_narrow(event_receiver);
 // reflect the callback to issue an
// attributeValueChange event
 stub->attributeValueChange(...);
 }
 };
 ...
// create a supplier handler servant to activate it on the PSA
PullEventHandler* handler = new PullEventHandlerImpl;
psa->activate_object_with_id(handler_id, handler);
// publish to the channel as typed pull supplier with the handler_id
// but the real <I> interface repository id.
PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
 PortableServerExt::PULL_EVENT };
PortableServerExt::SubscribeDesc_var desc = psa->publish(
scheme, channel, handler_id, CORBA::NameValuePairSeq());

70 VisiBroker Vis iNot i fy Guide

Support of Typed Pul l ing

 // activate the PSA and wait for pulling.
 psa->the_POAManager()->activate();
 orb->run();

Java // (examples/vbroker/notify/psa_java/TypedPullSupplier.java)
 import com.inprise.vbroker.PortableServerExt.*;
// Implement the TypedCallback::PullEvent handler,
// with piggybacked double callback, this handler is called back by
// local PSA instead of by remote proxy pull consumer. Therefore,
// the event receiver is also a local object.
class PullEventHandler
 extends com.borland.vbroker.TypedCallback.PullEventPOA {
 ...
 public void pull_typed_event(
 org.omg.CORBA.Object event_receiver,
 Boolean block) {
 // narrow to typed stub
 TMN.TypedEvent stub = TMN.TypedEventHelper.narrow(event_receiver);
 // reflect the callback to issue an attributeValueChange event
 stub.attributeValueChange(...);
 }
 }
 public class TypedPullSupplier {
 ...
 public static void main(String[] args) {
 ...
 // create a supplier handler servant to activate it on the PSA
 PullEventHandler handler = new PullEventHandler();
 psa.activate_object_with_id(handler_id, handler);
 // publish to the channel as typed pull supplier with the handler_id
 // but the real <I> interface repository id.
 SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL::example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PULL_EVENT);
 SubscribeDesc desc = psa.publish(scheme, channel, handler_id, null);
 // activate the PSA and wait for pulling.
 psa.the_POAManager()Activate();
 orb->run();
 }
 }

The logic and procedure of a typed pull supplier can be summarized as:

■ Write a TypedCallback::PullEvent supplier servant implementation from POA
skeleton. The pull_typed_event() operation of this servant using reflective callback
to generate typed event using the original IDL interface stub.

■ Activate the PullEvent servant on a POA and get its object id.

■ Publish this callback to the channel in with SubjectDeliveryScheme to be
PULL_EVENT and the object id as publish() parameters.

■ Active the POA to handle pull requests.

Chapter 4: Using the Publ ish Subscr ibe Adapter (PSA) 71

Addit ional topics and summary

Additional topics and summary
This section contains miscellaneous information pertaining to the PSA.

ChannelException

Most PSA operations, including exceptions for the the_subject_addr() and
the_proxy_addr(), can raise PortableServerExt::ChannelException. This exception has
a string member that is the repository of low level CORBA User exception. For
example, when calling suspend() twice while using a given push consumer subscribe
describer as parameter, you will get a ChannelException with its repository_id member
as being “IDL:omg.org/CosNotifyChannelAdmin/ConnectionAlreadyInactive.”

The intention of not declaring a PSA operation to raise Notification Service exception is
to have the PSA framework generic. Although the current implementation of the PSA
working in conjunction with OMG Notification Service or Typed Notification Service, it is
straightforward and extends the support to cover other publish/subscribe infrastructure
such as multicast.

Setting Notification Service QoS in PSA

The first approach for setting a QoS policy on a connected proxy within a PSA
application is using property parameters of subscribe() and publish(). This approach is
not implemented in VisiBroker 5.1.

Another approach for setting a QoS policy is to directly get the proxy reference. After
using subscribe/publish operation using the _proxy_addr() method , change the policy
by using set_qos() on the proxy reference.

PSA Summary

This list summarizes PSA's concepts and features:

■ The PSA presents an intuitive high level object abstraction for publish/subscribe
systems and shield applications from low level objects such as connections,
admins, and proxies.

■ The PSA supports publish/subscribe as a first class subject and provides a high
level programmatic model very similar to the POA model. Using PSA to develop
CORBA publish/subscribe applications is similar to developing POA based client/
server applications.

■ The PSA decouples orthogonal objects thereby allowing applications to change
objects or logic implementations, independently. For example, changing a typed
consumer from push to pull requires no change to the message receiving code but
requires only a flag change on subscribe. This kind of change would be a major
engagement without PSA.

■ The PSA lets applications use typed event pulling by using the very same IDL <I>
interface originally defined for typed event pushing rather than a cumbersome error
prone mangled “Pull<I>” interface.

■ Typed event pulling model under PSA/VisiNotify is symmetric to structured pulling
as well as other event pull models.

72 VisiBroker Vis iNot i fy Guide

Addi t ional topics and summary

■ The PSA automatically handles get_typed_consumer()/get_typed_supplier() and
the <I> interface to proxy mapping. This largely simplifies application code of using
typed event/notification service. Typed notification applications only need to
implement and install the <I> interfaces observers.

■ Although the PSA is a high level programming model, it preserves and allows
applications to access low level features defined in OMG Notification Service, such
as querying and modifying QoS.

■ With a high level abstraction, the PSA does not assume the underneath message
middleware is OMG Notification Service. The same PSA programming model can
transparently support various multicast transports and non-OMG message
middleware.

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 73

C h a p t e r

Chapter5Setting the Quality of
Service and Filters

This section discusses how to set up the notification channel using event types and
configuring with Filters and QoS properties.

Properties of the Quality of Service (QoS)
The policies set with QoS allows the application to dynamically adjust the service
parameters of the channel during runtime. VisiNotify specifies its own QoS policies as
well as supports a subset of the OMG-specified QoS. The following are the QoS
properties that VisiNotify supports:

Priority

Setting/getting of Priority QoS is supported as per the OMG standard. Priority is
represented as a short value, where –32,767 is the lowest priority and 32,767 the
highest. The default priority for all events is 0 (zero). Priority can be set at message/
proxy/admin/channel levels. Note that setting this property on a per-ConsumerAdmin
or per-proxy supplier basis has no meaning.

