
Micro Focus
VisiBroker-RT for C++

Version 6.0

Programmer’s Reference

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-11-06

http://www.microfocus.com

VisiBroker-RT for C++ Programmer’s Reference 1

Contents

Preface ... 1
Manual conventions .. 4
Contacting Micro Focus ... 5

Further Information and Product Support .. 5
Information We Need ... 6
Contact information ... 6

Programmer Tools .. 7
Arguments/Options .. 7

General options ... 7
General Information ... 7
idl2cpp ... 8
idl2ir .. 10
ir2idl .. 11

IDL to C++ Language Mapping ... 13
Primitive data types ... 13
Strings ... 14

String_var Class .. 14
Constants ... 15

Special cases involving constants ... 15
Enumerations .. 16
Type definitions ... 16
Modules .. 17
Complex data types ... 17

Fixed-length structures... 18
Variable length structures ... 18
Memory management for structures... 19
Unions ... 19
Sequences .. 21
Arrays .. 23
Principal ... 25

Valuetypes .. 25
Valuebox .. 28

Abstract Interfaces ... 28

Generated Interfaces and Classes .. 31
Overview .. 31
<Interface_name> ... 31
<Interface_name>ObjectWrapper .. 31
POA<class_name> ... 32
tie<class_name> ... 32
<class_name>_var .. 32

Core Interfaces and Classes ... 35
PortableServer::AdapterActivator ... 35

PortableServer::AdapterActivator methods.. 35
BindOptions .. 35

BindOptions members .. 36
BOA ... 36

CORBA::BOA methods.. 37
VisiBroker extensions to CORBA::BOA .. 41

CompletionStatus ... 41
CompletionStatus members .. 42

2 VisiBroker-RT for C++ Programmer’s Reference

Context ...42
PortableServer::Current ..44
Exception ..44
Object ..45

CORBA::Object methods ... 45
VisiBroker extensions to CORBA::Object.. 47

ORB ...50
class CORBA::ORB ... 50
CORBA::ORB methods .. 50
VisiBroker extensions to CORBA::ORB... 56

PortableServer::POA ...57
PortableServer::POA methods.. 58

PortableServer::POAManager ...67
PortableServer::POAManager methods.. 68

Principal ..69
Principal methods... 69

PortableServer::RefCountServantBase ...69
PortableServer::RefCountServantBase methods ... 70

PortableServer::ServantActivator ..70
PortableServer::ServantLocator methods .. 70

PortableServer::ServantBase ...71
PortableServer::ServantBase methods .. 71

PortableServer::ServantLocator ..72
PortableServer::ServantLocator methods .. 72

PortableServer::ServantManager ..73
Environment ..73
SystemException ..74

SystemException methods... 75
UserException ..76

UserException methods... 77
UserException derived classes.. 77

TCKind ..77
TypeCode ..78

TypeCode constructors.. 79
TypeCode methods ... 79

SupportServices ...82

Dynamic Interfaces and Classes ...83
Any ..83

Any methods ... 83
Insertion operators... 84
Extraction operators ... 85

ContextList ..85
ContextList methods... 85

DynamicImplementation ...87
DynamicImplementation methods .. 87

DynAny ...87
Important usage restrictions.. 88
DynAny methods.. 88
Extraction methods .. 89
Insertion methods.. 90

DynAnyFactory ...91
DynAnyFactory methods ... 91

DynArray ..91
Important usage restrictions.. 91
DynArray methods ... 92

DynEnum ..92

VisiBroker-RT for C++ Programmer’s Reference 3

Important usage restrictions ... 92
DynEnum methods .. 93

DynSequence .. 93
Important usage restrictions ... 94
DynSequence methods ... 94

DynStruct ... 94
Important usage restrictions ... 94
DynStruct methods .. 95

DynUnion .. 95
Important usage restrictions ... 95
DynUnion methods .. 96

ExceptionList ... 96
ExceptionList methods.. 96

NamedValue .. 98
Include file ... 98
NamedValue methods... 98

NVList .. 99
NVList methods ... 99

Request .. 102
Request methods... 102

ServerRequest ... 105
ServerRequest methods.. 106

Interface Repository Interfaces and Classes 109
Availability .. 109
AliasDef .. 109

AliasDef methods... 109
ArrayDef ... 110

ArrayDef methods.. 110
AttributeDef .. 110

AttributeDef methods ... 110
AttributeDescription ... 111

AttributeDescription members ... 111
AttributeMode .. 112

AttributeMode values.. 112
ConstantDef .. 112

ConstantDef methods... 112
ConstantDescription ... 112

ConstantDescription members ... 113
Contained ... 113

Contained methods .. 114
Container .. 115

Container methods .. 116
DefinitionKind .. 119

DefinitionKind values.. 119
Description ... 120

Description members ... 120
EnumDef .. 120

EnumDef methods ... 121
ExceptionDef ... 121

ExceptionDef methods.. 121
ExceptionDescription .. 121

ExceptionDescription members .. 121
FixedDef ... 122

Methods ... 122
FullInterfaceDescription .. 122

FullInterfaceDescription members .. 122

4 VisiBroker-RT for C++ Programmer’s Reference

FullValueDescription .. 123
Variables... 123

IDLType .. 124
IDLType methods ... 125

InterfaceDef .. 125
InterfaceDef methods ... 126

InterfaceDescription ... 127
InterfaceDescription members ... 127

IRObject ... 128
IRObject methods .. 128

ModuleDef ... 128
ModuleDescription .. 128

ModuleDescription members .. 128
NativeDef .. 129
OperationDef ... 129

OperationDef methods .. 130
OperationDescription .. 131

OperationDescription members .. 131
OperationMode ... 132

OperationMode values... 132
ParameterDescription .. 132

ParameterDescription members.. 132
ParameterMode .. 132

ParameterMode values.. 133
PrimitiveDef ... 133

PrimitiveDef methods ... 133
PrimitiveKind ... 133

PrimitiveKind values ... 133
Repository ... 134

Repository methods.. 134
SequenceDef ... 136

SequenceDef methods .. 136
StringDef .. 136

StringDef methods ... 137
StructDef .. 137

StructDef methods ... 137
StructMember .. 137

StructMember methods... 137
TypedefDef .. 138
TypeDescription ... 138

TypeDescription members ... 138
UnionDef ... 138

UnionDef methods.. 139
UnionMember .. 139

UnionMember members .. 139
ValueBoxDef .. 140

Methods.. 140
ValueDef ... 140

Methods.. 140
ValueDescription .. 142

Values .. 142
WstringDef .. 143

WStringDef methods .. 143

Activation Interfaces and Classes ...145
ImplementationDef ... 145

ImplementationDef methods.. 145

VisiBroker-RT for C++ Programmer’s Reference 5

StringSequence ... 146
StringSequence methods .. 146
Methods ... 147

Naming Service Interfaces and Classes 149
NamingContext .. 149

NamingContext methods .. 149
NamingContextExt ... 153

NamingContextExt methods .. 154
NamingLib .. 155

NamingLib methods ... 155
Binding and BindingList ... 155
BindingIterator .. 156

BindingIterator methods ... 156

Event Service Interfaces and Classes 157
EventLib ... 157

EventLib methods .. 157
ConsumerAdmin .. 157

IDL definition .. 157
ConsumerAdmin methods ... 157

EventChannel .. 158
Methods ... 158

EventChannelFactory .. 158
IDL definition .. 159
EventChannelFactory methods... 159

ProxyPullConsumer .. 159
IDL definition .. 160

ProxyPushConsumer ... 160
IDL definition .. 160

ProxyPullSupplier ... 160
IDL definition .. 160

ProxyPushSupplier ... 161
IDL definition .. 161

PullConsumer .. 161
IDL definition .. 161

PushConsumer .. 161
IDL definition .. 162

PullSupplier ... 162
IDL definition .. 162
PullSupplier methods.. 162

PushSupplier ... 162
IDL definition .. 163

SupplierAdmin ... 163
IDL definition .. 163

 ... 163

Portable Interceptor Interfaces and Classes for C++ 165
Introduction .. 165
ClientRequestInfo .. 166

ClientRequestInfo methods ... 167
ClientRequestInterceptor ... 169

ClientRequestInterceptor methods ... 169
Codec ... 171

Codec member classes ... 171
Codec methods ... 171

CodecFactory ... 172

6 VisiBroker-RT for C++ Programmer’s Reference

CodecFactory member .. 172
CodecFactory method ... 172

Current ... 173
Current methods.. 173

Encoding ... 174
Encoding members... 174

ExceptionList ... 174
ForwardRequest ... 175
Interceptor .. 175

Interceptor methods... 175
IORInfo ... 176

IORInfo methods ... 176
IORInfoExt .. 178

IORInfoExt methods ... 178
IORInterceptor ... 178

IORInterceptor methods.. 179
ORBInitializer ... 180

ORBInitializer methods ... 180
ORBInitInfo ... 181

ORBInitInfo member classes.. 181
ORBInitInfo methods .. 181

Parameter ... 183
Parameter members ... 183

ParameterList .. 184
PolicyFactory ... 184

PolicyFactory method.. 184
RequestInfo ... 185

RequestInfo methods.. 185
ServerRequestInfo .. 188

ServerRequestInfo methods... 189
ServerRequestInterceptor .. 191

ServerRequestInterceptor methods... 191

4.x Interceptor and Object Wrapper Interfaces and Classes ...195
Introduction .. 195
InterceptorManagers ... 195
IOR templates .. 196
InterceptorManager .. 196
InterceptorManagerControl .. 196

InterceptorManagerInterceptor method... 197
BindInterceptor .. 197

BindInterceptor methods... 197
BindInterceptorManager .. 198

BindInterceptorManager method .. 198
ClientRequestInterceptor ... 199

ClientRequestInterceptor methods.. 199
ClientRequestInterceptorManager ... 200

ClientRequestInterceptorManager methods .. 200
POALifeCycleInterceptor .. 201

POALifeCycleInterceptor methods... 201
POALifeCycleInterceptorManager .. 202

POALifeCycleInterceptorManager method .. 202
ActiveObjectLifeCycleInterceptor .. 202

ActiveObjectLifeCycleInterceptor methods ... 202
ActiveObjectLifeCycleInterceptorManager .. 203

ActiveObjectLifeCycleInterceptorManager method..................................... 203
ServerRequestInterceptor .. 203

VisiBroker-RT for C++ Programmer’s Reference 7

ServerRequestInterceptor methods .. 204
ServerRequestInterceptorManager ... 205

ServerRequestInterceptorManager method.. 205
IORCreationInterceptor ... 205

IORInterceptor method... 206
IORCreationInterceptorManager ... 206

IORCreationInterceptorManager method ... 206
VISClosure .. 206

VISClosure members.. 207
VISClosureData ... 207

VISClosureData methods .. 207
ChainUntypedObjectWrapperFactory ... 207

ChainUntypedObjectWrapperFactory methods.. 208
UntypedObjectWrapper ... 209

UntypedObjectWrapper methods.. 209
UntypedObjectWrapperFactory ... 210

UntypedObjectWrapperFactory constructor .. 210
UntypedObjectWrapperFactory methods.. 210

Real-Time CORBA Interfaces and Classes 213
Introduction .. 213
RTCORBA::ClientProtocolPolicy .. 213

IDL .. 214
RTCORBA::Current ... 214

RTCORBA::Current Creation and Destruction ... 214
IDL .. 215
RTCORBA::Current methods.. 215

RTCORBA::Mutex ... 215
Mutex Creation and Destruction... 215
IDL .. 216
RTCORBA::Mutex Methods .. 216

RTCORBA::NativePriority ... 216
IDL .. 217

RTCORBA::Priority ... 217
IDL .. 217

RTCORBA::PriorityMapping .. 217
PriorityMapping Creation and Destruction.. 218
IDL .. 218
PriorityMapping Methods... 218

RTCORBA::PriorityModel ... 219
RTCORBA::PriorityModelPolicy ... 220

IDL .. 220
RTCORBA::RTORB .. 220

RTORB Creation and Destruction.. 220
IDL .. 220
RTORB Methods... 221

RTCORBA::ServerProtocolPolicy ... 223
IDL .. 223

RTCORBA::ThreadpoolId ... 224
IDL .. 224

RTCORBA::ThreadpoolPolicy .. 224
IDL .. 224

Pluggable Transport Interface Classes 225
VISPTransConnection .. 225

VISPTransConnection methods... 225
VISPTransConnectionFactory .. 229

8 VisiBroker-RT for C++ Programmer’s Reference

VISPTransConnectionFactory methods... 229
VISPTransListener .. 229

VISPTransListener methods ... 230
VISPTransListenerFactory .. 231

VISPTransListenerFactory methods ... 231
VISPTransProfileBase .. 231

VISPTransProfileBase methods ... 232
VISPTransProfileBase members .. 233
VISPTransProfileBase base class methods .. 233

VISPTransProfileFactory ... 234
VISPTransProfileFactory methods.. 234

VISPTransBridge ... 234
VISPTransBridge methods ... 235

VISPTransRegistrar ... 235
VISPTransRegistrar methods .. 235

VisiBroker Logging Classes ...237
Introduction .. 237
VISLogArgs ... 238

VISLogArgs Methods... 238
VISLogArgsType... 238
VISLogArgsType Methods .. 239
VISLogInteger ... 239
VISLogInteger Methods... 239
VISLogString ... 239
VISLogString Methods .. 239
VISLogBoolean .. 240
VISLogBoolean Methods.. 240

VISLogApplicationFields ... 240
VISLogApplicationFields Methods.. 241

VISLogger ... 241
VISLogger Methods .. 241

VISLoggerForwarder ... 243
VISLoggerForwarder Methods .. 243

VISLoggerManager ... 244
VISLoggerManager Methods .. 244

VISLogMessage .. 246
VISLoggerStaticInfo .. 247

Quality of Service Interfaces and Classes249
CORBA::PolicyManager ... 249

Methods.. 249
CORBA::PolicyCurrent ... 250
CORBA::Object .. 250

Methods.. 250
Messaging::RebindPolicy ... 252

Policy values.. 252
Messaging::RelativeRequestTimeoutPolicy ... 253
Messaging::RelativeRoundtripTimeoutPolicy ... 253
QoSExt::DeferBind Policy .. 254
QosExt::RelativeConnectionTimeoutPolicy .. 254
QoSExt::SmartBind Policy ... 255

IOP and IIOP Interfaces and Classes257
GIOP::MessageHeader .. 257

MessageHeader members.. 257
GIOP::CancelRequestHeader .. 258

VisiBroker-RT for C++ Programmer’s Reference 9

CancelRequestHeader members... 258
GIOP::LocateReplyHeader ... 258

LocateReplyHeader members .. 258
GIOP::LocateRequestHeader ... 258

LocateRequestHeader members ... 258
GIOP::ReplyHeader .. 259

ReplyHeader members ... 259
GIOP::RequestHeader .. 259

RequestHeader members .. 259
IIOP::ProfileBody ... 260

ProfileBody members ... 260
IOR members.. 261

IOP::TaggedProfile ... 261
TaggedProfile members .. 261

Marshal Buffer Interfaces and Classes 263
CORBA::MarshalInBuffer ... 263

CORBA::MarshalInBuffer constructor/destructor....................................... 263
CORBA::MarshalInBuffer methods.. 264
CORBA::MarshalInBuffer operators .. 266

CORBA::MarshalOutBuffer ... 267
CORBA::MarshalOutBuffer constructors .. 268
CORBA::MarshalOutBuffer destructor ... 268
CORBA::MarshalOutBuffer methods.. 268
CORBA::MarshalOutBuffer operators .. 270

Location Service Interfaces and Classes 273
Agent ... 273

Agent methods.. 274
Desc .. 277

Desc members .. 278
Fail .. 278

Fail members .. 278
TriggerDesc ... 278

TriggerDesc members... 279
TriggerHandler ... 279

TriggerHandler methods.. 280
<type>Seq ... 280

<type>Seq methods .. 280
<type>SeqSeq .. 281

<type>SeqSeq methods... 281

Initialization Interfaces and Classes 283
VISInit ... 283

VISInit constructors/destructors .. 283
VISInit methods .. 284

VISUtil ... 284
VISUtil methods .. 285

Appendix: Using Command-Line Options 287
BOA_init() method

(deprecated since VisiBrokerRT 4.0) ... 287
BOA options.. 287

ORB_init() method ... 289
ORB options.. 289

Location service options .. 291

10 VisiBroker-RT for C++ Programmer’s Reference

Appendix: Using VisiBroker Properties293
OSAgent (Smart Agent) properties ... 293
ORB properties .. 294
Server Manager properties ... 296
Location Service properties .. 296
Interface Repository Resolver properties .. 296
TypeCode properties ... 296
Client-Side IIOP Connection properties .. 297
Client-Side LIOP Connection properties .. 297
Server-Side Thread Session Connection properties .. 297
Server-Side Thread Pool Connection properties ... 298
Properties that support bidirectional communication .. 299

VisiBroker-RT for C++ Programmer’s Reference 1

Preface
VisiBroker-RT for C++ allows you to develop and deploy distributed object-
based applications, as defined in the Common Object Request Broker
(CORBA) specification.

The VisiBroker-RT for C++ Programmer’s Reference Guide provides a
description of the classes and interfaces supplied with VisiBroker-RT for
C++, the programmer tools, and command line options. It is written for
C++ programmers who are familiar with object-oriented development.