EventReliability

EventReliability QoS is supported as per the OMG standard. For performance reasons,
each individual proxy supplier is not guaranteed to remember persistently what events
it has sent to its associated consumer. Therefore, an event can be sent to a consumer
more than once if the event channel crashes and restarts.

VBPersistentDbType

This property specifies the type of persistent storage being used for persisting events
by the channel. VisiNotify stores persistent events either in memory mapped files or flat
files depending on the value of this property. A value of (CORBA::Short)1 implies
memory mapped persistency. A value of (CORBA::Short)2 implies flat file persistency.

The default is memory mapped persistency.

74 VisiBroker Vis iNot i fy Guide

Propert ies of the Qual i ty of Service (QoS)

VBPersistentCommitSyncPolicy

The VBPersistentCommitSyncPolicy property specifies whether the channel should
acknowledge a supplier only after successfully committing the event into persistent
storage.

The constant values setting are:

■ True—a channel acknowledges a supplier only after successfully committing a
event into persistent storage.

■ False (default)—a channel can acknowledge supplier (such as, return from a
push() call) immediately before committing the event into persistent storage and
perform a lazy commit, afterwards.

VBPersistentStorageOverflowBlockTimeout

There are times when a new event arrives in the channel and needs to be made
persistent. However, there is a possibility that persistent storage is already full. To
avoid this problem, the supplier can be blocked until space becomes available in
persistent storage.

The VBPersistentStorageOverflowBlockTimeout property specifies how long the
supplier should be blocked to wait for persistent storage to be freed up. Upon
expiration of this time interval, the channel will attempt to downgrade one or more
events to BestEffort to accommodate the new event (see
VBPersistentOverflowDowngradePolicy below).

The default value of this property is 0, meaning that the channel will not block, but
instead it immediately attempts to downgrade queued events according to
VBPersistentOverflowDowngradePolicy.

VBPersistentOverflowDowngradePolicy

The VBPersistentOverflowDowngradePolicy property controls how the channel will
downgrade existing events to make way for a new (persistent) event if no space can be
found in persistent storage despite waiting for
VBPersistentStorageOverflowBlockTimeout seconds. If an event is downgraded, this
means that its EventReliability is automatically set to BestEffort, regardless of the
message/channel settings.

The constant values setting are:

■ AnyOrder (default)—Lifo is used.

■ FifoOrder—Events in the queue are downgraded in ascending order of the time of
receipt of the event.

■ LifoOrder—The new event is downgraded.

Note If an event by itself cannot fit into persistent storage, it is downgraded immediately.

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 75

Propert ies of the Qual i ty of Service (QoS)

ConnectionReliability

The ConnectionReliability is supported as per the OMG standard.

If ConnectionReliability is set to Persistent (at the appropriate channel/admin/proxy),
VisiNotify attempts to recover the following:

1 All persistent channels with original policies, ids, IOR (of the channel) and all
included events.

2 All persistent admins with original policies, ids, and IOR.

3 All persistent proxies with original policies, ids, IOR, attached suppliers/consumers.

If the ConnectionReliability of a proxy is not specified explicitly through set_qos(), then
the default value is used for active proxies. For example, for proxy pull consumers and
proxy push suppliers are to Persistent and that of passive proxies are described for
vbroker.notify.channel.passiveProxyPersistenceMask.

MaxEventsPerConsumer

The MaxEventsPerConsumer is supported as per the OMG standard.

DiscardPolicy

To facilitate implementation, such as persistent storage management, only OMG's
AnyOrder, FifoOrder and LifoOrder are supported.

OrderPolicy

This QoS property sets the policy used by a given proxy to order the events it has
buffered for delivery (either to another proxy or a consumer). AnyOrder,
FifoOrder(default) and PriorityOrder are supported.

Note This property has no meaning if set on a per-message basis.

VBQueueLowWaterMark

After the number of pending events in a proxy supplier queue has breached the
VBQueueHighWaterMark level, (this is when a number of pending events
subsequently falls below this value), this proxy informs the channel(s) to take the
necessary action of unblocking or speeding up pushing and pulling event into the
channel. See section on Flow Control for more details.

The default value for VBQueueLowWaterMark is 32.

VBQueueHighWaterMark

When the number of pending events in a proxy supplier queue is higher than the set
value, this proxy informs the channel accordingly so that the channel can take action if
necessary to block or slow down the rate of pushing and pulling events into the
channel. See section on Flow Control for more details.

The default value for VBQueueHighWaterMark is computed by VisiNotify and depends
on the user defined setting of the channel queue size (the channel's admin property)
and the VBQueueLowWaterMark setting.

76 VisiBroker Vis iNot i fy Guide

Propert ies of the Qual i ty of Service (QoS)

VBProxyPushSupplierThreadModel

Each proxy push supplier needs a thread to push the events in its queue to the
connected push consumer. This property specifies whether a proxy should use a
dedicated thread or a thread pool to push events.

Valid values are “dedicated” or “pool” with “pool” being the default value. Any illegal
value is silently ignored. For additional information, see the static property section on
configuring the thread pool. Setting this property on the channel or consumer admin
will make all sub objects inherit this value. Setting this property on the supplier admin
or any other type of proxy has no meaning and will be silently ignored.

VBProxyPushSupplierQueuePreemptWaterMark

This property is used to fine-tune the thread pool behavior and is applicable only when
the VBProxyPushSupplierThreadModel is set to “pool” and the thread pool is restricted
to have a finite number of threads to serve the proxy push suppliers. A proxy push
object picks up a thread from the thread pool to push events to the connected thread
pool. If this proxy object has a lot of pending events, it may end up hogging the thread,
leaving other proxies starved. To have a control over this situation, a watermark in the
queue of each proxy object can be set, so that on hitting the watermark, the thread gets
preempted to serve a different proxy push supplier object.

The default value is computed by VisiNotify and depends on the queue size.