This Preface highlights the latest features, and identifies typographical and
platform conventions used throughout the manual. It also tells you where to
find additional information about Common Object Request Broker
Architecture (CORBA) and the remaining VisiBroker-RT for C++
documentation set, and how to contact Micro Focus support.

What’s New
This manual has been updated to reflect the latest VisiBroker-RT for C++
release. The new features and enhancements include:

Does it make sense to describe the below stuff as “new” any more,
or drop the section? If kept, need to add anything new in the 2020
release.

• CORBA 2.5 compliance: VisiBroker-RT for C++ is fully compliant with
the CORBA specification (version 2.5) from the Object Management
Group (OMG). For more details, refer to the CORBA specification located
at http://www.omg.org.

• Minimum CORBA 1.0 compliance. VisiBroker-RT for C++ is fully
compliant with the Minimum CORBA specification (version 1.0) from the
Object Management Group (OMG). For more details, refer to the
Minimum CORBA specification located at ftp:// ftp.omg.org/pub/docs/
orbos/98-08-04.pdf

• Real-Time CORBA 1.0 compliance. VisiBroker-RT for C++ is fully
compliant with the Real-Time CORBA specification (version 1.0) from the
Object Management Group (OMG). For more details, refer to the Real-
Time CORBA specification located at ftp:// ftp.omg.org/pub/docs/ptc/99-
05-03.pdf.

• Naming Service: The new VisiBroker-RT for C++ Naming Service.
Provides support for the OMG specified Interoperable Naming Service
specification. The corbaloc and corbaname functionality supports stringfied
object references which can be used in an Internet environment. This
allows you to refer to objects by a URL. See Chapter 15, “Using the
Naming Service” of the VisiBroker-RT for C++ Programmers guide for a
description of how to use the Naming Service.

• Portable Object Adaptor (POA): The POA offers portability on the
server side. This feature replaces the Basic Object Adapter (BOA).
Although BOA is being deprecated, VisiBroker-RT for C++ 6.0 will still
support BOA functionality. See Chapter 7, “Using POAs” of the VisiBroker-
RT for C++ Programmers guide for an explanation of how to use the POA.

• Objects by value (OBV) or Value tf types: Previous versions of CORBA
allowed you to pass objects between clients and servers by reference.
However, CORBA 2.3 allows you to pass objects by value between clients
and servers using VisiBroker-RT for C++. OBV is interoperable with other

http://www.omg.org
l
l
l
l
l
http://www.omg.org/
l
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
http://www.borland.com/visibroker_rt
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

2 VisiBroker-RT for C++ Programmer’s Reference

2.3-compliant ORBs. See Chapter 25, “Using valuetypes” of the
VisiBroker-RT for C++ Programmers guide for more information on this
feature.

• Property Management: This feature provides you with a way to
centralize management of properties. Using the Property Management,
you can get/set the value of configurable properties of VisiBroker. See
Chapter 11, “Setting properties” of the VisiBroker-RT for C++
Programmers guide for more information on the Property Management.

• Quality of Service (QoS): This feature, which implements the CORBA
2.3 Messaging Specification, allows you to define policies that influence
how connections are made. You perform client-side policy management
by setting properties that are associated with connections or client/server
pairs. See “Client basics” on page 9-1 of the VisiBroker-RT for C++
Programmers guide for a description of the QoS features.

• Interceptors and object wrappers: The ORB provides a set of APIs
known as interceptors which provide a way to plug in additional ORB
behavior such as support for transactions and security, which may be
defined on either the client or server side. One of the main difference in
this release is that now the interceptors have scope. See VisiBroker-RT
6.0 of the VisiBroker-RT for C++ Programmers guide for more information
on how to use the 6.0 style interceptors and object wrappers.

• Pluggable Transport Interface: This feature provides support for the
use of transport protocols besides TCP for the transmission of CORBA
invocations. The Interface supports the ‘plugging in’ of multiple transport
protocols simultaneously and is designed to provide a common interface
that is suitable for use with a wide variety of transport types. The
interface uses CORBA standard classes wherever possible, but is itself
VisiBroker proprietary.

• VisiBroker Logging: This feature allows applications to log messages
and have them directed, via configurable logging forwarders, to an
appropriate destination or destinations. The ORB itself uses this
mechanism for the output of any error, warning or informational
messages.

The application can choose to log its and the ORB’s messages to the
same destination, producing a single message log for the entire system,
or to log messages from different sources to independent destinations.

Organization of this Manual

This manual includes the following sections:

• “Programmer Tools” provides information about the programming tools used
to compile C++ stubs and to populate the Interface Repository.

• “IDL to C++ Language Mapping” details the C++ to CORBA mapping
specifications, including data types, strings, constant, type definitions,
enumerations, and modules.

• “Generated Interfaces and Classes”describes the classes generated by
VisiBroker’s IDL compiler.

• “Core Interfaces and Classes” describes the VisiBroker-RT for C++ core
interfaces and classes.

• “Dynamic Interfaces and Classes” describes the Dynamic Invocation Interface
used by clients, and the Dynamic Skeleton Interface used by object
servers.

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

VisiBroker-RT for C++ Programmer’s Reference 3

• “Interface Repository Interfaces and Classes” describes the classes and
interfaces used to access the Interface Repository.

• “Activation Interfaces and Classes” describes the interfaces and classes used
to activate object implementations.

• “Naming Service Interfaces and Classes” describes the interfaces and classes
used with the VisiBroker Naming Service.

• “Event Service Interfaces and Classes” describes the interfaces and classes
used with the VisiBroker Event Service.

• “Portable Interceptor Interfaces and Classes for C++” describes the VisiBroker-
RT for C++ implementation of Portable Interceptors interfaces and
classes defined by the OMG Specification.

• “4.x Interceptor and Object Wrapper Interfaces and Classes” describes the
interfaces and classes that you can use with 4.x interceptors and object
wrappers to create interceptors for client or server-side message
processing.

• “Real-Time CORBA Interfaces and Classes” describes the Real-Time CORBA
interfaces and classes supported by VisiBroker-RT for C++.

• “Pluggable Transport Interface Classes” describes the classes that constitute
the VisiBroker Pluggable Transport Interface. These classes can be used
to "plug-in" an application specific transport for ORB communications.

• “VisiBroker Logging Classes”describes the interfaces to use for generating
log messages as well as configuring and managing the VisiBroker Log
Service.

• “Quality of Service Interfaces and Classes” describes the interfaces you can
use to set policy values.

• “IOP and IIOP Interfaces and Classes” describes the CORBA-defined header
and message formats.

• “Marshal Buffer Interfaces and Classes” describes the classes and methods for
creating and processing message buffers.

• “Location Service Interfaces and Classes” describes how to use the location
service to discover objects implemented on your network.

• “Initialization Interfaces and Classes” describes the interfaces and methods for
initializing interceptors and other services.

• “Appendix: Using Command-Line Options” explains the ORB, BOA, and location
service options that can be passed as command-line arguments when
your application is started.

• “Appendix: Using VisiBroker Properties” provides lists of the properties that are
available in VisiBroker-RT for C++.

l
l
l
l
l
l
l
l

4 VisiBroker-RT for C++ Programmer’s Reference

Manual conventions
This section identifies the VisiBroker-RT for C++ Programmer’s Reference
Guide’s typographical and platform conventions.

Typographic conventions

This manual uses the following conventions:

Platform conventions

This manual uses the following conventions—where necessary—to indicate
that information is platform-specific:

Struck through terms below don’t appear in the manual as
indicators - delete?

VisiBroker Library conventions

This manual uses the following conventions—where necessary—to indicate
that information is VisiBroker library specific or to indicate that VisiBroker
interfaces are not supported in certain versions of the VisiBroker libraries.

This icon indicates functionality that is not supported in the VisiBroker-RT
Minimum Corba Library.

Convention Used for
Boldface Bold type indicates that syntax should be typed exactly

as shown. For UNIX, used to indicate database names,
file names, and similar terms.

italics Italics indicates information that the user or application
provides, such as variables in syntax diagrams. It is also
used to introduce new terms.

computer Computer typeface is used for sample command lines
and code.

bold computer In code examples, important statements appear in
boldface

UPPERCASE Uppercase letters indicate Windows file names.
[] Brackets indicate optional items.
... An ellipsis indicates the continuation of previous lines of

code or that the previous argument can be repeated.
| A vertical bar separates two mutually exclusive choices.

Convention Used for
Windows All Windows (Windows NT, Windows 2000, Windows

XP) development hosts
WinNT Windows NT development host platform
Win2000 Windows 2000/XP development host only
UNIX All UNIX development host platforms including Solari
Solaris Solaris development host only
Tornado VisiBroker-RT for C++ for Tornado only
C++ VisiBroker-RT for C++

VisiBroker-RT for C++ Programmer’s Reference 5

Where to find additional information

For more information about VisiBroker-RT for C++, refer to these
information sources:

• VisiBroker-RT for C++ Release Notes contain late-breaking information
about the current release of VisiBroker-RT for C++.

• VisiBroker-RT for C++Installation Guide. This guide contains the
instructions for installing VisiBroker-RT for C++ on Windows and UNIX
host systems as well as information for deploying distributed applications
built using VisiBroker-RT for C++.

• VisiBroker-RT for C++ Developer’s Guide provides information on
developing distributed object-based applications in C++.

• For more information about the CORBA specification, refer to The
Common Object Request Broker: Architecture and Specification. This
document is available from the Object Management Group and describes
the architectural details of CORBA.

You can access the CORBA specification at the OMG web site:
https://www.omg.org/.

Contacting Micro Focus
Old version has been replaced with the standard MF section.

Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

• The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

• The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

• The Micro Focus YouTube channel for videos related to your product.

https://www.omg.org/
http://www.microfocus.com

6 VisiBroker-RT for C++ Programmer’s Reference

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/products/corba/visibroker/ (VisiBroker trial
software)

• https://supportline.microfocus.com/login.aspx (Micro Focus support
login)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
https://software.microfocus.com/en-us/select/email-subscription

http://www.microfocus.com
https://www.microfocus.com/products/corba/visibroker/
https://supportline.microfocus.com/login.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
https://software.microfocus.com/en-us/select/email-subscription

VisiBroker-RT for C++ Programmer’s Reference 7

Programmer Tools
This chapter describes the programmer tools offered by VisiBroker-RT for
C++. For information about the syntax used with these tools, see “Preface”.

Arguments/Options
All VisiBroker-RT for C++ programmer’s tools have both general and
specific arguments. The specific arguments and options for each tool are
listed in the section for the tool. The general options are listed below.

General options
The following options are common to all programmer tools:

Note:

On UNIX platforms, the -J option is only available with VisiBroker for Java
on Solaris.

General Information
The VisiBroker-RT for C++ programming tools described in this chapter
differ, depending on whether you have a UNIX or a Windows environment.
The UNIX version of each tool is listed first followed by the Windows version.

UNIX For UNIX users, to view options for a command, enter

Windows For Windows users, to view options for a command, enter

Option Description
-J<java option> Passes the java_option directly to the Java virtual

machine.
-VBJversion Prints the VisiBroker-RT for C++ version.
-VBJdebug Prints the VisiBroker-RT for C++ debug information.
-VBJclasspath Specifies the classpath, precedes the CLASSPATH

environment variable.
-VBJprop <name>
[=<value>]

Passes the name/value pair to the java virtual machine.

-VBJjavaavm
<jvmpath>

Specifies the path of the java virtual machine.

-VBJaddJar <jarfile> Appends the jarfile to the CLASSPATH before executing
the java virtual machine.

Syntax Example
command name -\? idl2cpp -\?

Syntax Example
command name -? idl2cpp -?

l

8 VisiBroker-RT for C++ Programmer’s Reference

idl2cpp
This command implements VisiBroker’s IDL to C++ compiler, which
generates client stubs and server skeleton code from an IDL file.

Syntax
idl2cpp [arguments] infile(s)

idl2cpp takes an IDL file as input and generates the corresponding C++
classes for the client and server side, client stubs, and server skeleton code.

The infile parameter represents the IDL file for which you wish C++ code to
be generated and the arguments provide various controls over the resulting
code.

Example
idl2cpp -hdr_suffix hx -server_ext _serv -no_tie -no_excep-spec
bank.idl

Argument Description
-D, _define foo[=bar] Defines a preprocessor macro foo, optionally with a value

bar.
-I, -include <dir> Specifies an additional directory for #include searching.
-P, no_line_directives Suppresses the generation of line number information.

The default is off.
-H, _list_includes Prints the full paths of included files on the standard error

output. The default is off.
-C, -retain_comments Retains comments from IDL file when the C++ code is

generated. Otherwise, the comments will not appear in
the C++ code.

-U, -undefine foo Undefines a preprocessor macro foo.
-{no_]idl_strict Specifies strict OMG standard interpretation of the IDL

source. By default, the OMG standard interpretation is not
used

-[no_]warn_
unrecognized_pragmas

Generates a warning if a #pragma is not recognized.

-[no_]back_compat_
mapping

with VisiBroker 3.x.

[no]boa Specifies the generation of BOA compatible code. By
default, this code is not generated.

-[no_]comments Specifies that comments be place in generated code. The
default is on.

-gen_include_files Specifies the generation of code for #include files. By
default, this code is not generated.

-list_files Specifies that files written during code generation be
listed. By default, this list is not created.

-[no_]obj_wrapper Generates stubs and skeletons with object wrapper
support. It also generates the base typed object wrapper
from which all other object wrappers inherit, and a default
object wrapper that performs the untyped object wrapper
calls. When this option is not set, idl2cpp does not
generate code for object wrappers.

-root_dir <path> Specifies the directory where the generated code is to be
written; the same as setting -hdr_dir and -src_dir to
<path>. By default, the code is written to the current
directory.

-[no_]servant Specifies the generation of the server-side code. By
default, the servant is generated.

-tie Generates the _tie template classes. By default, _tie
classes are generated.

VisiBroker-RT for C++ Programmer’s Reference 9

-[no_]warn_missing_
define

Warns if any forward declared names were never defined.
The default is on.

-client_ext <string> Specifies the file extension to be used for client files that
are generated. The default extension is (_c). To generate
client files without an extension, specify none as the
value for <file_extension>.

-server_ext <string> Specifies the file extension to be used for server files that
are generated. The default extension is (_s). To generate
server files without an extension, specify none as the
value for <file_extension>.

-corba_inc <filename> Causes the #include <filename> directive to be inserted in
generated code instead of the usual #include <corba.h>
directive. By default, #include <corba.h> is inserted into
generated code.

-excep_spec Generates exception specifications for methods. By
default, exception specifications are not generated.

Windows
-export <tag>

Defines a tag name to be inserted into every client-side
declaration (class, function, etc.) that is generated.
Specifying “-export _MY_TAG” when invoking idl2cpp will
result in a class definition like this:

class _MY_TAG Bank{...}

instead of:

class Bank {...}

By default, no tag names for client-side declarations are
generated.

Windows
-export_skel <tag>

Defines a tag name to be inserted into just the server-
side declarations that are generated. Specifying “-export
_MY_TAG” when invoking idl2cpp will result in a class
definition like this:

class _MY_TAG _sk_Bank{...}

instead of:

class _sk_Bank {...}

By default, no tag names for server-side declarations are
generated.

-hdr_dir <path> Specifies the directory where the generated include files
(_c.hh and _s.hh) are to be written. By default, the code
is written to the current directory.

-src_dir <path> Specifies the directory where the generated source files
(_c.cc and _s.cc) are to be written. By default, the code is
written to the current directory.

-hrd_suffix <string> Specifies the header filename extension (.hh)
-src_suffix <string> Specifies the source filename extension (.cc)
-impl_base_object
<C++ type>

Causes the classes in all generated code to be inherited
from object_name instead of CORBA::Object. By default,
all classes in generated code are inherited from
CORBA::Object.

-namespace Implements modules as namespaces. The default is off.
-pretty_print Generates -pretty _print methods. By default, all

methods will be printed this way.
-stdstream Generates class stream operators with standard iostream

classes in their signature.
-target <compiler> Specifies the compiler to be used for code generation.
-type_code_info Enables the generation of type code information needed

for client programs that intend to use the Dynamic
Invocation Interface. For more information, see “Dynamic
Interfaces and Classes”.

By default, type code information is not generated.

Argument Description

10 VisiBroker-RT for C++ Programmer’s Reference

idl2ir
This command allows you to populate an interface repository with objects
defined in an Interface Definition Language source file.

Syntax
idl2ir [-ir <IR_name>] [-replace] {filename.idl}

Example
idl2ir -ir my_repository -replace bank/Bank.idl

Description

The idl2ir command takes an IDL file as input, binds itself to an interface
repository server, and populates the repository with the IDL constructs
contained in infile. If the repository already contains an item with the
same name as an item in the IDL file, the old item will be replaced if the -
replace option is specified.

Note

The idl2ir command does not handle anonymous arrays or sequences
properly. To work around this problem, typedefs must be used for all
sequences and arrays.

-version Displays the software version number of the VisiBroker-
RT for C++ idl2cpp compiler.

-imp_inherit Generates implementation inheritance. The default is off.
-map_keyword <keywrd>
<map>

Adds <keywrd> as a keyword and associates with it the
mapping indicated. Any IDL identifier that conflicts with
<keywrd> will be mapped in C++ to <map>. This
prevents clashes between keywords and names used in
C++ code. All C++ keywords have default mappings—
they do not need to be specified using this option.

-h, -help, -usage, -? Specifies that help information be printed.
-file1 [file2] … Specifies one or more files to be processed, or “_” for

stdin.

Argument Description

Option Description
-D, _define foo[=bar] Defines a preprocessor macro foo, optionally with a value

bar.
-I, -include <dir> Specifies an additional directory for #include searching.
-P, no_line_directives Suppresses the generation of line number information.

The default is off.
-H, _list_includes Prints the full paths of included files on the standard error

output. The default is off.
-C, -retain_comments Retains comments from IDL file when the C++ code is

generated. Otherwise, the comments will not appear in
the C++ code.

-U, -undefine foo Undefines a preprocessor macro foo.
-{no_]idl_strict Specifies strict OMG standard interpretation of the IDL

source. By default, the OMG standard interpretation is not
used

-[no_]warn_
unrecognized_pragmas

Generates a warning if a #pragma is not recognized.

-[no_]back_compat_
mapping

Specifies the use of mapping that is backward compatible
with VisiBroker 3.x.

VisiBroker-RT for C++ Programmer’s Reference 11

ir2idl
This command allows you to populate an interface repository with objects
defined in an Interface Definition Language (IDL) source file.

Syntax
ir2idl [options] {idl filename}

Example
ir2idl -ir my_repository -replace bank/Bank.idl

Description

The idl2ir command binds to the IR and prints the contents in IDL format.

Options

The following options are available for ir2idl.

-irep name Specifies the instance name of the interface repository to
which idl2ir will attempt to bind. If no name is specified,
idl2ir will bind itself to the interface repository server
found in the current domain. The current domain is
defined by the OSAGENT_PORT environment variable.

-deep Specifies deep (versus shallow) merges. The default is
off.

-replace Replaces definitions instead of updating them.
-h, -help, -usage, -? Prints help information.
-version Displays the software version number of VisiBroker-RT

for C++ idl2ir tool.
file1 [file2] … Specifies the one or more files to be processed.

Option Description

Option Description
-irep <irep name> Specifies the name of the interface repository.
-o, <file> Specifies the name of the output file, or “_” for stdout.
-strict Specifies strict adherence to OMG-standard code

generation. The default is on.
-version Displays or prints out the version of the VisiBroker-RT for

C++ ir2idl tool that you are currently running
-h, -help, -usage, -? Prints help information.

12 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 13

IDL to C++ Language
Mapping
This chapter discusses the IDL to C++ language mapping provided by the
VisiBroker-RT for C++ idl2cpp compiler, which strictly complies with the
CORBA C++ language mapping specification.

Primitive data types
The basic data types provided by the Interface Definition Language are
summarized in Table 1, “IDL primitive type mappings”. Due to hardware
differences between platforms, some of the IDL primitive data types have a
definition that is marked “platform dependent.” On a platform that has 64-
bit integral representations, for example the long type, would still be only
32 bits. You should refer to the included file orbtypes.h for an exact
mapping of these primitive data types for your particular platform.

Table 1 IDL primitive type mappings

Caution

The IDL boolean type is defined by the CORBA specification to have only
one of two values: 1 or 0. Using other values for a boolean will result in
undefined behavior.

IDL type VisiBroker-RT for C++ type C++ definition
short CORBA::Short short
long CORBA::Long platform dependent
unsigned
short

CORBA::UShort unsigned short

unsigned
long

CORBA::ULong unsigned long

float CORBA::Float float
double CORBA::Double double
char CORBA::Char char
boolean CORBA::Boolean unsigned char
octet CORBA::Octet unsigned char
long long CORBA::LongLong platform dependent
ulong long CORBA::ULongLong platform dependent

14 VisiBroker-RT for C++ Programmer’s Reference

Strings
String types in IDL may specify a length or may be unbounded, but both are
mapped to the C++ type char *. You must use the functions shown in
Example 1 for dynamically allocating strings to ensure that your
applications and VisiBroker use the same memory management facilities.
All CORBA string types are null-terminated.

Example 1 Methods for allocating and freeing memory for strings

class CORBA
{
...
static char *string_alloc(CORBA::ULong len); static void
string_free(char *data);
...
};

String_var Class
In addition to mapping an IDL string to a char *, the IDL compiler
generates a String_var class that contains a pointer to the memory
allocated to hold the string. When a String_var object is destroyed or goes
out of scope, the memory allocated to the string is automatically freed.
Example 2 shows the String_var class and the methods it supports. For
more information on the _var classes, see “<class_name>_var”.

Example 2 String_var class
class CORBA {

class String_var {
protected:

char*_p;
...

public:
String_var();
String_var(char *p);
~String_var();
String_var& operator=(const char *p);
String_var& operator=(char *p);
String_var& operator=(const String_var& s);
operator const char *() const;
operator char *();
char &operator[](CORBA::ULong index);
char operator[](CORBA::ULong index) const;
friend ostream& operator<<(ostream&, const String_var&);
inline friend Boolean operator==(const String_var& s1,

const String_var& s2);
...

};
...

};

Method Description
CORBA::string_alloc Dynamically allocates a string and returns a pointer to

the string. A NULL pointer is returned if the allocation
fails. The length specified by the len parameter does
not need to include the NULL terminator.

CORBA::string_free Releases the memory associated with a string that was
allocated with CORBA::string_alloc.

VisiBroker-RT for C++ Programmer’s Reference 15

Constants
Example 3 and Example 4 show how IDL constants defined outside of any
interface specification will be mapped directly to a C++ constant
declaration.

Example 5, Example 6, and Example 7 show how constants defined within
an interface specification are declared in the include file and assigned a
value in the source file.
Example 3 Top-level definitions in IDL

const string str_example = “this is an example”;
const long long_example = 100;
const boolean bool_example = TRUE;

Example 4 Resulting C++ code for constants

const char* str_example = “this is an example”;
const CORBA::Long long_example = 100;
const CORBA::Boolean bool_example = 1;

Example 5 IDL definitions from the example.idl file

interface example {
const string str_example = “this is an example”;
const long long_example = 100;
const boolean bool_example = TRUE;

};

Example 6 C++ code generated to the example_client.hh file

class example :: public virtual CORBA::Object
{

...
static const char *str_example; /* “this is an example” */
static const CORBA::Long long_example; /* 100 */
static const CORBA::Boolean bool_example; /* 1 */
...

};

Example 7 C++ code generated to the example_client.cc file
const char *example::str_example = “this is an example”;
const CORBA::Long example::long_example = 100;
const CORBA::Boolean example::bool_example = 1;

Special cases involving constants
Under some circumstances, the IDL compiler must generate C++ code
containing the value of an IDL constant rather than the name of the
constant. Example 8 and Example 9 show how the value of the constant len
must be generated for the typedef V to allow the C++ code to compile
properly.

Example 8 Definition of an IDL constant with a value
// IDL
interface foo {

const long length = 10;
typedef long V[length];

};

Example 9 Generation of an IDL constant’s value in C++
class foo : public virtual CORBA::Object
{

const CORBA::Long length;
typedef CORBA::Long V[10];

};

16 VisiBroker-RT for C++ Programmer’s Reference

Enumerations
Example 10 and Example 11 show how enumerations in IDL map directly to
C++ enumerations.

Example 10 IDL definition of an enumeration
// IDL
enum enum_type {

first,
second,
third

};

Example 11 Enumerations in IDL map directly to C++ enums
// C++ code
enum enum_type {

first,
second,
third

};

Type definitions
Example 12 and Example 13 show how type definitions in IDL are mapped
directly to C++ type definitions. If the original IDL type definition maps to
several C++ types, the IDL compiler generates the corresponding aliases
for each type in C++.

Example 14, Example 15, Example 16, and Example 17 show other type
definition mapping examples.

Example 12 Simple type definitions in IDL
// IDL
typedef octet example_octet;
typedef enum enum_values {

first,
second,
third

} enum_example;

Example 13 Mapping of simple type definitions from IDL to C++
// C++
typedef octet example_octet;
enum enum_values {

first,
second,
third

};
typedef enum_values enum_example;

Example 14 IDL typedef of an interface
// IDL
interface A1;
typedef A1 A2;

Example 15 Mapping the IDL interface type definition in C++
// C++
class A1;
typedef A1 *A1_ptr;
typedef A1_ptr A1Ref;
class A1_var;

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1Ref A2Ref;
typedef A1_var A2_var;

VisiBroker-RT for C++ Programmer’s Reference 17

Example 16 IDL typedef of a sequence
// IDL
typedef sequence<long> S1;
typedef S1 S2;

Example 17 Mapping the IDL sequence type definition to C++
// C++
class S1;
typedef S1 *S1_ptr; typedef S1_ptr S1Ref; class S1_var;

typedef S1 S2;
typedef S1_ptr S2_ptr;
typedef S1Ref S2Ref;
typedef S1_var S2_var;

Modules
The OMG IDL to C++ language mapping specifies that an IDL module
should be mapped to a C++ namespace with the same name. Since few
compilers currently support the namespace, the C++ language mapping
allows the use of class in its place. Example 19 shows how VisiBroker-RT
for C++’s IDL compiler maps module to class.

Example 18 IDL module definition
// IDL module ABC
{

...
};

Example 19 Mapping an IDL module to a C++ class
// C++ class ABC
{

...
};

Note

For compilers that do support namespaces, use the -namespace option with
idl2cpp to generate modules on namespaces.

Complex data types
The C++ mappings for IDL structures, unions, sequences, and arrays
depend on whether or not the data members they contain are of a fixed or
variable length. These types are considered to have variable lengths. As a
result, any complex data type that contains a structure, union, sequence,
or array will also have a variable length.

Complex data types include:

• Any type

• string type, bounded or unbounded

• sequence type, bounded or unbounded

• Object reference

• Other structures or unions that contain a variable-length member

• array with variable-length elements

• typedef with variable-length elements.

18 VisiBroker-RT for C++ Programmer’s Reference

Table 2 Summary of C++ mappings for complex data types

Fixed-length structures
Example 20 and Example 21 show how fixed-length structures in IDL are
mapped to C++ code. In addition to the structure, VisiBroker-RT for C++’s
IDL compiler will also generate an example_var class for the structure. For
more information on the _var class, see “<class_name>_var”.

Example 20 Fixed-length structure definition in IDL
// IDL
struct example {

short a;
long b;

};

Example 21 Mapping a fixed-length IDL structure to C++
// C++
struct example {

CORBA::Short a;
CORBA::Long b;

};

class example_var
{

...
private:

example *_ptr;
};

Using fixed-length structures

Example 22 shows that to access the fields of the _var class ex2, the ->
operator must always be used. When ex2 goes out of scope, the memory
allocated to it will be freed automatically.

Example 22 Use of the example structure and the example_var class
// Declare an example struct and initialize its fields.
example ex1 = { 2, 5 };

// Declare a _var class and assign it to a newly created
// example structure.
// The _var points to an allocated struct with un-initialized
// fields.
example_var ex2 = new example;

// Initialize the fields of ex2 from ex1
ex2->a = ex1.b;

Variable length structures
Example 23 and Example 24 show how you could modify the example
structure, replacing the long member with a string and adding an object
reference, to change to a variable-length structure.

IDL type C++ mapping
struct (fixed length) struct and _var class
struct (variable
length)

struct and _var class (variable length members are
declared with their respective T_var class)

union class and _var class
sequence class and _var class
array array, array_slice, array_forany, and array_var

VisiBroker-RT for C++ Programmer’s Reference 19

Example 23 Variable length structure definitions in IDL
// IDL
interface ABC {

...
};
struct vexample {

short a;
ABC c;
string name;

};

Example 24 Mapping a variable-length structure to C++
// C++
struct vexample {

CORBA::Short a;
ABC_var c;
CORBA::String_var name;
(vexample& operator=(const vexample& s);

};

class vexample_var {
...

};

Notice how the ABC object reference is mapped to an ABC_var class. In a
similar fashion, the string name is mapped to a CORBA::String_var class. In
addition, an assignment operator is also generated for variable-length
structures.

Memory management for structures
The use of _var classes in variable-length structures ensures that memory
allocated to the variable-length members are managed transparently.

• If a structure goes out of scope, all memory associated with variable-
length members is automatically freed.

• If a structure is initialized or assigned and then re-initialized or
reassigned, the memory associated with the original data is always freed.

• When a variable-length member is assigned to an object reference, a
copy is always made of the object reference. If a variable-length member
is assigned to a pointer, no copying takes place.

Unions
Example 26 show how an IDL union is mapped to a C++ class with
methods for setting and retrieving the value of the data members. A data
member, named _d, of the discriminant type is also defined. The value of
this discriminant is not set when the union is first created, so an application
must set it before using the union. Setting any data member using one of
the provided methods automatically sets the discriminant.

Table 3 describes some of the methods in the un_ex class.

Table 3 Methods generated for the un_ex class

Method Description
un_ex() The default constructor sets the discriminant to the

default value but does not initialize any of the other
data members.

un_ex(const un_ex&
obj)

The copy constructor performs a deep copy of the
source object.

20 VisiBroker-RT for C++ Programmer’s Reference

Example 25 IDL union containing a struct
// IDL
struct st_ex
{

long abc;
};
union un_ex switch(long)
{

case 1: long x; // a primitive data type
case 2: string y; // a simple data type
case 3: st_ex z; // a complex data type

};

Example 26 Mapping an IDL union to a C++ class
// C++ struct st_ex
{

CORBA::Long abc;
};

class un_ex
{

private:
CORBA::Long _disc;
CORBA::Long _x;
CORBA::String_var _y;
st_ex _z;

public:
un_ex();
~un_ex();
un_ex(const un_ex& obj);
un_ex& operator=(const un_ex& obj);
void x(const CORBA::Long val);
const CORBA::Long x() const;
void y(char *val);
void y(const char *val);
void y(const CORBA::String_var& val);
const char *y() const;
void z(const st_ex& val);
const st_ex& z() const;
st_ex& z();
CORBA::Long _d();
void _d(CORBA::Long);
...

};

Managed types for unions

In addition to the un_ex class shown in Example 26, an un_ex_var class
would also be generated. See “<class_name>_var” for details on the _var
classes.

Memory management for unions

Here are some important points to remember about memory management
of complex data types within a union:

• When you use an accessor method to set the value of a data member, a
deep copy is performed. You should pass parameters to accessor
methods by value for smaller types, or by a constant reference for larger
types.

• When you set a data member using an accessor method, any memory
previously associated with that member is freed. If the member being

~un_ex() The destructor frees all memory owned by the union.
operator=(const
un_ex& obj)

The assignment operator performs a deep copy,
releasing old storage, if necessary.

Method Description

VisiBroker-RT for C++ Programmer’s Reference 21

assigned is an object reference, the reference count of that object will be
incremented before the accessor method returns.

• A char * accessor method will free any storage before ownership of the
passed pointer is assumed.

• Both const char * and String_var accessor methods will free any old
memory before the new parameter’s storage is copied.

• Accessor methods for array data members will return a pointer to the
array slice. For more information, see “Array slices”.

Sequences
IDL sequences, both bounded and unbounded, are mapped to a C++ class
that has a current length and a maximum length. The maximum length of a
bounded sequence is defined by the sequence’s type. Unbounded
sequences can specify their maximum length when their C++ constructor is
called. The current length can be modified programmatically. Example 27
and Example 28 show how an IDL sequence is mapped to a C++ class with
accessor methods.

Note

When the length of an unbounded sequence exceeds the maximum length
you specify, VisiBroker-RT for C++ will transparently allocate a larger buffer,
copy the old buffer to the new buffer, and free the memory allocated to the
old buffer. No attempt will be made, however, to free any unused memory if
the maximum length decreases.

Example 27 IDL unbounded sequence
// IDL
typedef sequence<long> LongSeq;

Example 28 Mapping an IDL unbounded sequence to a C++ class
// C++
class LongSeq
{

public:
LongSeq(CORBA::ULong max=0);
LongSeq(CORBA::ULong max=0, CORBA::ULong length,

CORBA::Long *data, CORBA::Boolean release = 0);
LongSeq(const LongSeq&);
~LongSe q();
LongSeq& operator=(const LongSeq&);
CORBA::ULong maximum() const;
void length(CORBA::ULong len);
CORBA::ULong length() const;
const CORBA::ULong& operator[](CORBA::ULong index) const;
...
static LongSeq *_duplicate(LongSeq* ptr);
static void _release(LongSeq *ptr);
static CORBA::Long *allocbuf(CORBA::ULong nelems);
static void freebuf(CORBA::Long *data);

private:
CORBA::Long* _contents;
CORBA::ULong _count;
CORBA::ULong _num_allocated;
CORBA::Boolean _release_flag;
CORBA::Long _ref_count;

};

22 VisiBroker-RT for C++ Programmer’s Reference

Table 4 Synopsis of methods generated for the unbounded sequence in
Example 28, Mapping an IDL unbounded sequence to a C++ class

Managed types for sequences

In addition to the LongSeq class shown in Example 28, a LongSeq_var class
would also be generated. See “<class_name>_var” for details on the classes.
In addition to the usual methods, there are two indexing methods defined
for sequences.

Example 29 Two indexing methods added for _var classes representing
sequences

CORBA::Long& operator[](CORBA::ULong index);
const CORBA::Long& operator[](CORBA::ULong idex) const;

Method Description
LongSeq(CORBA::ULong max=0) The constructor for an unbounded

sequence takes a maximum length
as an argument. Bounded
sequences have a defined
maximum length.