VBReceivedEventsCount

Indicates the number of events received. Trying to set any value on this property by
using the set_qos API resets the counter to 0. The actual value passed in will be
ignored.

VBPendingEventsCount

This is a read only property and indicates the number of events pending in the queue.

VBDiscardedEventsCount

Indicates the number of events discarded due to queue overflow. Trying to set any
value on this property by using the set_qos API resets the counter to 0. The actual
value passed in will be ignored.

VBForwardedEventsCount

Indicates the total number of events forwarded downstream. Trying to set any value on
this property by using the set_qos API resets the counter to 0. The actual value passed
in will be ignored.

VBFilteredEventsCount

Indicates the total number of events discarded due to failed filter match. Trying to set
any value on this property by using the set_qos API resets the counter to 0. The actual
value passed in will be ignored.

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 77

Administ rat ion and Val idat ion of QoS propert ies

Administration and Validation of QoS properties
The following interfaces and methods are supported for administration of QoS
properties:

Interface CosNotification::QoSAdmin

This interface is supported by channels, supplier/consumer admins and proxy
suppliers/consumers and allows clients of these objects to obtain and set the QoS
properties.

However, there are some limitations on the level of support:

■ If set_qos() is passed a VisiBroker-specific QoS, and the property value is bad, it is
silently ignored and no exception is thrown. Exception is thrown for only OMG
specified QoS.

■ The propagation of QoS changes is dissipated down the channel/admin/proxy
hierarchy only for OMG specified QoS and not VisiBroker-specific QoS.

Validating QoS in the header of structured events

This is not currently supported.

QoS negotiation

The following QoS negotiation APIs are not currently supported, including:

■ CosNotification::QoSAdmin::validate_qos()

■ CosNotifyChannelAdmin::ProxySupplier::validate_event_qos()

■ CosNotifyChannelAdmin::ProxyConsumer::validate_event_qos()

Channel Admin Properties
The following interfaces are supported for the Channel Admin:

Interface CosNotification::AdminPropertiesAdmin

This interface is supported by the notification and typed notification event channels. It
is used to retrieve and set the admin properties on the channel(s).

The following OMG defined properties are supported:

■ MaxQueueLength

■ MaxConsumers

■ MaxSuppliers

■ RejectNewEvents

78 VisiBroker Vis iNot i fy Guide

Stat ic Propert ies

VBPersistentStorageSize

A persistent event (for instance, a channel that has EventReliability set to persistent)
needs to be stored in persistent storage. This admin property allows restriction on the
size of the storage space to prevent VisiNotify from overrunning the disk space.
VisiNotify stores persistent events in files. This admin property specifies the maximum
size of this file in kilobytes.

The default value for VBPersistentStorageSize is 1024. Its type is CORBA::Ulong.

Static Properties
Unlike the QoS properties, the Static properties can be set only at startup time of the
Notification Service and not during the execution of the service. The Static properties
are specified just like any VisiBroker ORB properties such as, using
–D<property_name>=<property_value>.

The following properties are supported:

vbroker.notify.console = <Boolean>

This property controls the Notification Service to display the message, “Notification
Service is ready” in the VisiBroker Console.

The supported values for the vbroker.notify.console property are:

■ True (default)—prints the message.

■ False—does not print the message.

vbroker.notify.listener.port = <ULong>

This is an alias for vbroker.se.iiop_tp.scm.iiop_tp.listener.port.

The default value of the vbroker.notify.listener.port property is 14100.

vbroker.notify.factory.name = <string>

The vbroker.notify.factory.name property specifies the default factory name, which is
created by the Notification Service. The application can do a _bind() to obtain a
reference to the factory instead of doing a resolve_initial_references().

The default value of this property is “VisiNotifyChannelFactory.”

vbroker.notify.channel.name = <string>

The vbroker.notify.channel.name property specifies the name of the default channel
that is created by the Notification Service. The application can do a _bind() to obtain a
reference to the default channel instead of having to explicitly create one.

The default value of this property is “default_channel.”

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 79

Stat ic Propert ies

vbroker.notify.channel.threadMaxIdle = <ULong>

The vbroker.notify.channel.threadMaxIdle property specifies that if a channel/proxy
push supplier has waited for threadMaxIdle seconds and no event arrives in the queue
during this time, the channel will release the thread that waits for events. The channel
will restart the thread when a new event arrives.

The default value of this property is three seconds.

vbroker.notify.enableEventQoS = <Boolean>

The vbroker.notify.enableEventQoS property specifies whether the channel should
make use of event-level QoS to deliver an event. If set to True, the performance of the
channel is significantly degraded.

The supported values are:

■ True —the channel will make use of event-level QoS when delivering event, such
as EventReliability.

■ False (default)—the channel ignores event-level QoS when delivering an event.
Instead, the QoS setting at the proxy/admin/channel is adopted.

vbroker.notify.dir = <string>

The vbroker.notify.dir specifies the file directory or database table name of the
VisiNotify persistent storage root. If the ConnectionPersistence QoS is set at the
appropriate levels, VisiNotify will persist the following objects in the repository
(depending on EventReliability and ConnectionReliability QoS policy):

■ events

■ channels

■ consumer and supplier admins

■ proxies

■ channel admin properties, QoS, filters

The default value of this property is “./visinotify.dir.”

vbroker.notify.ir = <string>

The vbroker.notify.ir property specifies the IR to be used by VisiNotify. The string that is
specified can either be an IOR or a URL string (for example, corbaloc).

The default value of this property is null. In this case, VisiNotify tries to bind to the IR
using osagent.

vbroker.notify.channel.persistentStorageSize = <ULong>

The vbroker.notify.channel.persistentStorageSize property is similar to the
VBPersistentStorageSize channel admin property, except that it is used only for the
first time the channel is started. Subsequently, VisiNotify will retrieve the current setting
from persistent storage.

The default value of this property is VBPersistentStorageSize.