LongSeq(CORBA::ULong max=0,
CORBA::ULong length,
CORBA::Long *data,
CORBA::Boolean release=0)

This constructor allows you to set
the maximum length, the current
length, a pointer to the data buffer
associated and a release flag. If
release is not zero, VisiBroker will
free memory associated with the
data buffer when increasing the size
of the sequence. If release is zero,
the old data buffer’s memory is not
freed. Bounded sequences have all
of these parameters except for max.

LongSeq(const LongSeq&) The copy constructor performs a
deep copy of the source object.

~LongSeq(); The destructor frees all memory
owned by the sequence only if the
release flag had a non-zero value
when constructed.

operator=(const LongSeq&j) The assignment operator performs a
deep copy, releasing old storage, if
necessary.

maximum() Returns the size of the sequence.
length() Two methods are defined for setting

and returning the length of the
sequence.

operator[]() Two indexing operators are
provided for accessing an element
within a sequence. One operator
allows the element to be modified
and one allows only read access to
the element.

_release() Releases the sequence. If the
constructor’s release flag was non-
zero when the object was created
and the sequence element type is a
string or object reference, each
element will be released before the
buffer is released.

allocbuf() freebuf() You should use these two static
methods to allocate or free any
memory used by a sequence

VisiBroker-RT for C++ Programmer’s Reference 23

Memory management for sequences

You should carefully consider the memory management issues listed below.
Example 31 contains sample C++ code that illustrates these points.

• If the release flag was set to a non-zero value when the sequence was
created, the sequence will assume management of the user’s memory.
When an element is assigned, the old memory is freed before ownership
of the memory on the right-hand side of the expression is assumed.

• If the release flag was set to a non-zero value when a sequence
containing strings or object references was created, each element will be
released before the sequence’s contents buffer is released and the object
is destroyed.

• Avoid assigning a sequence element using the [] operator unless the
release flag was set to one, or memory management errors may occur.

• Sequences created with the release flag set to zero should not be used as
input/output parameters because memory management errors in the
object server may result.

• Always use allocbuf and freebuf to create and free storage used with
sequences.

Example 30 IDL specification for an unbounded sequence
// IDL
typedef sequence<string, 3> String_seq;

Example 31 Example of memory management with two bounded sequences
// C++
char *static_array[] = (“1”, “2”, “3”};
char *dynamic_array = StringSeq::allocbuf(3);

// Create a sequence, release flag is set to FALSE by default
StringSeq static_seq(3, static_array);

// Create another sequence, release flag set to TRUE
StringSeq dynamic_seq(3, dynamic_array, 1);

static_seq[1] = “1”;// old memory not freed, no copying occurs

char *str = string_alloc(2);
dynamic_seq[1] = str;// old memory is freed, no copying occurs

Arrays
IDL arrays are mapped to C++ arrays, which can be statically initialized. If
the array elements are strings or object references, the elements of the
C++ array will be of the type _var. Example 32 and Example 33 show three
arrays with different element types.

Example 32 IDL array definitions
// IDL interface Intf
{

...
};
typedef long L[10];
typedef string S[10];
typedef Intf A[10];

Example 33 Mapping IDL arrays to C++ arrays
// C++
typedef CORBA::Long L[10];
typedef CORBA::String_var S[10];
typedef Intf_var A[10];

24 VisiBroker-RT for C++ Programmer’s Reference

The use of the managed type _var for strings and object references allows
memory to be managed transparently when array elements are assigned.

Array slices

The array_slice type is used when passing parameters for multi-
dimensional arrays. VisiBroker’s IDL compiler also generates a _slice type
for arrays that contains all but the first dimension of the array. The array
_slice type provides a convenient way to pass and return parameters.
Example 34 and Example 35 show two examples of the _slice type.

Example 34 IDL definition of multi-dimensional arrays
// IDL
typedef long L[10];
typedef string str[1][2][3];

Example 35 Generation of the _slice type
// C++
typedef CORBA::Long L_slice;
typedef CORBA::String_var str_slice[2][3];

Managed types for arrays

In addition to generating a C++ array for IDL arrays, VisiBroker’s IDL
compiler will also generate a _var class. This class offers some additional
features for array.

• operator[] is overloaded to provide intuitive access to array elements.

• Constructor and assignment operator are provided that take a pointer to
an array _slice object as an argument.

Example 36 IDL definition of an array
// IDL
typedef long L[10];

Example 37 _var class generated for arrays
// C++ class L_var
{

public:
L_var();
L_var(L_slice *slice);
L_var(const L_var& var);
~L_var();
L_var& operator=(L_slice *slice);
L_var& operator=(const L_var& var);
CORBA::Long& operator[](CORBA::ULong index);
operator L_slice *();
operator L &() const;
...

private:
L_slice*_ptr;

};

Type-safe arrays

A special _forany class is generated to handle arrays with elements mapped
to the type any. As with the _var class, the _forany class allows you to access
the underlying array type. The _forany class does not release any memory
upon destruction because the

_any type maintains ownership of the memory. The _forany class is not
implemented as a typedef because it must be distinguishable from other
types for overloading to function properly.

VisiBroker-RT for C++ Programmer’s Reference 25

Example 38 IDL array definition
// IDL
typedef long L[10];

Example 39 _for any class generated for an IDL array
// C++
class L_forany
{

public:
L_forany();
L_forany(L_slice *slice);
~L_forany();
CORBA::Long& operator[](CORBA::ULong index);
const CORBA::Long& operator[](CORBA::ULong index) const;
operator L_slice *();
operator L &() const;
operator const L & () const;
operator const L& () const;
L_forany& operator=(const L_forany obj);
...

private:
L_slice*_ptr;

};

Memory management for arrays

VisiBroker’s IDL compiler generates four functions for allocating,
duplicating, copying, and releasing the memory associated with arrays.
These functions allow the ORB to manage memory without having to
override the new and delete operators.

Example 40 IDL array definition
// IDL
typedef long L[10];

Example 41 Methods generated for allocating and releasing array memory
// C++
inline L_slice *L_alloc();// Dynamically allocates array.

// Returns NULL on failure.
inline void L_free(L_slice *data);// Releases array memory

// allocated with L_alloc.
inline void L_copy(L:slice *_to, L_slice *_from)

//Copies the contents of the
//_from array to the _to array
//inline L_slice *L_dup
//(const L_slice *_date)
//Returns a new copy of _date

//array

Principal
A Principal represents information about client applications that are
making operation requests on an object implementation. The IDL interface
of Principal does not define any operations. The Principal is
implemented as a sequence of octets. The Principal is set by the client
application and checked by the ORB implementation. VisiBroker-RT for C++
treats the Principal as an opaque type and its contents are never
examined by the ORB.

Valuetypes
An IDL valuetype is mapped to a C++ class with the same name as the IDL
valuetype. This class is an abstract base class with pure virtual accessor and
modifier functions corresponding to the state members of the valuetype and
pure virtual functions corresponding to the operations of valuetype.

26 VisiBroker-RT for C++ Programmer’s Reference

A C++ class whose name is formed by adding an “OBV_” to the fully scoped
name of the valuetype provides default implementations for the accessors
and modifiers of the abstract base class.

Applications are responsible for the creation of valuetype instances. After
creation, these applications deal with those instances using only pointers.
Unlike object references which map to C++ _ptr types that may be
implemented either as actual C++ pointers or as C++ pointer-like objects,
handles to C++ valuetype instances are actual C++ pointers. This helps to
distinguish them from object references.

Unlike mapping for interfaces, the reference counting for valuetype must
be implemented by the instance of the valuetypes. The _var type for a
valuetype automates the reference counting. Example 42 illustrates these
features.

Example 42 _var type for a valuetype to automate reference counting
Valuetype Example { Short op1();
Long op2(in Example x); Private short val1;
Public long val2;
};

Example 43 shows the C++ mapping of the IDL definition for the following
three classes.

Example 43 C++ mapping for the IDL definitions
class Example : public virtual CORBA::ValueBase {
public:

virtual CORBA::Short op1() = 0;
virtual CORBA::Long op2(Example_ptr _x) = 0;

// pure virtual getter/setters for all public state
// These accessors are just like C++ union members since
// by reference accessors allow read/write access
virtual void val2(const CORBA::Long _val2) = 0;
virtual const CORBA::Long val2() const = 0;

protected:
Example() {}
virtual ~Example() {}
virtual void val1(const CORBA::Short _val1) = 0;
virtual const CORBA::Short val1() const = 0;

private:
void operator=(const Example&);
};
class OBV_Example: public virtual Example{

public:
virtual void val2(const CORBA::Long _val2) {
_obv_val2 = _val2;
}
virtual const CORBA::Long val2() const {
return _obv_val2;
}

protected:
virtual void val1(const CORBA::Short _val1) {
_obv_val1 = _val1;
}
virtual const CORBA::Short val1() const {

return _obv_val1; }
OBV_Example() {}
virtual ~OBV_Example() {}
OBV_Example(const CORBA::Short _val1,

const CORBA::Long _val2) {
_obv_val1 = _val1;
_obv_val2 = _val2;

}
CORBA::Short _obv_val1;
CORBA::Long _obv_val2;

VisiBroker-RT for C++ Programmer’s Reference 27

};

class Example_init : public CORBA::ValueFactoryBase {
};

The _init class is a provision for implementing a Factory for the
Valuetypes. Since valuetypes are passed by value over the wire, the
receiving end of a streamed out valuetype usually implements a factory to
create a valuetype instance from the stream. Both the Server and the Client
should implement it if there is a possibility of receiving a valuetype over the
stream. The _init class, as shown in Example 44, must also implement
create_for_unmarshal that returns a CORBA::ValueBase *.

Example 44 -init class example
class Example_init_impl: public Example_init{
public:

 Example_init; _impl();
virtual ~Example_init();

CORBA::ValueBase * create_for_unmarshal() {
...// return an Example_ptr

}
};

A valuetype can derive from other valuetypes as follows:

Example 45 IDL for the valuetype derived from other valuetypes
Valuetype DerivedExample: Example{
Short op3();
};

The C++ interfaces for the DerivedExample class are as follows:

Example 46 C++ generate for the derived valuetype
// idl valuetype: DerivedExample
class DerivedExample : public virtual Example {
public:

virtual CORBA::Short op3() = 0;
protected:

DerivedExample() {}
virtual ~DerivedExample() {}

private:
void operator=(const DerivedExample&);

};
class OBV_DerivedExample: public virtual DerivedExample,

public virtual OBV_Example{
protected:

OBV_DerivedExample() {}
virtual ~OBV_DerivedExample() {}

};
class DerivedExample_init : public CORBA::ValueFactoryBase {
};

A derived valuetype can be truncated to the base valuetype as shown in
Example 47. This is required if the receiving end of the stream does not
know how to construct a derived valuetype but can construct only the base
valuetype.

Example 47 truncated derived valuetype
valuetype DerivedExample : truncatable Example {
};

The mapping is similar to regular derived valuetypes except that extra
information is added to the Type information of the DerivedExample class to
indicate the truncatability to the base class Example.

A valuetype can not derive from an interface but it can support one or more
interfaces by providing all the operations of the interfaces. An IDL keyword,
supports, is introduced for this purpose.

28 VisiBroker-RT for C++ Programmer’s Reference

Example 48 IDL keyword support for the derived valuetype
interface myInterface{

 long op5();
};

valuetype IderivedExample supports myInterface {
Short op6();

};

The C++ mapping for this will be as follows:

Example 49 C++ for the derived valuetype
// idl valuetype: DerivedExample
class IderivedExample : public virtual CORBA::ValueBase {
public:

virtual CORBA::Short op6() = 0;
virtual CORBA::Long op5() = 0;

protected:
IderivedExample() {}
virtual ~IderivedExample() {}

private:
void operator=(const IderivedExample&);

};

class OBV_IderivedExample: public virtual IderivedExample{
protected:

OBV_IderivedExample() {}
virtual ~OBV_IderivedExample() {}

};

For reference counting, the C++ mapping provides two standard classes.
The first class is CORBA::DefaultValueRefCountBase, which serves as a
base class for any application provided concrete valuetypes that do not
derive from any IDL interfaces. For these kinds of valuetypes, the
applications are also free to implement their own reference counting
mechanisms. The second class is PortableServer::ValueRefCountBase,
which must serve as a base class for any application provided a concrete
valuetype class which does derive from one or more IDL interfaces.

Valuebox
A valuebox is a valuetype applied to structures, unions, any, string, basic
types, object references, enums, sequence, and array types. These types
do not support method, inheritance, or interfaces. A valuebox is ref counted
and is derived from CORBA::DefaultValueRefCountBase. The mapping is
different for different underlying types. All valuebox C++ classes provide
_boxed_in(), boxed_out(), and _boxed_inout() for mapping to the
underlying types. The factory for a valuebox id automatically registered by
the generated stub.

See the OMG CORBA 2.3 idl2cpp specification, Chapter 1.17, for more
information. The factory for a valuebox is automatically registered by the
generated stub.

Abstract Interfaces
Abstract interfaces are used to determine at runtime, if an object is passed
by reference (IOR) or by value (valuetype.) A prefix “abstract” is used for
this purpose before an interface declaration.

VisiBroker-RT for C++ Programmer’s Reference 29

Example 50 IDL code sample
Abstract interface foo {
Void func():

}

A valuetype that supports an abstract interface, can be passed as that
abstract interface. The abstract interface is declared as follows:

Example 51 Valuetype as the abstract interface
Valuetype vt supports foo {
...

};

Similarly, an interface that needs to be passed as an abstract interface is
declared as follows:

Example 52 Interface as the abstract interface
interface intf : foo {
}

The c++ mapping for the previously declared abstract interface foo, results
in the following classes:

Example 53 C++ mapping of the abstract interface
class foo_var : public CORBA::_var{

...
}
class foo_out{

...
};
class foo : public virtual CORBA:::AbstractBase{

private;
...

void operator=(const foo&) {}
protected:

foo();
foo(const foo& ref) {} virtual ~foo() {}

public:
static CORBA::Object* _factory():
foo_ptr _this();
static foo_ptr _nil() { ... }
static foo_ptr _narrow(CORBA::AbstractBase* _obj);
static foo_ptr _narrow(CORBA::Object_ptr _obj);
static foo_ptr _narrow(CORBA::ValueBase_ptr _obj);

virtual void func() = 0;

...
};
class _vis_foo_stub : public virtual foo, public virtual
CORBA_Object {

public :
_vis_foo_stub() {}
virtual ~_vis_foo_stub() {}
...
virtual void func():

...
}

There is a _var class, an _out class, and a class derived from
CORBA::AbstractBase that implements the methods described in the
previous code samples. Example 53 also includes three _narrow methods
that can be used to narrow an object, abstract interface, or a valuetype to
the declared abstract interface type. Example 53 also includes a dummy
stub stub generated for the foo class. This stub accommodates cases where
full type information is not available. See the CORBA 2.3 IDL2CPP
specification, section 1.18, Mapping for Abstract Interfaces for more
information on this topic.

30 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 31

Generated Interfaces and
Classes
This chapter describes classes generated by VisiBroker-RT for C++’s IDL
compiler, their uses, and their features.

Overview
VisiBroker-RT for C++’s IDL compiler can generate a variety of classes that
makes it easier for you to develop client applications and object servers.
Many of these generated classes are available for CORBA classes.

• stub classes
• servant classes
• tie
• classes
• var classes

<Interface_name>

class <interface_name>

The <interface_name> class is generated for a particular IDL interface and,
is intended for use by client applications. This class provides all of the
methods defined for a particular IDL interface. When a client uses an object
reference to invoke methods on the object, the stub methods are actually
invoked. The stub methods allow a client operation request to be packaged,
sent to the object implementation, and the results to be reflected. This
entire process is transparent to the client application.

Note

You should never modify the contents of a stub class generated by the IDL
compiler.

<Interface_name>ObjectWrapper
This class is used to derive typed object wrappers and is generated for all
your interfaces when you invoke the idl2cpp command with the -
obj_wrapper option, as described in “-obj_wrapper” on page 2-1. For
complete details on using the object wrapper feature, see the VisiBroker-RT
for C++ Programmer’s Guide.

static void add(CORBA::ORB_ptr orb, CORBA::ObjectFactory factory,
VISObjectWrapper::Location loc);

Adds a typed object wrapper from a client application. If more than one
typed object wrapper is installed, they will be invoked in the order in which
they were registered.

Parameter Description
orb The ORB the client wishes to use, returned

by the ORB_init method.

32 VisiBroker-RT for C++ Programmer’s Reference

static void remove(CORBA::ORB_ptr orb, CORBA::ObjectFactory
factory, VISObjectWrapper::Location loc);

Removes an un-typed object wrapper from a server application.

POA<class_name>

class _POA_<class_name>

The _POA_<class_name> class is an abstract base class generated by the IDL
compiler, which is used to derive an object implementation class. Object
implementations are usually derived from a servant class, which provides
the necessary methods for receiving and interpreting client operation
requests.

The previous _sk_<class_name> is only generated if you use idl2cpp -boa.

tie<class_name>

class _tie_<class_name>

The _tie_<class_name> class is generated by the IDL compiler to aid in the
creation of delegation implementations. The tie class allows you to create
an object implementation that delegates all operation requests to another
object. This allows you to use existing objects that you do not wish to
inherit from the CORBA::Object class.

<class_name>_var

class <class_name>_var

The <class_name>_var class is generated for an IDL interface and provides
simplified memory management semantics.

factory The factory method for the object wrapper
class that you want to add.

loc The location of the object wrapper being
added, which should be one of the following
values:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

Parameter Description
orb The ORB the client wishes to use, returned by the

ORB_init method.
factory The factory method for the object wrapper class that

you want to remove.
loc The location of the object wrapper being removed,

which should be one of the following values:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

Parameter Description

VisiBroker-RT for C++ Programmer’s Reference 33

34 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 35

Core Interfaces and Classes
This chapter describes the VisiBroker for C++ core interfaces and classes.

PortableServer::AdapterActivator
Adapter activators are associated with Portable Object Adapters (POAs)
which they supply with the ability to create child POAs on demand, as a
side-effect of receiving a request which names the child POA (or one of its
children), or when the find_POA method is called with an activate
parameter set to TRUE.

PortableServer::AdapterActivator methods

CORBA::Boolean unknown_adapter(POA_ptr parent, const char*
name);

This method is called when the ORB receives a request for an object
reference which identifies a target POA that does not exist. The ORB invokes
this method once for each POA that must be created in order for the POA to
exist (starting with the ancestor POA closest to the root POA).

BindOptions
Note

This structure is deprecated since VisiBroker 4.0.

struct BindOptions

This structure is used to specify options to the _bind method, described in
the section “Object”. Each ORB instance has a global BindOptions structure
that is used for all _bind invocations that do not specify bind options. You
can modify the default bind options using the
Object::_default_bind_options method.

Bind options may also be set for a particular object and will remain in effect
for the lifetime of the connection to that object.

Include file
The corba.h file should be included when you use this structure.

Parameter Description
parent The parent POA associated with the adapter activator

on which the method is to be invoked.
name The name of the POA to be created (relative to the

parent).

36 VisiBroker-RT for C++ Programmer’s Reference

BindOptions members

CORBA::Boolean defer_bind;

If set to TRUE, the establishment of the connection between client and the
object implementation will be delayed until the first client operation is
issued. If set to 3FALSE, the _bind method will establish the connection
immediately.

CORBA::Boolean enable_rebind;

If set to TRUE and the connection is lost, due to a network failure or some
other error, the ORB will attempt to re-establish a connection to a suitable
object implementation. If set to FALSE, no attempt will be made to
reconnect the client with the object implementation.

CORBA::Long max_bind_tries;

This member has been disabled and is no longer used by the ORB. Setting
this field has no effect on the _bind behavior.

CORBA::ULong send_timeout;

This member specifies the maximum time in seconds that a client is to block
waiting to send an operation request. If the request times out,
CORBA::NO_RESPONSE exception will be raised and the connection to the
server will be destroyed. The default value of 0 implies the client should
block indefinitely.

CORBA::ULong receive_timeout;

This member specifies the maximum time in seconds that a client is to block
waiting for a response to an operation request. If the request times out,
CORBA::NO_RESPONSE exception will be raised and the connection to the
server will be destroyed. The default value of 0 implies the client should
block indefinitely.

CORBA::ULong connection_timeout;

This member specifies the maximum time in seconds that a client is to wait
for a connection. If the time specified is exceeded, a CORBA::NO_IMPLEMENT
exception is raised. The default value of 0 implies that the default system
time-out for connections should be used.

BOA
Note

This class is deprecated since VisiBroker 4.0

class BOA

The BOA class represents the Basic Object Adaptor and provides methods
for creating and manipulating objects and object references. Object servers
use the BOA to activate and deactivate object implementations and to
specify the thread policy they wish to use.

You do not instantiate a BOA object. Instead, you obtain a reference to a BOA
object by invoking the ORB::BOA_init method, described on page 5-17.

VisiBroker-RT for C++ Programmer’s Reference 37

VisiBroker-RT for C++ provides extensions to the CORBA BOA specification
which are covered in “VisiBroker extensions to CORBA::BOA” on page 5-7.
These methods provide for the management of connections, threads, and
the activation of services.

Include file
The corba.h file should be included when you use this class.

CORBA::BOA methods

void change_implementation(const
extension::CreationImplDef& _old_info, const
extension::CreationImplDef& _new_info)

This method changes the implementation definition associated with the
specified object. You should use this method with caution. The
implementation name should not be changed and you must ensure that the
new implementation definition specifies the same type of object as the
original definition. If the ImplementationDef_ptr does not point to a
CreationImplDef pointer, this method will fail.

CORBA::Object_ptr create(const CORBA::ReferenceData&,
extension::CreationImplDef&)

This method registers the specified implementation with the OAD.

Note

Since the OAD is not supported in VisiBroker-RT for C++ this method
always returns CORBA::Object::_nil().

void deactivate_impl(extension::ImplementationDef_ptr)

This method causes requests to the implementation to be discarded. The
method deactivates the implementation specified by the
ImplementationDef_ptr. Once this method is called, no further client
requests are delivered to the object within this implementation until the
objects and implementation are re-activated. Calling the impl_is_ready or

Parameter Description
Object_ptr A pointer to the object whose

implementation is to be changed.
impl A pointer to the new implementation

definition for this object. This must actually
be a CreationImplDef_ptr cast to an
ImplementationDef_ptr.

Parameter Description
ReferenceData This parameter is not used, but is provided for

compliance with the CORBA specification.
CreationImplDef This pointer’s true type is CreationImplDef. It provides

the interface name, object name, path name of the
executable and the activation policy and other
parameters.

38 VisiBroker-RT for C++ Programmer’s Reference

obj_is_ready methods causes the implementation to again accept
requests.

void deactivate_obj(CORBA::Object_ptr)

This method requests the BOA to deactivate the specified object. Once this
method is invoked, the BOA does not deliver any requests to the object until
obj_is_ready or impl_is_ready is invoked.

void dispose(CORBA::Object_ptr)

This method unregisters the implementation of the specified object from the
Object Activation Daemon. Once this method is invoked, all references to
the specified object are invalid and any connections to this object
implementation are broken. If the object has been allocated, it is the
application’s responsibility to delete the object.

Note

Since the OAD is not supported in VisiBroker-RT for C++ this method does
nothing.

static CORBA::BOA_ptr _duplicate(CORBA::BOA_ptr ptr);

This static method duplicates the specified BOA pointer and returns a
pointer to the duplicated BOA.

void exit_impl_ready()

This method provides backward compatibility with earlier releases of
VisiBroker-RT for C++. It invokes BOA::shutdown, described in “void
shutdown()” on page 5-7, which causes a previous invocation of the
impl_is_ready method to return.

Parameter Description
ImplementationDef_ptr This pointer’s true type is CreationImplDef and

provides the interface name, object name, path
name of the executable and activation policy, along
with other parameters.

Parameter Description
Object_ptr A pointer to the object to be deactivated.

Parameter Description
ReferenceData This parameter is not used, but is provided for

compliance with the CORBA specification.
CreationImplDef This pointer’s true type is CreationImplDef. It provides

the interface name, object name, path name of the
executable and the activation policy and other
parameters.

Object_ptr Pointer to the object to be unregistered.

Parameter Description
ptr The ORB pointer to be duplicated.

VisiBroker-RT for C++ Programmer’s Reference 39

CORBA::ReferenceData_ptr get_id(CORBA::Object_ptr)

This method returns the reference data for the specified object. The
reference data is set by the object implementation at activation time and is
guaranteed to remain constant throughout the life of the object.

CORBA::Principal_ptr get_principal(CORBA::Object_ptr
obj, CORBA::Environment_ptr env=NULL)

This method returns the Principal object associated with the specified
object. This method may only be called by an object implementation during
the processing of a client operation request.

void impl_is_ready(const char *service_name,
extension::Activator_ptr activator, CORBA::Boolean
block = 1)

This method instructs the BOA to delay activation of the object
implementation associated with the specified service_name until a client
requests the service. Once a client requests the service, the specified
Activator object is to be used to activate the object implementation. If block
is set to 0, this method will block the caller until the exit_impl_ready
method is invoked.

void impl_is_ready(extension::ImplementationDef_ptr
impl=NULL)

This method notifies the BOA that one or more objects in the server is ready
to receive service requests. This method blocks the caller until the
exit_impl_ready method is invoked. If all objects that the implementation
is offering have been created through C++ instantiation and activated using
the obj_is_ready method, do not specify the ImplementationDef_ptr.

An object implementation may offer only one object and may want to defer
the activation of that object until a client request is received. In these
cases, the object implementation does not need to first invoke the

Parameter Description
obj A pointer to the object whose reference data is to be

returned.

Parameter Description
obj A pointer to the object whose implementation is to be

changed.
env A pointer to the Environment object associated with this

Principal.

Parameter Description
service_name The service name associated with the specified

Activator object.
activator The Activator to be used to activate the object

implementation
block If set to 1, indicates that this method should block the

caller. If set to zero, the method will not block. The
default behavior is to block.

40 VisiBroker-RT for C++ Programmer’s Reference

obj_is_ready method. Instead, it may simply invoke this method, passing
the ActivationImplDef pointer as its single object.

static CORBA::BOA_ptr _nil()

This static method returns a NULL BOA pointer that can be used for
initialization purposes.

void obj_is_ready(CORBA::Object_ptr obj,
extension::ImplementationDef_ptr impl_ptr = NULL)

This method notifies the BOA that the specified object is ready for use by
clients. There are two different ways to use this method:

• Objects that have been created using C++ instantiation should only
specify a pointer to the object and let the ImplementationDef_ptr default
to NULL.

• Objects whose creation is to be deferred until the first client request is
received should specify a NULL Object_ptr and provide a pointer to an
ActivationImplDef object that has been initialized.

static RegistrationScope scope()

This static method returns the registration scope of the BOA. The
registration scope of an object can be SCOPE_GLOBAL or SCOPE_LOCAL. Only
objects with a global scope are registered with the osagent.

static void scope(RegistrationScope val)

This static method changes the registration scope of the BOA to the
specified value.

void shutdown()

This method causes a previous invocation of the impl_is_ready method to
return.

Parameter Description
impl This pointer’s true type is ActivationImplDef and

provides the interface name, object name, path name
of the executable and activation policy, along with other
parameters. See “ImplementationDef” for a complete
discussion of the ActivationImplDef class.

Parameter Description
obj A pointer to the object to be activated.
impl_ptr An optional pointer to an ActivationImplDef

object.

Parameter Description
val The scope for this BOA. Must be one of the following

values:

• LOCAL_SCOPE—For transient objects.

• GLOBAL_SCOPE—For objects registered with the
Smart Agent.

VisiBroker-RT for C++ Programmer’s Reference 41

VisiBroker extensions to CORBA::BOA

CORBA::ULong connection_max()

This method returns the maximum number of connections allowed.

void connection_max(CORBA::ULong max_conn)

This method is used by servers to set the maximum number of connections
allowed. This property can also be set by using the command-line argument
-OAConnectionMax, described in “Appendix: Using Command-Line Options”.

CORBA::ULong thread_max()

This method returns the maximum number of threads allowed if the
TSession thread policy has been selected.

void thread_max(CORBA::ULong max)

This method sets the maximum number of threads allowed when the
TSession thread policy has been selected. If the current number of threads
exceeds this number, the necessary number of extra threads are destroyed
as soon as they are no longer in use.

CORBA::ULong thread_stack_size()

This method returns the maximum number of threads allowed when the
TPool thread policy is selected.

void thread_stack_size(CORBA::ULong size)

This method sets the maximum number of threads allowed when the TPool
thread policy is selected. If the current number of threads exceeds that
number, the necessary number of extra threads is destroyed as soon as
they are no longer in use.

CompletionStatus

enum CompletionStatus

This enumeration represents how an operation request completed.

Parameter Description
max_conn The maximum number of connections allowed.

Parameter Description
max The maximum number of threads to be allowed.

Parameter Description
size The new stack size to be set.

42 VisiBroker-RT for C++ Programmer’s Reference

CompletionStatus members

Context

class CORBA::Context

The Context class represents information about a client application’s
environment that is passed to a server as an implicit parameter during
static or dynamic method invocations. It can be used to communicate
special information that needs to be associated with a request, but is not
part of the method’s argument list.

The Context class consists of a list of properties, stored as name-value
pairs, and provides methods for setting and manipulating those properties.
A Context contains an NVList object and chains the name-value pairs
together.

A Context_var class is also available and provides simpler memory
management semantics.

See also ORB::get_default_context in “CORBA::Status
get_default_context(CORBA::Context_ptr&);”.

Include file

The corba.h file should be included when you use this class.

Context methods

const char *context_name() const;

This method returns the name used to identify this context. If no name was
provided when this object was created, it returns a NULL value.

void create_child(const char * name, CORBA::Context_out
Context_ptr);

This method creates a child Context for this object.

COMPLETED_YES = 0 Indicates the operation request completed
successfully.

COMPLETED_NO = 1 Indicates the operation request was not completed,
due to some sort of exception or error.

COMPLETED_MAYBE = 2 Indicates that the operation request may have
completed, in spite of an exception or error.

Parameter Description
name The name of the new Context object.
Context_ptr A reference to newly created child Context.

VisiBroker-RT for C++ Programmer’s Reference 43

void delete_values(const char *name);

This method deletes one or more properties from this object.

static CORBA::Context_ptr _duplicate(CORBA::Context_ptr
ctx);

This method duplicates the specified object.

void get_values(const char *start_scope, CORBA::Flags,
const char *name, CORBA::NVList_out NVList_ptr)

This method searches the Context object hierarchy and retrieves one or
more of the name/value pairs specified by the name parameter. It then
creates an NVList object and places the name/value pairs in the NVList.

The start_scope parameter specifies the name of the context where the
search is to begin. If the property is not found, the search continues up the
Context object hierarchy until a match is found or until there are no more
Context objects to search.

static CORBA::Context_ptr _nil();

This method returns a NULL Context_ptr suitable for initialization purposes.

CORBA::Context_ptr parent();

This method returns a pointer to the parent Context. If there is no parent
Context, a NULL value is returned.

static void _release(CORBA::Context_ptr ctx);

This static method releases the specified Context object. Once the object’s
reference count reaches zero, the object is automatically deleted.

Parameter Description
name The name of the property, or properties, to be deleted.

To delete all matching properties, the name may
contain a trailing “*” wildcard character. To delete all
properties, specify a single asterisk.

Parameter Description
ctx The object to be duplicated.

Parameter Description
start_scope The name of the Context object at which to start the

search. If set to CORBA::Context::_nil(), the search
begins with the current Context. To restrict the search
scope can to just the current Context, specify
CORBA::CTX_RESTRICT_SCOPE.

Flags An exception is raised if no matching context name is
found.

name The property name to search for. A trailing “*” wildcard
character may be used to retrieve all properties that
match name.

NVList_ptr A reference to the list of properties found

Parameter Description
ctx The object to be released.

44 VisiBroker-RT for C++ Programmer’s Reference

void set_one_value(const char *name, const
CORBA::Any&);

This method adds a property to this object using the specified name and
value.

void set_values(CORBA::NVList_ptr _list);

This method adds one or more properties to this object, using the name/
value pairs specified in the NVList. When you create the NVList object to
be used as an input parameter to this method, you must set the Flags field
to zero and each Any object added to the NVList must have its TypeCode
set to TC_string. For more information on the NVList class, see “NVList
methods” in this guide.

PortableServer::Current

class PortableServer::Current : public CORBA::Current

This class provides methods with access to the identity of the object on
which the method was called. The Current class provides support for
servants which implement multiple objects but can be used within the
context of POA-dispatched method invocations on any servant.

PortableServer::Current methods

PortableServer::POA get_POA(); POA *get_POA();

This method returns a reference to the POA which implements the object in
whose context it is called. If this method is called from outside the context
of a POA-dispatched method, a NoContext exception is raised.

PortableServer::ObjectId get_object_id();

This method returns the ObjectId which identifies the object in whose
context it was called. If this method is called from outside the context of a
POA-dispatched method, a NoContext exception is raised.

Exception

class CORBA::Exception

The Exception class is the base class of the system exception and user
exception classes. For more information, see “SystemException” in this guide.

Include file
You should include the corba.h file when using this class.

Parameter Description
name The property’s name.
const Any& The property’s value.

Parameter Description
_list list of name/value pairs to be added to this

object.

VisiBroker-RT for C++ Programmer’s Reference 45

Object

class CORBA::Object

All ORB objects are derived from the Object class, which provides methods
for binding clients to objects and manipulating object references as well as
querying and setting an object’s state. The methods offered by the Object
class are implemented by the ORB.

VisiBroker-RT for C++ provides extensions to the CORBA Object
specification. These are covered in ““VisiBroker extensions to CORBA::Object”.

Include file
You should include the file corba.h when using this class.

CORBA::Object methods

void _create_request(CORBA::Context_ptr ctx, const char
*operation, CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result, CORBA::Request_out
request, CORBA::Flags req_flags);

This method creates a Request for an object implementation that is suitable
for invocation with the Dynamic Invocation Interface.

void _create_request(CORBA::Context_ptr ctx, const char
*operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result,
CORBA::ExceptionList_ptr eList,
CORBA::ContextList_ptr ctxList,
CORBA::Request_out request,
CORBA::Flags req_flags);

This method creates a Request for an object implementation that is suitable
for invocation with the Dynamic Invocation Interface.

Parameter Description
ctx The Context associated with this request. For more

information, see “CompletionStatus”.
operation The name of the operation to be performed on the object

implementation.
arg_list A list of arguments to pass to the object implementation.