80 VisiBroker Vis iNot i fy Guide

Stat ic Propert ies

vbroker.notify.channel.persistentCommitPolicy = <Boolean>

The vbroker.notify.channel.persistentCommitPolicy property is similar to
VBPersistentCommitSyncPolicy, except that it is used only the first time the channel is
started. Subsequently, VisiNotify will retrieve the current setting from persistent
storage.

The default value of this property is VBPersistentCommitSyncPolicy.

vbroker.notify.channel.persistentOverflowBlockTimeout =
<ULong>

The vbroker.notify.channel.persistentOverflowBlockTimeout property is similar to
VBPersistentStorageOverflowBlockTimeout, with the exception that
vbroker.notify.channel.persistentOverflowBlockTimeout is used only during the initial
start up of the channel. Subsequently, VisiNotify will retrieve the current setting from
persistent storage.

The default value of this property is VBPersistentStorageOverflowBlockTimeout.

vbroker.notify.channel.persistentDowngradePolicy = <ULong>

The vbroker.notify.channel.persistentDowngradePolicy property is similar to
VBPersistentOverflowDowngradePolicy, with the exception of that
vbroker.notify.channel.persistentDowngradePolicy is used only during the initial start
up of the channel. Subsequently, VisiNotify will retrieve the current setting from
persistent storage.

The valid values supported are:

■ AnyOrder (0)

■ FifoOrder (1)

■ LifoOrder (4)

If the value is set to anything else, the channel silently adopts a value of 0 (AnyOrder).

vbroker.notify.channel.persistentEvent = <Boolean>

The vbroker.notify.channel.persistentEvent property is similar to EventReliability, with
the exception that it is used only during the initial start up of the channel. Subsequently,
VisiNotify will retrieve the current setting from persistent storage.

A value of True makes the channel's EventReliability to be Persistent, otherwise, it is
set to BestEffort.

vbroker.notify.channel.iorFile = <string>

The vbroker.notify.channel.iorFile property specifies the filename where VisiNotify can
dump the IOR of the default channel. It uses the same syntax as in 3.x version,
–ior <filename> option.

The default value of this property is null.

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 81

Stat ic Propert ies

vbroker.notify.channel.passiveProxyPersistenceMask =
<Boolean>

In general, it may not be necessary to persist a passive proxy (proxy push consumer or
proxy pull supplier) because after a system crashes and restart, the user of such a
proxy may no longer exist.

This property is used to derive the default ConnectionReliability setting of a passive
proxy, using the following setting:

■ let admin's persistence setting = 1 if admin's ConnectionReliability = Persistent, else
let it be 0.

■ default persistence of proxy = (this property setting) && (its admin's persistence
setting)

If this default persistence has value of True, the default ConnectionReliability setting of
a passive proxy is set to Persistent, otherwise, it is set to BestEffort.

The default value of this property is False.

vbroker.notify.channel.maxDelay = <ULong>

The vbroker.notify.channel.maxDelay property is a setting that controls the delay, (in
milliseconds) that a proxy push supplier conditionally applies when delivering an event
to its consumer. It also can be used to tune the performance of the channel.

The default value of this property is 2000 milliseconds. The minimum and maximum
values are 20 and 2000, respectively.

vbroker.notify.threadPool.threadMax = <ULong>

This property specifies the maximum number of threads that can be present at any one
time in the thread pool.

The default value of this property is 0, indicating unlimited concurrency.

vbroker.notify.threadPool.threadMin = <ULong>

This property specifies the minimum number of threads that can be present at any time
in the thread pool.

The default value of this property is 0.

vbroker.notify.threadPool.threadMaxIdle = <ULong>

This property specifies the time, in seconds, that a thread in the thread pool can idle.
After the idle time, the thread is garbage collected.

The default value of this property is 300 seconds.

vbroker.log.enable = <Boolean>

To see the debug log statements from this service, set this property to true. For the
various source names options for debug log filtering, see the Debug Logging properties
section of the VisiBroker for C++ Developer's Guide.

82 VisiBroker Vis iNot i fy Guide

Levels of Support

Levels of Support
The following table shows the level of support for each QoS property:

Property
Supported
Values

Per
Message

Per
Proxy

Per
Admin

Per
Channel Comments

1. General

Priority A value of
Short

Yes Yes Yes Yes The values
range from
–32767 to
+32767.

2. Event Persistence

EventReliability ■ BestEffort

■ Persistent

Yes No No Yes For
Persistent
events, it is
possible that
the same
event can be
delivered to
a consumer
more than
once.

VBPersistentDbType Value of Short No No No Yes Value of 1
(default)
implies
Memory
mapped
persistency.
Value of 2
implies flat
file
persistency.

VBPersistentCommitSyncPolicy (extension) ■ False
(default)

■ True

No No No Yes

VBPersistentStorageOverflowBlockTimeout
(extension)

Any value of
ULong

No No No Yes Unit:seconds

VBPersistentStorageOverflowDowngradePolicy
(extension)

■ AnyOrder
(0)

■ FifoOrder
(1)

■ LifoOrder
(4)

No No No Yes

3. Connection Persistent

ConnectionReliability ■ BestEffort

■ Persistent

No Yes Yes Yes

4. Queue Overflow Handling

MaxEventsPerConsumer Per OMG
specification.

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

DiscardPolicy ■ AnyOrder
(default)

■ FifoOrder

■ LifoOrder

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

5. Event Expiry

StopTime Not supported Yes No No No

Timeout Not supported Yes Yes Yes Yes

StopTimeSupported Not supported No Yes Yes Yes

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 83

Event Fi l ter ing using Fi l ter Objects

Event Filtering using Filter Objects
The OMG Notification Service specification defines two kinds of filters.

■ Forwarding Filter

■ Mapping Filter

The Forwarding filter allows events to be forwarded if it satisfies a constraint set by the
clients. Thus, consumers can use forwarding filters to receive only events that interest
them. The forwarding filter objects implement the CosNotifyFilter::Filter interface.

The Mapping filter enables consumers to change the priority and lifetime properties of
events which satisfies a constraint. Mapping filter objects implements the
CosNotifyFilter::MappingFilter interface. However, VisiNotify currently does not
support mapping filters.