See “NVList methods” for more information.
result The result of the operation. See “NamedValue methods” for

more information.
request A pointer to the Request that is created. See “Request

methods” for more information.
req_flags This flag must be set to OUT_LIST_MEMORY if one or more

of theNamedValue items in arg_list is an output
argument.

Parameter Description
ctx The Context associated with this request. For more

information, see “CompletionStatus”.
operation The name of the operation to be performed on the object

implementation.

46 VisiBroker-RT for C++ Programmer’s Reference

static CORBA::Object_ptr _duplicate(CORBA::Object_ptr
obj);

This static method duplicates the specified Object_ptr and returns a
pointer to the object. The object’s reference count is increased by one.

CORBA::InterfaceDef_ptr _get_interface();

This method returns a pointer to this object’s interface definition. See
“InterfaceDef methods” for more information.

CORBA::ULong _hash(CORBA::ULong maximum);

This method returns a hash value for this object. This value will not change
for the lifetime of this object, however the value is not necessarily unique. If
two objects return different hash values, then they are not identical. The
upper bound of the hash value may be specified. The lower bound is zero.

CORBA::Boolean _is_a(const char *logical_type_id);

This method returns TRUE if this object implements the interface associated
with the repository id. Otherwise, it returns FALSE.

CORBA::Boolean _is_equivalent(CORBA::Object_ptr
other_object);

This method returns TRUE if the specified object pointer and this object
point to the same object implementation. Otherwise, it returns FALSE.

static CORBA::Object_ptr _nil();

This static method returns a NULL pointer suitable for initialization purposes.

arg_list A list of arguments to pass to the object implementation.
See “NVList methods” for more information.

result The result of the operation. See “NamedValue methods” for
more information.

eList A list of exceptions for this request.
ctxList A list of Context objects for this request.
request A pointer to the Request that is created. See “Request

methods” for more information.
req_flags This flag must be set to OUT_LIST_MEMORY if one or

more of the NamedValue items in arg_list is an output
argument.

Parameter Description
obj The object pointer to be duplicated.

Parameter Description
maximum The upper bound of the hash value returned.

Parameter Description
logical_type_id The repository identifier to check

Parameter Description
other_object Pointer to an object that is to be compared to this

object.

Parameter Description

VisiBroker-RT for C++ Programmer’s Reference 47

CORBA::Boolean _non_existent();

This method returns TRUE if the object represented by this object reference
no longer exists.

CORBA::Request_ptr _request(const char* operation);

This method creates a Request suitable for invoking methods on this object.
A pointer to the Request object is returned. See “Request methods” for more
information.

VisiBroker extensions to CORBA::Object

Note

The following method is deprecated since VisiBroker 4.0.

CORBA::BindOptions* _bind_options();

This method returns a pointer to the bind options that will be used for this
object only. For more information, see “BindOptions”.

Note

The following method is deprecated since VisiBroker 4.0.

void _bind_options(const CORBA::BindOptions& opt);

This method sets the bind options for this object only. The options that are
set will remain in effect for the lifetime of the proxy object. Any changes to
time-out values will apply to all subsequent send and receive operations as
well as any re-bind operations. For more information, see “BindOptions”.

static CORBA::Object_ptr _bind_to_object(const char
*rep_id, const char *object_name=NULL, const char
*host_name=NULL, const CORBA::BindOptions
*options=NULL, CORBA::ORB_ptr orb=NULL);

This method attempts to bind to the object with the specified repository_id
and object_name, on the specified host, using the specified BindOptions
and ORB.

NOTE:
This _bind method must be used if the servant was activated with a POA
having the bind_policy value of "BY_INSTANCE".

Parameter Description
operation The name of the object method to be invoked.

Parameter Description
opt The new bind options for this object.

Parameter Description
rep_id The repository ID of the desired object.
object_name The name of the desired object.
host_name The name of the desired host where the object

implementation is executing.

48 VisiBroker-RT for C++ Programmer’s Reference

static CORBA::Object_ptr _bind_to_object(const char
*logical_type_id, const char *poa_name=NULL, const
CORBA_Octect_sequence& oid, const char
*host_name=NULL, const CORBA::BindOptions
*options=NULL, CORBA::ORB_ptr orb=NULL);

This method attempts to bind to the object with the specified repository_id
and object_name, on the specified host, using the specified BindOptions
and ORB.

NOTE:

This _bind method must be used if the servant was activated with a POA
having the bind_policy value of "BY_POA". If a bind_policy is not specified
during POA creation the default behavior for servant activation is "BY_POA".

Note

The following method is deprecated since VisiBroker 4.0.

CORBA::BOA _boa() const;

This method returns a pointer to the Basic Object Adaptor with which this
object is registered.

static CORBA::Object_ptr _clone(CORBA::Object_ptr obj,
CORBA::Boolean reset_connection = 1UL);

This method clones the specified object reference.

Note

The following method is deprecated since VisiBroker 4.0.

static const CORBA::BindOptions *
_default_bind_options();

This method returns a pointer to the global, per client process BindOptions.
For more information, see “BindOptions”.

options The bind options for this connection. See “BindOptions”
for more information.

orb The ORB to use.

Parameter Description
logical_type_id The repository ID of the desired object.
poa_name The name of the poa that the servant was activated on.
oid The object id (i.e. object name) of the desired object.
host_name The name of the desired host where the object

implementation is executing.
options The bind options for this connection. See “BindOptions”

for more information.
orb The ORB to use.

Parameter Description
obj The object reference to be cloned.
reset_connection This parameter is not used.

Parameter Description

VisiBroker-RT for C++ Programmer’s Reference 49

Note

The following method is deprecated since VisiBroker 4.0.

static void _default_bind_options(const
CORBA::BindOptions&);

This method sets the bind options that will be used by default for all _bind
invocations that do not specify their own bind options. For more
information, see “BindOptions”.

static const CORBA::TypeInfo *_desc();

Returns type information for this object.

const char *_interface_name() const;

This method returns this object’s interface name.

CORBA::Boolean _is_bound() const;

This method returns TRUE if the client process has established a connection
to an object implementation.

CORBA::Boolean _is_local() const;

This method returns TRUE if the object implementation resides within the
same process or address space as the client application.

CORBA::Boolean _is_persistent() const;

This method returns TRUE if this object is a persistent object, and FALSE if it
is transient.

CORBA::Boolean _is_remote() const;

This method returns TRUE if the object implementation resides in a different
process or address space than the client application. The client and object
implementation may or may not reside on the same host.

const char *_object_name() const;

This method returns the object name associated with this object.

CORBA::Long _ref_count() const;

Returns the reference count for this object.

void _release();

Decrements this object’s reference count and releases the object if the
reference count has reached 0.

const char *_repository_id() const;

This method returns this object’s repository identifier.

CORBA::Object_ptr _resolve_reference(const char* id);

Your client application can invoke this method on an object reference to
resolve the server-side interface with the specified service identifier. This

50 VisiBroker-RT for C++ Programmer’s Reference

method causes the ORB::_resolve_initial_references method, described
in “CORBA::Object_ptr resolve_initial_references(const char * identifier);”, to be
invoked on the server-side to resolve the specified service. This method
returns an object reference which your client can narrow to the appropriate
server type.

This method is typically used by client applications that wish to manage a
server’s attributes.

ORB

class CORBA::ORB
The ORB class provides an interface to the Object Request Broker. It offers
methods to the client object, independent of the particular Object or Object
Adaptor.

VisibrokerVisiBroker-RT for C++ provides extensions to the CORBA ORB
that are covered in “VisiBroker extensions to CORBA::ORB” on page 5-22.

These methods provide for the management of connections, threads, and
the activation of services.

Include file
You should include the file corba.h when using this class.

CORBA::ORB methods

CORBA::Boolean work_pending();

This method returns true if the ORB has any work waiting to be processed.

static CORBA::TypeCode_ptr create_alias_tc(const char
*repository_id, const char
*type_name, CORBA::TypeCode_ptr original_type);

This static method dynamically creates a TypeCode for the alias with the
specified type and name.

Parameter Description
id The name of the interface to be resolved on the server-

side.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the alias’s type.
original_type The type of the original for which this alias is being

created.

VisiBroker-RT for C++ Programmer’s Reference 51

static CORBA::TypeCode_ptr create_array_tc(CORBA::Ulong
length, TypeCode_ptr element_type);

This static method dynamically creates a TypeCode for an array.

static CORBA::TypeCode_ptr create_enum_tc(const char
*repository_id, const char *type_name, const
CORBA::EnummemberSeq& members);

This static method dynamically creates a TypeCode for an enumeration with
the specified type and members.

void create_environment(CORBA::Environment_out);

This method creates an Environment object.

static CORBA::TypeCode_ptr create_exception_tc(const
char *repository_id, const char *type_name, const
CORBA::StructMemberSeq& members);

This static method dynamically creates a TypeCode for an exception with the
specified type and members.

static CORBA::TypeCode_ptr create_interface_tc(const
char *repository_id, const char *type_name);

This static method dynamically creates a TypeCode for the interface with the
specified type.

Parameter Description
length The maximum number of array elements.
element_type The type of elements stored in this array.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the enumeration’s type.
members A list of values for the enumeration’s members.

Parameter Description
env The reference that will be set to point to the newly

created Environment.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the structure’s type.
members A list of values for the structure members.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the interface’s type.

52 VisiBroker-RT for C++ Programmer’s Reference

void create_list(CORBA::Long, CORBA::NVList_out);

This method creates an NVList with the specified number of elements and
returns a reference to the list.

void create_named_value(CORBA::NamedValue_out);

This method creates a NamedValue object.

void create_operation_list(CORBA::OperationDef_ptr,
CORBA::NVList_out);

This method creates an argument list for the specified OperationDef object.

static CORBA::TypeCode_ptr
create_recursive_sequence_tc(CORBA::Ulong bound,
CORBA::Ulong offset);

This static method dynamically creates a TypeCode for a recursive
sequence. The result of this method can be used to create other types. The
offset parameter determines which enclosing TypeCode describes the
elements of this sequence.

static CORBA::TypeCode_ptr
create_sequence_tc(CORBA::Ulong bound,
CORBA::TypeCode_ptr element_type);

This static method dynamically creates a TypeCode for a sequence.

static CORBA::TypeCode_ptr
create_string_tc(CORBA::Ulong bound);

This static method dynamically creates a TypeCode for a string.

Parameter Description
num The number of elements in the list.
nvlist Initialized to point to the newly-created list.

Parameter Description
bound The maximum number of sequence elements.
offset Position within the buffer where the type code for the

current element was previously generated.

Parameter Description
bound The maximum number of sequence elements.
element_type The type of elements stored in this sequence.

Parameter Description
bound The maximum length of the string.

VisiBroker-RT for C++ Programmer’s Reference 53

static CORBA::TypeCode_ptr create_struct_tc(const char
*repository_id, const char *type_name, const
CORBA::StructMemberSeq& members);

This static method dynamically creates a TypeCode for the structure with
the specified type and members.

static CORBA::TypeCode_ptr create_union_tc(const char
*repository_id, const char *type_name,
CORBA::TypeCode_ptr discriminator_type, const
CORBA::UnionMemberSeq& members);

This static method dynamically creates a TypeCode for a union with the
specified type, discriminator and members.

CORBA::Status get_default_context(CORBA::Context_ptr&);

This method returns the default per-process Context maintained by
VisiBroker. The default Context is often used in constructing DII requests.
See “Context” for more information.

CORBA::Status get_next_response(CORBA::RequestSeq*&
req);

This method blocks waiting for the response associated with a deferred
request. You can use the ORB::poll_next_response method to determine if
there is a response waiting to be received before you call this method.

ObjectIdList *list_initial_services();

This method returns a list of the names of any object services that are
available to your application. These services may include the Location
Service, Interface Repository, Name Service, or Event Service. You can use
any of the returned names with the ORB::resolve_initial_references
method, described in “CORBA::Object_ptr resolve_initial_references(const
char * identifier);” on page 5-21, to obtain the top-level object for that
service.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the structure’s type.
members A list of values for the structure members.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the union’s type.
discriminator_type The discriminating type for the union.
members A list of values for the union members.

Parameter Description
CORBA::Context_ptr& The property’s value.

Parameter Description
req Set to point to the request that has been received.

54 VisiBroker-RT for C++ Programmer’s Reference

char *object_to_string(CORBA::Object_ptr) = 0;

This method converts the specified object reference to a string, a process
referred to as “stringification” in the CORBA specification. Object references
that have been converted to strings can be stored in files, for example. This
is an ORB method because different ORB implementations may have
different conventions for representing object references as strings.

Note

While an object reference can be made persistent by saving it to a file, the
object itself is not made persistent.

Note

The following method is deprecated since VisiBroker 4.0.

CORBA::BOA_ptr ORB::BOA_init(int& argc, char *const
*argv, const char *boa_identifier = (char *)NULL);

This ORB method returns a handle to the BOA and specifies optional
networking parameters. The argc and argv parameters are the same
parameters passed to the object implementation process when it is started.
See “Appendix: Using Command-Line Options” for a complete description of the
BOA_init options that may be specified.

static CORBA::ORB_ptr ORB_init(int& argc, char *const
*argv,const char *orb_id = NULL);

This method initializes the ORB and is used by both clients and object
implementations. It returns a pointer to the ORB that can be used to invoke
ORB methods. The argc and argv parameters passed to the application’s
main function can be passed directly to this method. Arguments accepted
by this method take the form of name-value pairs which allows them to be
distinguished from other command line arguments. See “Appendix: Using
Command-Line Options” for a complete description of the ORB_init options
that may be specified.

Parameter Description
obj Pointer to an object that is to be converted to a string.

Parameter Description
argc The number of arguments passed.
argv An array of char pointers to the arguments. All but two

of the arguments take the form of a keyword and a
value and are shown below. This method will ignore any
keywords that it does not recognize.

boa_identifier Identifies the type of BOA to be used. TPool is always
used in VisiBroker-RT for C++; specifying TSingle will
return a NULL BOA ptr.

Parameter Description
argc The number of arguments passed.
argv An array of char pointers to the arguments. All but two

of the arguments take the form of a keyword and a
value. This method will ignore any keywords that it
does not recognize.

orb_id Identifies the type of ORB to be used. The default is
IIOP.

VisiBroker-RT for C++ Programmer’s Reference 55

void perform_work();

This method instructs the ORB to perform some work.

CORBA::Boolean poll_next_response();

This method returns TRUE if a response to a deferred request has been
received, otherwise FALSE is returned. This call does not block.

CORBA::Object_ptr resolve_initial_references(const char
* identifier);

This method resolves one of the names returned by the
ORB::list_initial_services method, described in “ObjectIdList
*list_initial_services();” on page 5-20, to its corresponding implementation
object. The resolved object which is returned can then be narrowed to the
appropriate server type. If the specified service cannot be found, an
InvalidName exception will be raised.

void send_multiple_requests_deferred(const
CORBA::RequestSeq& req);

This method sends all the client requests in the specified sequence as
deferred requests. The ORB will not wait for any responses from the object
implementation. The client application is responsible for retrieving the
responses to each request using the ORB::get_next_response method.

void send_multiple_requests_oneway(const
CORBA::RequestSeq& req);

This method sends all the client requests in the specified sequence as one-
way requests. The ORB does not wait for a response from any of the
requests because one-way requests do not generate responses from the
object implementation.

CORBA::Object_ptr string_to_object(const char *str);

This method converts a string representing an object into an object pointer.
The string must have been created using the ORB::object_to_string
method.

Parameter Description
identifier The name of the service whose top-level object is to be

returned. The identifier is not the name of the object to
be returned.

Parameter Description
req A sequence of deferred requests to be sent.

Parameter Description
req A sequence of one-way requests to be sent.

Parameter Description
str A pointer to a string representing an object.

56 VisiBroker-RT for C++ Programmer’s Reference

static CORBA::ORB_ptr _duplicate(CORBA::ORB_ptr ptr);

This static method duplicates the specified ORB pointer and returns a
pointer to the duplicated ORB.

static CORBA::ORB_ptr _nil();

This static method returns a NULL ORB pointer suitable for initialization
purposes.

void run();

This method informs the ORB to start processing work. This ORB receives
requests and dispatches them. This call blocks this process until the ORB is
shut down.

VisiBroker extensions to CORBA::ORB

CORBA::Object_ptr bind(const char *rep_id, const char
object_name = (const char)NULL, const char
host_name = (const char)NULL, CORBA::BindOptions
opt = (CORBA::BindOptions)NULL);

This method allows you obtain a generic object reference to an object by
specifying the repository id of the object and optionally, its object name and
host name where it is implemented.

NOTE:
This bind method must be used if the servant was activated with a POA hav-
ing the bind_policy value of "BY_INSTANCE".

static CORBA::Object_ptr _bind_to_object(const char
*logical_type_id, const char *poa_name=NULL,
const CORBA_Octect_sequence& oid, const char
*host_name=NULL, const CORBA::BindOptions
*options=NULL);

This method allows you obtain a generic object reference to an object by
specifying the repository id of the object along with the POA name and the
object id (i.e. object name) and optionally the host name where it is
implemented.

NOTE:
This bind method must be used if the servant was activated with a POA hav-
ing the bind_policy value of "BY_POA". If a bind_policy is not specified

Parameter Description
ptr The ORB pointer to be duplicated.

Parameter Description
rep_id The identifier generated by the IDL compiler or

constructed dynamically for the object.
object_name The name of the object. This is an optional parameter.
host_name The host name where the object implementation is

located. This may be specified as an IP address or as a
fully qualified host name.

opt Any bind options for the object. Bind options are
described in “BindOptions”.