Filtering Events

The VisiNotify event filtering is performed on structured events, typed events and
sequence of events. There is no filtering support for untyped events. For a sequence of
events, VisiNotify only filters the first event in the sequence. If the first event in the
sequence does not satisfy the filter then the entire sequence is discarded.

Note Refer to the OMG Notification Service specification, Section 2, for more information on
each events (structured, typed, and sequence).

Forwarding Filter Evaluation

A filter object can be attached to a target object such as consumer/supplier proxy or
consumer/supplier admin objects. Any given filter object can have a set of constraints
and each constraint is expressed in the Extended Trader Constraint Language (TCL).
A constraint expression either evaluates to TRUE (indicating that an event satisfies the
constraint) or FALSE (indicating otherwise).

6. Event Delivery

StartTime Not supported Yes

StartTimeSupported Not supported No Yes Yes Yes

OrderPolicy ■ AnyOrder

■ FifoOrder
(default)

■ PriorityOrder

No Yes Yes Yes

MaximumBatchSize Not supported No Yes Yes Yes

PacingInterval Not supported No Yes Yes Yes

7. Flow Control

VBQueueLowWaterMark (extension) A ULong
value

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

VBQueueHighWaterMark (extension) A ULong
value

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

Property
Supported
Values

Per
Message

Per
Proxy

Per
Admin

Per
Channel Comments

84 VisiBroker Vis iNot i fy Guide

Event Fi l ter ing using Fi l ter Objects

As long as one of the constraints is set to TRUE, the filter object will forward the event
immediately. An event is discarded if the target object has its attached filters are set to
FALSE. For more information about writing constraint expressions see Writing filter
constraint expressions, and for more information about Extended TCL see Extended
Trader Constraint Language (Extended TCL).

When a forwarding filter object is attached to an admin object, then all proxy objects
associated with the admin object applies the forwarding filter. If there are no filters
applied to a proxy or admin object then all events received are forwarded to the next
delivery point.

When filters are attached to an admin object along with its proxies, then event
forwarding depends on whether the admin object was created with AND or OR
semantics. An admin object created with AND semantics implies that an event must
pass both admin and its proxy filters. An admin object created with OR semantics
implies that events must pass either admin or its proxy filters.

You can create a consumer admin by invoking new_for_consumers()on the channel and
pass the value AND_OP (for AND semantics) or OR_OP (for OR semantics) to set the inter-
filter group operator semantics on the consumer admin object. Likewise, you can
create a supplier admin by invoking new_for_suppliers(). Calling
default_consumer_admin() or default_supplier_admin() on the channel will return the
default consumer admin or supplier admin, respectively, with AND semantics.

Note Refer to the OMG Notification Service specification (Section 3.4 - The
CosNotifyChannelAdmin Module) for more information on the methods used with the
AND or OR semantics.

Using Forwarding Filters

Use the following steps to apply a forwarding filter:

1 Obtain a Forwarding Filter Factory. VisiNotify provides a default filter factory. To
obtain a reference to it simply invoke the method default_filter_factory() on the
following channel:

CosNotifyFilter::FilterFactory_var ffact = channel->default_filter_factory();

2 Create a Forwarding Filter object. VisiNotify only supports the Extended Trader
Constraint Language as specified by the OMG Notification Service. To create a filter
that specifies the constraints, simply invoke the method
create_filter(EXTENDED_TCL) on the filter factory object obtained in Step 1.

CosNotifyFilter::Filter_var filter = ffact->create_filter("EXTENDED_TCL");

3 Creating constraints. For any given filter object a set of constraints can be
associated with it. The constraint expression is written in Extended TCL.

The following shows how to create a set of constraints and simple constraint
expression.

 CosNotifyFilter::ConstraintExpSeq constraints;
 constraints.length(1); // contains 1 constraint
 constraints[0].constraint_expr = CORBA::string_dup("$balance == 123.45");

Note To learn more about the Extended TCL see Extended Trader Constraint Language
(Extended TCL) and refer to the OMG Notification Service specification (Section 2.4
- The Default Filter Constraint Language).

4 Adding constraints to a filter object. To add a set of constraints simply invoke the
method add_constraints on the filter object obtained in Step 2 passing in the set of
constraints created in Step 3.

filter->add_constraints(constraints);

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 85

Event Fi l ter ing using Fi l ter Objects

Note Refer to the OMG Notification Service specification (Section 3.2.1 - The Filter
Interface) to learn more about other operations such as modifying or obtaining
constraints from a filter object.

5 Adding a filter to a target object. The target object can be an admin object or a
proxy object. The creation of the target object is required before the filter object is
attached to it. This example shows a structured push supplier proxy:

 // create a structured push supplier proxy
 CosNotifyChannelAdmin::ProxyID proxy_id;
 CosNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_notification_push_supplier
 CosNotifyChannelAdmin::STRUCTURED_EVENT, proxy_id);
 CosNotifyChannelAdmin::StructuredProxyPushSupplier_var supplier
 = CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(proxy);

To attach the filter object to a target object simply invoke add_filter on the target
object. The add_filter operation accepts a filter object and returns a filter id unique
to the particular target object. This example shows add_filter being invoked on a
structured push supplier proxy and is passed a filter object created in Step 2.

 CORBA::Long filter_id;
 Filter_id = supplier->add_filter(filter);

Note Refer to the OMG Notification Service specification (Section 3.2.4 - The FilterAdmin
Interface) to learn more about other operations such as modifying or obtaining filters
from a target object.

Forwarding Filter Limitation

VisiNotify currently does not support the following filter object methods:
■ attach_callback
■ detach_callback
■ get_callbacks

Note Refer to the OMG Notification Service specification (Section 2.6 - Sharing
Subscriptions and Section 2.6.5 - Obligations on Filter Objects) to learn more about
these methods and sharing subscriptions.

Writing Filter Constraint Expressions

Overview
A constraint expression is a boolean expression (that is, it evaluates with either TRUE
or FALSE). A constraint expression typically refers to event data, which also includes
filterable data that the application is most likely to base filtering decisions.

Contents of a structured event
A structured event is defined in CosNotification.idl as follows:

...
typedef string Istring;
typedef Istring PropertyName;
typedef any PropertyValue;

struct Property {
 PropertyName name;
 PropertyValue value;
};
typedef sequence<Property> PropertySeq;

86 VisiBroker Vis iNot i fy Guide

Event Fi l ter ing using Fi l ter Objects

typedef PropertySeq OptionalHeaderFields;
typedef PropertySeq FilterableEventBody;

struct EventType {
 string domain_name;
 string type_name;
};
struct EventType {
 string domain_name;
 string type_name;
};
struct FixedEventHeader {
 EventType event_type;
 string event_name;
};

struct EventHeader {
 FixedEventHeader fixed_header;
 OptionalHeaderFields variable_header;
};

struct StructuredEvent {
 EventHeader header;
 FilterableEventBody filterable_data;
 any remainder_of_body;
};
...

Contents of a typed event
A typed event contains a sequence of name-value pairs in which the first item in the
sequence refers to a CosNotification::EventType that contains domain_name referring to
the name of the typed interface and type_name referring to the name of the operation in
that interface. The remaining items in the sequence of name-value pairs are filterable
data in which each item contains a name referring to an input parameter for the
operation within the typed interface and the value refers to the parameter value for that
operation.

For example, an application may use the following IDL for a typed event:

interface foo {
 void bar(in string first, in long second);
};

In this example, the typed event foo::bar is received and the second item in the
sequence of name-value pairs will be named first paired with a string value and the
third item in the sequence will be named second paired with a long value.

Note For details on structured events and typed events please refer to the OMG Notification
Service V1.0 specification, Section 2.2, “Structured Events,” and Section 2.7, “Filtering
Typed Events.”

Extended Trader Constraint Language (Extended TCL)
The OMG Notification Service V1.0 specifies the Extended Constraint Language as the
default filter constraint language. Extended TCL is based on the Trader Constraint
Language (TCL) from the OMG Trading Service and in addition, has a few extensions
and changes made.

Note See the OMG Notification Service V1.0 specification, Section 2.4.1 for details on the
changes made to TCL.

Chapter 5: Sett ing the Qual i ty of Service and Fi l ters 87

A constraint expression written in Extended TCL evaluates to either a TRUE or FALSE
value. These two values are reserved words in TCL. The value of TRUE in Extended
TCL is 1 and the value of FALSE is 0 (zero). Hence, we can have an expression like the
following:

TRUE + TRUE

that will yield a result of 2. Sub-expressions can be specified by surrounding the sub-
expression with brackets like the following:

(TRUE + TRUE) == 2

Accessing event data
Extended TCL supports the means of referring to complex data types (that is, the IDL
types of struct, enum, union and any) within an event. An event, is represented by a $
(dollar sign) symbol and attributes within an event are referenced by using a . (period)
symbol similar to the C++ or Java programming constructs used today.

For example, in order to refer to a structured event's fixed header event_name attribute,
we would write:

$.header.fixed_header.event_name

In a typed event, if the application has an interface named foo that has an operation
named bar that takes in its first parameter a string called first, we would refer to it by
writing:

$.first

Note When the event data does not exist or if the data types of both operands for an
operation does not match (for example 'A String' == 3.14) then the constraint will
evaluate to FALSE.

Short-hand notation
It is possible to refer to specific reserved attributes in an event as well as filterable data
by using runtime variables in Extended TCL. A runtime variable is represented by
prefixing a $ (dollar sign) symbol before the identifier name. For example, $event_name
would actually be the same as writing $.header.fixed_header.event_name. When runtime
variables are used, the identifier is matched with reserved attributes within an event. If
the identifier is not a reserved attribute within an event then it is matched with the
filterable data.

Note Please refer to OMG Notification Service V1.0 specification, Section 2.4.5 for further
details on Short-hand Notation for Filtering a Generic Event.

Positional notation
The current version of VisiNotify does not support positional notation

Equality, relational and logical operators
Extended TCL uses the same operators as those used in normal TCL plus additional
operators added by the OMG Notification Service V1.0 specification.

Note The operators in the following table evaluate to either TRUE or FALSE

Table 5.1 Equality, relational and logical operators

Operator Description Example

== Equality ($.one + $.two) == 3

!= Inequality ($.one + $.two) != 4

< Less than ($.one + $.two) < 3

<= Less than or equals ($.one + $.two) <= 3

> Greater than ($.one + $.two) > 1

>= Greater than or equals ($.one + $.two) >= 2

88 VisiBroker Vis iNot i fy Guide

Arithmetic operators
The result type of the operators in the following table depends on the type of the
operands. The strongly typed operand dictates the resultant data type.

Note Character data can be used in arithmetic operations. A string with a length of one is
also considered as a character.

Subscript operator
Arrays and sequences can be accessed via the subscript operator [n]. For example, in
order to access the second element of an array we would write:

$myArray[1]

Lookup for name-value pairs
Name-value pair sequences are often found in events, especially the filterable data that
is a name-value pair sequence. As an example, we can access the filterable data by
writing an expression such as the following:

$.filterable_data[2].name = = "balance" and $.filterable_data[2].value > 100)

Expressions like these can be lengthy, hence Extended TCL allows as to write in short-
form like the following:

$.filterable_data(balance) > 100

Reserved implicit members

Extended TCL makes use of reserved member attributes for the event as well as com-
plex data. Below is a table of the reserved member attribute names and their purpose.

in Checks if the left operand is a simple primitive type
and is contained in right operand which is a
sequence of the same primitive type

$.one in $.list_of_nums

~ Substring operator to check if the left operand
string is contained in the right operand string

'Notify' ~ 'VisiNotify'

exist Test to see if an identifier exists exist $.one

and Logical AND ($.one == 1) and ($.two == 2)

or Logical OR ($.one == 1) or ($.two == 2)

not Logical NOT not exist $.one

default Applies to discriminated union data only. Checks if
a discriminated union has a default member

Default $.myUnion

Table 5.1 Equality, relational and logical operators (continued)