VisiBroker-RT for C++ Programmer’s Reference 57

during POA creation the default behavior for servant activation is "BY_POA".

CORBA::ULong connection_count()

This method is used by client applications to return the current number of
active connections.

void connection_max(CORBA::ULong max_conn)

This method is used by client applications to set the maximum number of
connections to be allowed. This property can also be set by using the
command-line argument -OAConnectionMax, described in “Appendix: Using
Command-Line Options”.

CORBA::ULong connection_max()

This method is used by client applications to return the maximum number
of connections that will be allowed.

static CORBA::TypeCode_ptr
create_wstring_tc(CORBA::Ulong bound);

This static method dynamically creates a TypeCode for a Unicode string.

static VISPropertyManager_pt getPropertyManager()

This method is used by to get a handle to the VisiBroker Property Manager
instance which is being used by the ORB.

static void shutdown(CORBA::Boolean wait_for_completion=0);

This method causes a previous invocation of the impl_is_ready method to
return. All object adapters are shut down and any associated memory is
freed.

PortableServer::POA

class PortableServer::POA

Objects of the POA class manage the implementations of a collection of
objects. The POA supports a name space for these objects which are
identified by Object Ids. A POA also provides a name space for other POAs in

Parameter Description
logical_type_id The repository ID of the desired object.
poa_name The name of the poa that the servant was activated on.
oid The object id (i.e. object name) of the desired object.
host_name The name of the desired host where the object

implementation is executing.
options The bind options for this connection. See “BindOptions”

for more information.

Parameter Description
max_conn The maximum number of connections to be allowed

Parameter Description
bound The maximum length of the string.

58 VisiBroker-RT for C++ Programmer’s Reference

that a POA must be created as a child of an existing POA, which then forms
a hierarchy starting with the root POA.

A POA object must not be exported to outisde of the ORB instance in which
they were created, or be stringified. A MARSHAL exception is raised if this is
attempted.

PortableServer::POA methods

PortableServer::ObjectId*
activate_object(PortableServer::Servant _p_servant);

This method generates an object id and returns it. The object id and the
specified _p_servant are entered into the Active Object Map. If the
UNIQUE_ID policy is present with the POA and the specified _p_servant is
already in the Active Object Map, then a ServantAlreadyActive exception is
raised.

This method requires that the SYSTEM_ID and RETAIN policies be present
with the POA; otherwise, a WrongPolicy exception is raised.

void activate_object_with_id(const
PortableServer::ObjectId& _oid,
PortableServer::Servant _p_servant);

This method attempts to activate the specified _oid and to associate it with
the specified _p_servant in the Active Object Map. If the _oid already has a
servant bound to it in the Active Object Map, then an ObjectAlreadyActive
exception is raised. If the POA has the UNIQUE_ID policy present and the
_p_servant is already in the Active Object map, then a
ServantAlreadyActive exception is raised.

If the POA has the SYSTEM_ID policy present and it detects that the _oid
was not generated by the system or for the POA, then this method raises a
BAD_PARAM system exception.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

PortableServer::BindSupportPolicy_ptr
create_bind_support_policy(
PortableServer::BindSupportPolicyValue _value);

This method returns a pointer to BindSupportPolicy object with the specified
_value. The application is responsible for calling the inherited destroy
method on the Policy object after the Policy object is no longer needed.

Parameter Description
_p_servant The Servant to be entered into the Active Object Map.

Parameter Description
oid The ObjectId of the object to be activated.
_p_servant The Servant to be entered into the Active Object Map.

VisiBroker-RT for C++ Programmer’s Reference 59

If no BindSupportPolicy is specified at POA creation, then the default is BY_POA.

PortableServer::ImplicitActivationPolicy_ptr
create_implicit_activation_policy(
PortableServer::ImplicitActivationPolicyValue
_value);

This method returns a pointer to an ImplicitActivationPolicy object with
the specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after the Policy object is no longer
needed.

If no ImplicitActivationPolicy is specified at POA creation, then the
default is NO_IMPLICIT_ACTIVATION.

PortableServer::ServerEnginePolicy_ptr
create_server_engine_policy(const
CORBA::StringSequence _value);

This method returns a pointer to a ServerEnginePolicy object with the specified
_value. The application is responsible for calling the inherited destroy
method on the Policy object after the Policy object is no longer needed.

If no ServerEnginePolicy is specified at POA creation, then the default is to
associate the newly created POA with the IIOP Server Engine (iiop_tp0).

CORBA::Object_ptr create_reference(const char* _intf);

This method creates and returns an object reference that encapsulates a
POA-generated ObjectId and the specified _intf values. The _intf, which
may be null, becomes the type_id of the generated object reference. This
method does not cause an activation to take place. Undefined behavior
results if the _intf value does not identify the most derived interface of the
object or one of its base interfaces. The ObjectId may be obtained by
invoking the POA::reference_to_id method on the returned Object.

Parameter Description
_value If set to BY_INSTANCE, all objects activated on this

POA are registered with the osagent. The POA must
also use the PERSISTENT and RETAIN policy with this
value.

If set to BY_POA, POA names are registered with the
osagent. The POA must also use the PERSISTENT policy
with this value.

If set to NO_REGISTRATION, neither POAs nor active
objects are registered with the osagent

Parameter Description
_value If set to IMPLICIT_ACTIVATION, the POA will support

implicit activation of servants: also requires SYSTEM_ID
and RETAIN policies. If set to
NO_IMPLICIT_ACTIVATION, the POA will not support
the implicit activation of servants.

Parameter Description
_value This should contain a sequence of strings where each

string denotes a installed and configured Server Engine.
Each string must match the Server Engine name
assigned via the VisiBroker Property Manager.

60 VisiBroker-RT for C++ Programmer’s Reference

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

CORBA::Object_ptr create_reference_with_id (const
PortableServer::ObjectId& _oid,const char* _intf);

This method creates and returns an object reference that encapsulates the
specified _oid and _intf values. The _intf, which may be a null string,
becomes the type_id of the generated object reference. A _intf value that
does not identify the most derived interface of the object or one of its base
interfaces will result in undefined behavior. This method does not cause an
activation to take place. The returned object reference may be passed to
clients, so that subsequent requests on those references will cause the
object to be activated if necessary, or the default servant used, depending
on the applicable policies.

If the POA has the SYSTEM_ID policy present, and it detects the ObjectId
value was not generated by the system or for the POA, this method may
raise a BAD_PARAM system exception.

PortableServer::IdAssignmentPolicy_ptr
create_id_assignment_policy
(PortableServer::IdAssignmentPolicyValue _value);

This method returns a pointer to a IdAssignmentPolicy object with the
specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

If no IdAssignmentPolicy is specified at POA creation, then the default is
SYSTEM_ID.

PortableServer::IdUniquenessPolicy_ptr
create_id_uniqueness_policy
(PortableServer::IdUniquenessPolicyValue _value);

This method returns a pointer to an IdUniquenessPolicy object with the
specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

Parameter Description
_intf The repository interface id of the class of the object to

be created.

Parameter Description
_oid The object id for which a reference is to be created.
_intf The repository interface id of the class of the object to

be created.

Parameter Description
_value If set to USER_ID, then objects created by the POA are

assigned object ids only by the application. If set to
SYSTEM_ID, then objects created with the POA are
assigned object ids only by the POA.

VisiBroker-RT for C++ Programmer’s Reference 61

If no IdUniquenessPolicy is specified at POA creation, then the default is
UNIQUE_ID.

PortableServer::LifespanPolicy_ptr
create_lifespan_policy
(PortableServer::LifespanPolicyValue _value);

This method returns a pointer to a LifespanPolicy object with the specified
_value. The application is responsible for calling the inherited destroy
method on the Policy object after it is no longer needed.

If no LifespanPolicy is specified at POA creation, then the default is
TRANSIENT.

PortableServer::POA_ptr create_POA(const char*
_adapter_name, PortableServer::POAManager_ptr
_a_POAManager, const CORBA::PolicyList& _policies);

This method creates a new POA with the specified _adapter_name. The new
POA is a child of the specified _a_POAManager. If a child POA with the same
name already exists for the parent POA, an
PortableServer::AdapterAlreadyExists exception is raised.

The specified _policies are associated with the new POA and are used to
control its behavior.

PortableServer::RequestProcessingPolicy_ptr
create_request_processing_policy
(PortableServer::RequestProcessingPolicyValue
_value);

This method returns a pointer to a RequestProcessingPolicy object with
the specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

Parameter Description
_value If set to UNIQUE_ID, servants which are activated with

the POA support exactly one object id. If set to
MULTIPLE_ID, then a servant which is activated with the
POA may support one or more object ids.

Parameter Description
_value If set to TRANSIENT, then objects implemented in the

POA cannot outlive the POA instance in which they were
first created. Once a transient POA is deactivated, the
use of any object references generated from it result in
an OBJECT_NOT_EXIST exception being raised. If set to
PERSISTENT, then the objects implemented in the POA
can outlive any process in which they are first created.

Parameter Description
_adapter_name The name which specifies the new POA.
_a_POAManager The parent POA object of the new POA.
_policies A list of policies which are to apply to the new POA.

62 VisiBroker-RT for C++ Programmer’s Reference

If no RequestProcessingPolicy is specified at POA creation, then the default
is USE_ACTIVE_OBJECT_MAP_ONLY.

PortableServer::ServantRetentionPolicy_ptr
create_servant_retention_policy
(PortableServer::ServantRetentionPolicyValue
_value);

This method returns a pointer to a ServantRetentionPolicy object with the
specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

If no ServantRetentionPolicy is specified at POA creation, then the default
is RETAIN.

PortableServer::ThreadPolicy_ptr create_thread_policy
(PortableServer::ThreadPolicyValue _value);

This method returns a pointer to a ThreadPolicy object with the specified
_value. The application is responsible for calling the inherited destroy
method on the Policy object after it is no longer needed.

If no ThreadPolicy is specified at POA creation, then the default is
ORB_CTRL_MODEL.

Parameter Description
_value If set to USE_ACTIVE_OBJECT_MAP_ONLY and the object id

is not found in the Active Object Map, then an
OBJECT_NOT_EXIST exception is returned to the client.
(The RETAIN policy is also required.)

If set to USE_DEFAULT_SERVANT and the object id is not
found in the Active Object Map or the NON_RETAIN policy
is present, and a default servant has been registered
with the POA using the set_servant method, then the
request is dispatched to the default servant. If no
default servant has been registered, then an
OBJ_ADAPTER exception is returned to the client. (The
MULTIPLE_ID policy is also required.)

If set to USE_SERVANT_MANAGER and the object id is not
found in the Active Object Map or the NON_RETAIN policy
is present, and a servant manager has been registered
with the POA using the set_servant_manager method,
then the servant manager is given the opportunity to
locate a servant or raise an exception. If no servant
manager has been registered, then an OBJ_ADAPTER is
returned to the client.

Parameter Description
_value If set to RETAIN, then the POA will retain active servants

in its Active Object Map. If set to NON_RETAIN, then
servants are not retained by the POA.

Parameter Description
_value If set to ORB_CTRL_MODEL, the ORB is responsible for

assigning requests for an ORB-controlled POA to
threads. In a multi-threaded environment, concurrent
requests may be delivered using multiple threads. If set
to SINGLE_THREAD_MODEL, then requests to the POA
are processed sequentially. In a multi-threaded
environment, all upcalls made by the POA to servants
and servant managers are made in a manner that is
safe for code that is multi-thread unaware.

VisiBroker-RT for C++ Programmer’s Reference 63

void deactivate_object(const PortableServer::ObjectId&
_oid);

This method causes the specified _oid to be deactivated. An ObjectId which
has been deactivated continues to process requests until there are no more
active requests for that ObjectId. An ObjectId is removed from the Active
Object Map when all requests executing for that ObjectId have completed.

If a ServantManager is associated with the POA, then the
ServantActivator::etheralize method is invoked with the ObjectId and
the associated servant after the ObjectId has been removed from the Active
Object map. Reactivization for the ObjectId blocks until etherealization, if
necessary, has completed. However, the method does not wait for requests
or etherealization to complete and always returns immediately after
deactivating the specified _oid.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

void destroy(CORBA::Boolean _etherealize_objects,
CORBA::Boolean _wait_for_completion);

This method destroys this POA object and all of its descendant POAs. First
the children are destroyed and finally the current container POA. If desired,
later, a POA with that same name in the same process can be created.

PortableServer::POA_ptr find_POA(const char*
_adapter_name,CORBA::Boolean _activate_it);

If the POA object on which this method is called is the parent of the POA
with the specified _adapter_name, the child POA is returned.

Parameter Description
_oid The ObjectId of the object to be deactivated.

Parameter Description
_etherealize_objects If TRUE, the POA has the RETAIN policy, and a servant

manager has registered with the POA, then the
etherealize method is called on each active object in the
Active Object Map. The apparent destruction of the POA
occurs before the etherealize method is called, and thus
any etherealize method which attempts to invoke
methods on the POA raises a OBJECT_NOT_EXIST
exception.

_wait_for_completion If TRUE and the current thread is not in an invocation
context dispatched from some POA belonging to the
same ORB as this POA, the destroy method only
returns after all active requests and all invocations of
etherealize have completed.

If TRUE and the current thread is in an invocation
context dispatched from some POA belonging to the
same ORB as this POA, the BAD_INV_ORDER exception
is raised and POA destruction does not occur.

Parameter Description
_adapter_name The name of the AdapterActivator associated with the

POA.
_activate_it If set to TRUE and no child POA of the POA specified by

_adapter_name exists, then the POA’s AdapterActivator,
if not null, is invoked, and, if it successfully activates
the child POA, then that POA is returned. Otherwise an
AdapterNonExistent exception is raised.

64 VisiBroker-RT for C++ Programmer’s Reference

PortableServer::Servant get_servant();

This method returns the default Servant associated with the POA. If no
Servant has been associated, then a NoServant exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy be present with
the POA; otherwise, a WrongPolicy exception is raised.

PortableServer::ServantManager_ptr
get_servant_manager();

This method returns a pointer to the ServantManager object associated with
the POA. The result is null if no ServantManager is associated with the POA.

This method requires that the USE_SERVANT_MANAGER policy be present with
the POA; otherwise, a WrongPolicy exception is raised.

CORBA::Object_ptr
id_to_reference(PortableServer::ObjectId& _oid);

This method returns an object reference if the specified _oid value is
currently active. If the _oid is not active, then an ObjectNotActive
exception is raised.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

PortableServer::Servant
id_to_servant(PortableServer::ObjectId& _oid);

This method has three behaviors:

• If the POA has the RETAIN policy present and the specified _oid is in the
Active Object Map, then it returns the servant associated with that object
in the Active Object Map.

• If the POA has the USE_DEFAULT_SERVANT policy present and a default
servant has been registered with the POA, it returns the default servant.

• Otherwise, an ObjectNotActive exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy be present with
the POA; if neither policy is present, a WrongPolicy exception is raised.

PortableServer::Servant
reference_to_servant(CORBA::Object_ptr _reference);

This method has three behaviors:

• If the POA has the RETAIN policy and the specified _reference is present in
the Active Object Map, then it returns the servant associated with that
object in the Active Object Map.

• If the POA has the USE_DEFAULT_SERVANT policy present and a default
servant has been registered with the POA, then it returns the default
servant.

Parameter Description
_oid The ObjectId of the object for which a reference is to be

returned.

Parameter Description
_oid The ObjectId of the object for which a servant is to be

returned.

VisiBroker-RT for C++ Programmer’s Reference 65

• Otherwise, it raises an ObjectNotActive exception.

This method requires the RETAIN or USE_DEFAULT_SERVANT policies to be
present; otherwise, a WrongPolicy exception is raised.

PortableServer::ObjectId*
reference_to_id(CORBA::Object_ptr _reference);

This method returns the ObjectId value encapsulated by the specified
_reference. The invocation is valid only if the _reference was created by
the POA on which the method is called. If the _reference was not created
by the POA, a WrongAdapter exception is raised. The object denoted by the
_reference parameter does not have to be active for this method to
succeed.

Though the IDL specifies that a WrongPolicy exception may be raised by
this method, it is simply declared for possible future extension.

PortableServer::ObjectId*
servant_to_id(PortableServer::Servant _p_servant);

This method has four possible behaviors:

• If the POA has the UNIQUE_ID policy present and the specified _p_servant
is active, then the ObjectId associated with the _p_servant is returned.

• If the POA has the IMPLICIT_ACTIVATION policy present and either the
POA has the MULTIPLE_ID policy present or the specified _p_servant is not
active, then the _p_servant is activated using the POA-generated
ObjectId and the repository interface id associated with the _p_servant,
and that ObjectId is returned.

• If the POA has the USE_DEFAULT_SERVANT policy present, the specified
_p_servant is the default servant, then the ObjectId associated with the
current invocation is returned.

• Otherwise, a ServantNotActive exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy or a combination
of the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION
policies be present; otherwise, a WrongPolicy exception is raised.

CORBA::Object_ptr
servant_to_reference(PortableServer::Servant
_p_servant);

This method has four possible behaviors:

• If the POA has both the RETAIN and the UNIQUE_ID policies present and
the specified _p_servant is active, then an object reference
encapsulating the information used to activate the servant is returned.

• If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policies
present and either the POA has the MUTLIPLE_ID policy or the specified

Parameter Description
_reference The object for which a servant is to be returned.