Operator Description Example

Table 5.2 Arithmetic operators

Operator Description Example

+ Addition $.one + $.two

- Subtraction $.one - $.two

* Multiplication $.one * $.two

/ Division $.two / $.one

Table 5.3 Reserved attributes for complex data

Attribute Description Example

_length Length for an array or sequence $.mySequence._length

_d Discriminator for a discriminated union $.myUnion._d

_type_id Unscoped IDL type name $.myData._type_id

_repos_id Repository ID $.myData._repository_id

Index 89

Symbols
... ellipsis 4
[] brackets 4
| vertical bar 4

A
Active typed pull consumer 67

B
Borland Developer Support, contacting 4
Borland Technical Support, contacting 4
Borland Web site 4, 5

C
Channel Admin Properties 77

VBPersistentStorageSize 78
ChannelException 71
command line utility, subtool 34
commands, conventions 4

D
Developer Support, contacting 4
documentation 2

.pdf format 3
accessing Help Topics 3
Borland Security Guide 2
on the web 5
platform conventions used in 4
type conventions used in 4
updates on the web 3
VisiBroker for .NET Developer's Guide 2
VisiBroker for C++ API Reference 2
VisiBroker for C++ Developer's Guide 2
VisiBroker for Java Developer's Guide 2
VisiBroker GateKeeper Guide 3
VisiBroker Installation Guide 2
VisiBroker VisiNotify Guide 2
VisiBroker VisiTelcoLog Guide 2
VisiBroker VisiTime Guide 2
VisiBroker VisiTransact Guide 2

downstream end of a channel 8

E
EJB bean as a structured Notification consumer

developing 34
example 34

EJB Bean as typed notification consumer,
developing 33

Event Buffering/Batch
disabling consumer-side 35
disabling supplier-side 35
mechanism 35

Event Filtering 83
forward filter 83
forward filter evaluation 83
using forwarding filters 84

Event/Notification Service, pre-defined 15

F
Filter, Limitation on Forwarding 85
Filtering, event 83
Filters

evaluation on forwarding 83
using forwarding filters 84
VisiNotify 83

Flush buffered events 36
Forwarding Filter Limitation 85

H
Help Topics, accessing 3

J
Java RMI remote interface, user defined example 31

N
Newsgroups 5
notification channels 9
Notification Communication Model 8
Notification Service QoS 71

O
OMG Event/Notification Service Communication

Model 7
OMG Event/Notification Service Object Model 8
OMG Typed Notification Service, using 24
online Help Topics, accessing 3
overview 1

P
Passive typed pull consumer 65
PDF documentation 3
PSA Summary 71
Publish a Subject 59
Publish Descriptor 64
Publish Subscribe Adapter (PSA)

introduction 39
using 39

Publish() examples 61
Publish/Subscribe Adapter (PSA), additional topics

and summary 71
publish/subscribe applications 7
pull consumer applications

developing 18
example 18

Index

90 VisiBroker Vis iNot i fy Guide

pull supplier applications
developing 21
example 22

push consumer applications
developing 15
example 16

push supplier applications
developing 19
example 20

Q
QoS and Filter support 13
QoS Property, levels of Support 81
Quality of Service (QoS) 73

VisiNotify 73
Quality of Service (QoS) Negotiation 77
Quality of Service (QoS) properties

Administration and Validation 76
ConnectionReliability 74
DiscardPolicy 75
EventReliability 73
MaxEventsPerConsumer 75
OrderPolicy 75
Priority 73
VBDiscardedEventsCount 76
VBFilteredEventsCount 76
VBForwardedEventsCount 76
VBPendingEventsCount 76
VBPersistentCommitSyncPolicy 73
VBPersistentDbType 73
VBPersistentOverflowDowngradePolicy 74
VBPersistentStorageOverflowBlockTimeout 74
VBProxyPushSupplierQueuePreemptWaterMark 76
VBProxyPushSupplierThreadModel 75
VBQueueHighWaterMark 75
VBQueueLowWaterMark 75
VBReceivedEventsCount 76

R
RMI typed consumer, developing 31
RMI typed push consumer, example 31
RMI typed supplier

developing 32
example 32

RMI/EJB application
developing 30
using OMG Typed Event/Notification Service 31

S
single directional event distribution 7
Software updates 5
Static Properties 78

vbroker.log.enable = <Boolean> 81
vbroker.notify.channel.iorFile = <string> 80
vbroker.notify.channel.maxDelay = <ULong> 81
vbroker.notify.channel.passiveProxyPersistence

Mask = <Boolean> 80
vbroker.notify.channel.persistentCommitPolicy =

<Boolean> 79

vbroker.notify.channel.persistentDowngradePolicy =
<ULong> 80

vbroker.notify.channel.persistentEvent =
<Boolean> 80

vbroker.notify.channel.persistentOverflowBlock
Timeout = <ULong> 80

vbroker.notify.channel.persistentStorageSize =
<ULong> 79

vbroker.notify.channel.threadMaxIdle = <ULong> 78
vbroker.notify.console = <Boolean> 78
vbroker.notify.dir = <string> 79
vbroker.notify.enableEventQoS = <Boolean> 79
vbroker.notify.factory.name = <string> 78
vbroker.notify.listener.port = <ULong> 78
vbroker.notify.threadPool.threadMax = <ULong> 81
vbroker.notify.threadPool.threadMaxIdle =

<ULong> 81
vbroker.notify.threadPool.threadMin = <ULong> 81

structured and typed push supplier, example 51
structured Notification consumer, developing 34
Subject Reference, Observer ID, and Properties to

Subscribe() 55
Subject Reference, Provider ID, and Properties to

Publish() 60
SubjectDeliveryScheme values 60
SubjectInterfaceScheme values 60
SubjectScheme 54
Subscribe a subject 54
Subscribe Descriptor 58
Subscribe(), examples 56
subtool 12

connecting to a structured event bean 35
subtool command line utility 34
Support, contacting 4
symbols

brackets [] 4
ellipsis ... 4
vertical bar | 4

T
Technical Support, contacting 4
Thread on demand 13
TMN.Notification remote interface, example 33
type push consumer applications

developing 25
example 25

type push supplier applications
developing 28
example 28

typed event consumer application, example 40
Typed Event/Notification Service 23
typed Notification consumer supplier, developing 33
Typed pull supplier 68
Typed Push Consumer 48

U
Unpublish a subject 64
Unsubscribe a Subject 58
upstream end of a channel 8

Index 91

V
VisiBroker overview 1
VisiNotify features 10

Connection persistence 12
event persistence 10
Publish/Subscribe Adapter (PSA) 11
QoS and filter support 13
RMI and EJB support 11
Self-adaptive asynchronous flow control 12
throughput and scalability 10
Typed channel support 11
Typed pulling 11
Valuetype support 11

VisiNotify, Naming Service and 10

W
World Wide Web

Borland documentation on the 5
Borland newsgroups 5
Borland updated software 5

92 VisiBroker Vis iNot i fy Guide

	VisiNotify Guide
	Contents
	Ch 1: Introduction to Borland VisiBroker
	VisiBroker Overview
	VisiBroker features

	VisiBroker Documentation
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within the VisiBroker Console
	Documentation conventions �����
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Ch 2: Introduction to VisiNotify
	OMG Event/Notification Service Communication Model
	OMG Event/Notification Service Object Model
	VisiNotify features
	Superior throughput and scalability
	Superior performance with event persistence
	Valuetype support
	Typed channel support
	Publish/Subscribe Adapter (PSA)
	Typed pulling without using Pull<I> interface
	Explicit RMI and EJB support
	Connection persistence
	Self-adaptive asynchronous flow control
	QoS and filter support
	Thread on demand

	Ch 3: Developing supplier and consumer applications
	Using predefined Event/Notification Services
	Developing push consumer applications
	Develop pull consumer applications
	Developing push supplier applications
	Developing pull supplier applications

	Using Typed Event/Notification Service
	Developing type push consumer applications
	Developing typed push supplier applications

	Developing RMI/EJB applications with VisiNotify
	Developing a RMI typed consumer
	Developing a RMI typed supplier
	Developing an EJB bean as an Typed Notification consumer
	Developing an EJB bean as a Structured Notification consumer

	VisiBroker Event Buffering/Batch
	Disable supplier-side event buffering
	Disable consumer-side event buffering
	Flush buffered events in supplier application
	Initial Reference of VisiNotify

	Ch 4:Using the Publish Subscribe Adapter (PSA)
	Introduction
	PSA reference and PSA interface IDL
	User examples
	Structured Push Consumer
	Typed Push Consumer
	Structured and Typed Push Supplier examples

	Subscribe a subject using PSA
	SubjectScheme
	Subject Reference, Observer ID, and Properties to Subscribe()
	Examples of Subscribe()
	Subscribe Descriptor and the_subject_addr()
	Unsubscribe a Subject

	Publish a Subject
	SubjectScheme
	Subject Reference, Provider ID, and Properties to Publish()
	Examples of publish()

	Publish Descriptor and the_subject_addr()
	Unpublish a subject

	Support of Typed Pulling
	Passive typed pull consumer
	Active typed pull consumer
	Typed pull supplier

	Additional topics and summary
	ChannelException
	Setting Notification Service QoS in PSA
	PSA Summary

	Ch 5: Setting the Quality of Service and Filters
	Properties of the Quality of Service (QoS)
	Priority
	EventReliability
	VBPersistentDbType
	VBPersistentCommitSyncPolicy
	VBPersistentStorageOverflowBlockTimeout
	VBPersistentOverflowDowngradePolicy
	ConnectionReliability
	MaxEventsPerConsumer
	DiscardPolicy
	OrderPolicy
	VBQueueLowWaterMark
	VBQueueHighWaterMark
	VBProxyPushSupplierThreadModel
	VBProxyPushSupplierQueuePreemptWaterMark
	VBReceivedEventsCount
	VBPendingEventsCount
	VBDiscardedEventsCount
	VBForwardedEventsCount
	VBFilteredEventsCount

	Administration and Validation of QoS properties
	Interface CosNotification::QoSAdmin
	Validating QoS in the header of structured events
	QoS negotiation

	Channel Admin Properties
	Interface CosNotification::AdminPropertiesAdmin
	VBPersistentStorageSize

	Static Properties
	vbroker.notify.console = <Boolean>
	vbroker.notify.listener.port = <ULong>
	vbroker.notify.factory.name = <string>
	vbroker.notify.channel.name = <string>
	vbroker.notify.channel.threadMaxIdle = <ULong>
	vbroker.notify.enableEventQoS = <Boolean>
	vbroker.notify.dir = <string>
	vbroker.notify.ir = <string>
	vbroker.notify.channel.persistentStorageSize = <ULong>
	vbroker.notify.channel.persistentCommitPolicy = <Boolean>
	vbroker.notify.channel.persistentOverflowBlockTimeout = <ULong>
	vbroker.notify.channel.persistentDowngradePolicy = <ULong>
	vbroker.notify.channel.persistentEvent = <Boolean>
	vbroker.notify.channel.iorFile = <string>
	vbroker.notify.channel.passiveProxyPersistenceMask = <Boolean>
	vbroker.notify.channel.maxDelay = <ULong>
	vbroker.notify.threadPool.threadMax = <ULong>
	vbroker.notify.threadPool.threadMin = <ULong>
	vbroker.notify.threadPool.threadMaxIdle = <ULong>
	vbroker.log.enable = <Boolean>

	Levels of Support
	Event Filtering using Filter Objects
	Filtering Events
	Forwarding Filter Evaluation
	Using Forwarding Filters
	Forwarding Filter Limitation
	Writing Filter Constraint Expressions
	Overview
	Extended Trader Constraint Language (Extended TCL)

	Index
	Symbols - P
	Q - U
	V - W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-BoldObl
 /HelveticaInserat-Roman
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /Mono-NewBold
 /Mono-NewBoldItalic
 /Mono-NewItalic
 /Mono-NewRoman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