Parameter Description
_reference The object for which an ObjectID is to be returned.

Parameter Description
_p_servant The Servant for which the ObjectId to be returned is

desired.

66 VisiBroker-RT for C++ Programmer’s Reference

_p_servant is not active, then the _p_servant is activated using a POA-
generated ObjectId and repository interface id associated with the
_p_servant, and a corresponding object reference is returned.

• If this method was invoked in the context of executing a request on the
specified _p_servant, the reference associated with the current
invocation is returned.

• Otherwise, a ServantNotActive exception is raised.

This method requires the presence of the RETAIN policy and either the
UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked outside the context of a
method dispatched by the POA. If this method is not invoked in the context
of executing a request on the specified _p_servant and one of these policies
is not present, then a WrongPolicy exception is raised.

void set_servant(PortableServer::Servant _p_servant);

This method sets the default Servant associated with the POA. The
specified Servant will be used for all requests for which no servant is found
in the Active Object Map.

This method requires that the USE_DEFAULT_SERVANT policy be present with
the POA; otherwise, a WrongPolicy exception is raised.

void set_servant_manager
(PortableServer::ServantManager_ptr _imagr);

This method sets the default ServantManager associated with the POA. This
method may only be invoked after a POA has been created. Attempting to
set the ServantManager after one has already been set raises a
BAD_INV_ORDER exception.

This method requires that the USE_SERVANT_MANAGER policy be present with
the POA; otherwise, a WrongPolicy exception is raised.

PortableServer::AdapterActivator_ptr the_activator();

This method returns the AdapterActivator associated with the POA. When a
POA is created, it does not have an AdapterActivator (i.e., the attribute is
null). It is system dependent whether a root POA has an activator and the
application can assign one as it wishes.

void the_activator(PortableServer::AdapterActivator_ptr
_val);

This method sets the AdapterActivator object associated with the POA to
the one specified.

Parameter Description
_p_servant The Servant for which a reference is to be returned.

Parameter Description
_p_servant The Servant to be used as the default associated with

the POA.

Parameter Description
_imgr The ServantManager to be used as the default used

with the POA.

Parameter Description
_val The ActivatorAdapter to be associated with the POA.

VisiBroker-RT for C++ Programmer’s Reference 67

char* the_name();

This method returns the read-only attribute which identifies the POA
relative to its parent.This attribute is assigned at POA creation. The name of
the root POA is system dependent and should not be relied upon by the
application.

PortableServer::POA_ptr the_parent();

This method returns a pointer to the POA’s parent POA. The parent of the
root POA is null.

Portableserver::POAManager_ptr the_POAManager();

This method returns the read-only attribute which is a a pointer to the
POAManager associated with the POA.

PortableServer::POAManager
Each POA has an associated POA manager which in turn may be associated
with one or more POA objects. A POA manager encapsulates the processing
state of the POAs with which it is associated.

There are four possible states which a POA manager can be in:

• active
• inactive
• holding
• discarding

A POA manager is created in the holding state. The following illustrates the
state which a POA manager transitions to based on the method called.

Include file
You should include the file poa_c.hh when using this class.

68 VisiBroker-RT for C++ Programmer’s Reference

PortableServer::POAManager methods
void activate();

This method changes the state of the POA manager to active, which enables
the associated POAs to process requests. If invoked while the POA manager
is in the inactive state, the AdapterInactive exception is raised.

void deactivate(CORBA::Boolean
_etherealize_objects,CORBA::Boolean
_wait_for_completion);

This method changes the state of the POA manager to inactive, which
causes the associated POAs to reject requests that have not begun to be
executed, as well as any new requests. If invoked while the POA manager is
in the inactive state, the AdapterInactive exception is raised.

After the state changes, if the etherealize_objects parameter is

• TRUE—the POA manager causes all associated POAs that have the RETAIN
and USE_SERVANT_MANAGER policies to perform the etherealize
operation on the associated servant manager for all active objects.

• FALSE—the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example,
unrecoverable error) situation.

If the wait_for_completion parameter is FALSE, this operation returns
immediately after changing the state. If the parameter is TRUE and the
current thread is not in an invocation context dispatched by some POA
belonging to the same ORB as this POA, this operation does not return until
there are no actively executing requests in any of the POAs associated with
this POA manager (that is, all requests that were started prior to the state
change have completed) and, in the case of a TRUE etherealize_objects, all
invocations of etherealize have completed for POAs having the RETAIN and
USE_SERVANT_MANAGER policies. If the parameter is TRUE and the current
thread is in an invocation context dispatched by some POA belonging to the
same ORB as this POA, the BAD_INV_ORDER exception is raised and the
state is not changed.

void discard_requests(CORBA::Boolean
_wait_for_completion);

This method changes the state of the POA manager to discarding, which
causes the associated POAs to discard incoming requests. In addition, any
requests that have been queued but have not started executing are
discarded. When a request is discarded, a TRANSIENT system exception is
returned to the client. If invoked while the POA manager is in the inactive
state, the AdapterInactive exception is raised.

If the wait_for_completion parameter is FALSE, this operation returns
immediately after changing the state. If the parameter is TRUE and the
current thread is not in an invocation context dispatched by some POA
belonging to the same ORB as this POA, this operation does not return until
either there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started
prior to the state change have completed) or the state of the POA manager
is changed to a state other than discarding. If the parameter is TRUE and the
current thread is in an invocation context dispatched by some POA
belonging to the same ORB as this POA the BAD_INV_ORDER exception is
raised and the state is not changed.

VisiBroker-RT for C++ Programmer’s Reference 69

void hold_requests(CORBA::Boolean
_wait_for_completion);

This method changes the state of the POA manager to holding, which
causes the associated POAs to queue incoming requests. Any requests that
have been queued but are not executing will continue to be queued while in
the holding state. If invoked while the POA manager is in the inactive state,
the AdapterInactive exception is raised.

Principal
If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE and the
current thread is not in an invocation context dispatched by some POA
belonging to the same ORB as this POA, this operation does not return until
there are no actively executing requests in any of the POAs associated with
this POA manager (that is, all requests that were started prior to the state
change have completed) and, in the case of a TRUE etherealize_objects, all
invocations of etherealize have completed for POAs having the RETAIN and
USE_SERVANT_MANAGER policies. If the parameter is TRUE and the current
thread is in an invocation context dispatched by some POA belonging to the
same ORB as this POA the BAD_INV_ORDER exception is raised and the
state is not changed.

Note

This feature is deprecated since VisiBroker 4.0.

typedef OctetSequence Principal

The Principal is used to represent the client application on whose behalf a
request is being made. An object implementation can accept or reject a bind
request, based on the contents of the client’s Principal.

Include file
You should include the file corba.h when using this typedef.

Principal methods
The BOA class provides the get_principal method, described in
“CORBA::Principal_ptr get_principal(CORBA::Object_ptr obj,
CORBA::Environment_ptr env=NULL)” on page 5-5, which returns a pointer
to the Principal associated with an object. The Object class also provides
methods for getting and setting the Principal.

PortableServer::RefCountServantBase

class RefCountServantBase : public ServantBase

This class can be used as a standard servant reference counting mix-in
class, rather than the PortableServer::ServantBase class which is to be
used with inheritance class. (Also see “PortableServer::ServantBase”.)

Include file
You should include the file poa_c.hh when using this class.

70 VisiBroker-RT for C++ Programmer’s Reference

PortableServer::RefCountServantBase
methods

void _add_ref();

This method increments the reference count by one.You can override this
method from the base class to provide true reference counting.

void _remove_ref();

This method decrements the reference count by one. You can override this
method from the base class to provide true reference counting.

PortableServer::ServantActivator

class PortableServer::ServantActivator : public
PortableServer::ServantManager

If the POA has the RETAIN policy present, then it uses servant managers
that are PortableServer::ServantActivator objects.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::ServantLocator methods

void etherealize(PortableServer::ObjectId&
oid,PortableServer::POA_ptr adapter,
PortableServer::Servant serv,CORBA::Boolean
cleanup_in_progress, CORBA::Boolean
remaining_activations);

This method is called by the specified adapter whenever a servant for an
object (the specified oid) is deactivated, assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

Parameter Description
oid The object id of the object whose servant is to be

deactivated.
adapter The POA in whose scope the object was active.
serv The servant which is to be deactivated.
cleanup_in_progress If set to TRUE, the reason for the invocation of the

method is either that the deactivate or destroy
method was called with the etherealize_objects
parameter set to TRUE; otherwise, the method was
called for other reasons.

remaining_activations If the specified serv is associated with other objects
in the specified adapter it is set to TRUE; otherwise it
is FALSE.

VisiBroker-RT for C++ Programmer’s Reference 71

PortableServer::Servant incarnate(const
PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter);

This method is called by the POA whenever the POA receives a request for
an inactive object (the specified oid) assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

The user supplies a servant manager implementation which is responsible
for locating and creating an appropriate servant that corresponds to the
specified oid value. The method returns a servant, which is also entered
into the Active Object map. Any further requests for the active object are
passed directly to the servant associated with it without invoking the
servant manager.

If this method returns a servant that is already active for a different object
id and if the POA also has the UNIQUE_ID policy present, then it raises the
OBJ_ADAPTER exception.

PortableServer::ServantBase

class PortableServer::ServantBase

The Portable::ServantBase class is the base class for your server
application.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::ServantBase methods

void _add_ref();

This method adds a reference count for this servant. It should be overridden
to provide reference counting functionality for classes derived from this
class as the default implementation does nothing.

PortableServer::POA_ptr _default_POA();

This method returns an Object reference to the root POA of the default ORB
in the current process, (i.e., the same return value as an invocation of
ORB::resolve_initial_references(“RootPOA”) on the default ORB. Classes
derived from the PortableServer::ServantBase class may override this
method to return the POA of their choice, if desired.

CORBA::InterfaceDef_ptr _get_interface();

This method returns a pointer to this object’s interface definition. See
“InterfaceDef methods” for more information.

Parameter Description
oid The object id of the object whose servant is to be

activated.
adapter The POA in whose scope the object is to be activated.

72 VisiBroker-RT for C++ Programmer’s Reference

CORBA::Boolean _is_a(const char *rep_id);

This method returns TRUE if this servant implements the interface
associated with the repository id. Otherwise, it returns FALSE.

void _remove_ref();

This method removes a reference count for this servant. It should be
overridden to provide reference counting functionality for classes derived
from this class as the default implementation does nothing.

PortableServer::ServantLocator

class PortableServer::ServantLocator : public
PortableServer::ServantManager

When the POA has the NON_RETAIN policy present, it uses servant managers
which are PortableServer::ServantLocator objects. The servant returned
by the servant manager will be used only for a single request.

Because the POA knows that the servant returned by the servant manager
will be used only for a single request, it can supply extra information for the
servant manager’s methods and the servant manager’s pair of methods
may do something different than a PortableServer::ServantLocator
servant manager.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::ServantLocator methods

PortableServer::Servant preinvoke(const
PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,const char*
operation, Cookie& the_cookie);

This method is called by the POA whenever the POA receives a request for
an object that is not currently active, assuming that the NON_RETAIN and
USE_SERVANT_MANAGER policies are present.

The user-supplied implementation of the servant manager is responsible for
locating or creating an appropriate servant that corresponds to the specified
oid value if possible.

Parameter Description
rep_id The repository identifier against which to check.

Parameter Description
oid The object id value that is associated with the incoming

request.
adapter The POA in which the object is to be activated.
operation The name of the operation which will be called by the

POA when the servant is returned.
the_cookie An opaque value which can be set by the servant

manager to be used later in the postinvoke method.

VisiBroker-RT for C++ Programmer’s Reference 73

void postinvoke(const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,const char*
operation, Cookie the_cookie,PortableServer::Servant
the_servant)

If the POA has the NON_RETAIN and USE_SERVANT_MANAGER policies present,
this method is called whenever a servant completes a request. This method
is considered to be part of the request on an object (that is, if the method
finishes normally, but postinvoke raises a system exception, then the
method’s normal return is overridden; and the request completes with the
exception).

Destroying a servant that is known to a POA can lead to undefined results.

PortableServer::ServantManager

class PortableServer::ServantManager

Servant managers are associated with Portable Object Adapters (POAs). A
servant manager allows a POA to activate objects on demand when the POA
receives a request targeted for an inactive object.

The PortableServer::ServantManager class has no methods; rather it is the
base class for two other classes: the PortableServer::ServantActivator and
the Portableserver::ServantLocator classes. For more details, see
“PortableServer::ServantActivator” and “PortableServer::ServantLocator”. The use of
these two classes depends on the POA’s policies: RETAIN for the
PortableServer::ServantActivator and NON_RETAIN for the
Portableserver::ServantLocator.

Include file
You should include the file poa_c.hh when using this class.

Environment

class CORBA::Environment

The Environment class is used for reporting and accessing both system and
user exceptions on platforms where C++ language exceptions are not
supported. When an interface specifies that user exceptions may be raised
by the object’s methods, the Environment class becomes an explicit
parameter of that method. If an interface does not raise any exceptions, the
Environment class is an implicit parameter and is only used for reporting
system exceptions. If an Environment object is not passed from the client to
a stub, the default of per-object Environment is used.

Parameter Description
oid The ObjectId value that is associated with the incoming

request.
adapter The POA in which the object is to be activated.
operation The name of the operation which will be called by the POA

when the servant is returned.
the_cookie An opaque value which can be set by the servant

manager in the
preinvoke . method for use in this method
the_servant The servant associated with the object.

74 VisiBroker-RT for C++ Programmer’s Reference

Multithreaded applications have a global Environment object for each
thread that is created. Applications that are not multithreaded have just one
global Environment object.

Include file
You should include the corba.h file when you use this class.

Environment();

This method creates an Environment object. This is equivalent to calling the
ORB::create_environment method.

static COBRA::Environment&
CORBA::current_environment();

This static method returns a reference to the global Environment object for
the application process. In multithreaded applications, it returns the global
Environment object for this thread.

void exception(COBRA::Exception *exp);

This method records the Exception object passed as an argument. The
Exception object must be dynamically allocated because the specified
object will assume ownership of the Exception object and will delete it
when the Environment itself is deleted. Passing a NULL pointer to this
method is equivalent to invoking the clear method on the Environment.

CORBA::Exception *exception() const;

This method returns a pointer to the Exception currently recorded in this
Environment. You must not invoke delete on the Exception pointer
returned by this call. If no Exception has been recorded, a NULL pointer will
be returned.

void clear();

This method will cause this Environment to delete any Exception object
that it holds. If this object holds no exception, this method has no effect.

SystemException

class CORBA::SystemException : public CORBA::Exception

The SystemException class is used to report standard system errors
encountered by the ORB or by the object implementation. This class is
derived from the Exception class, described in “Exception” on page 5-11,
which provides methods for printing the name and details of the exception
to an output stream.

SystemException objects include a completion status which indicates if the
operation that caused the exception was completed. SystemException
objects also have a minor code that can be set and retrieved.

Parameter Description
exp A pointer to a dynamically allocated Exception object to

be recorded for this Environment.

VisiBroker-RT for C++ Programmer’s Reference 75

Include file
The corba.h file should be included when you use this class.

SystemException methods

CORBA::SystemException(CORBA::ULong minor = 0,
CORBA::CompletionStatus status =
CORBA::COMPLETED_NO);

This method creates a SystemException object with the specified
properties.

CORBA::CompletionStatus completed() const;

This method returns TRUE if this object’s completion status is set to
COMPLETED_YES.

void completed(CORBA::CompletionStatus status);

This method sets the completion status for this object.

CORBA::ULong minor() const;

This method returns this object’s minor code.

void minor(CORBA::ULong val);

This method sets the minor code for this object.

static CORBA::SystemException
*_downcast(CORBA::Exception *exc);

This method attempts to downcast the specified Exception pointer to a
SystemException pointer. If the supplied pointer points to a
SystemException object or an object derived from SystemException, a
pointer to the object is returned. If the supplied pointer does not point to a
SystemException object, a NULL pointer is returned.

Parameter Description
minor The minor code.
status The completion status, one of:

CORBA::COMPLETED_YES
CORBA::COMPLETED_NO
CORBA::COMPLETED_MAYBE

Parameter Description
status The completion status, one of:

CORBA::COMPLETED_YES
CORBA::COMPLETED_NO
CORBA::COMPLETED_MAYBE

Parameter Description
val The minor code.

76 VisiBroker-RT for C++ Programmer’s Reference

Note

The reference count for the Exception object is not incremented by this
method.

UserException

class CORBA::UserException : public CORBA::Exception

The UserException base class is used to derive the user exceptions that
your object implementations may want to raise. This class is derived from
the Exception class, described in “Exception”, which provides methods for
printing the name and details of the exception to an output stream.

Include file
The corba.h file should be included when you use this class.

Parameter Description
exc An Exception pointer to be downcasted.

Exception name Description
BAD_INV_ORDER Routine invocations out of order.
BAD_OPERATION Invalid operation.
BAD_CONTEXT Error processing context object.
BAD_PARAM An invalid parameter was passed.
BAD_TYPECODE Invalid typecode.
COMM_FAILURE Communication failure.
DATA_CONVERSION Data conversion error.
FREE_MEM Unable to free memory
IMP_LIMIT Implementation limit violated.
INITIALIZE ORB initialization failure.
INTERNAL ORB internal error.
INTF_REPOS Error accessing interface repository.
INV_FLAG Invalid flag was specified.
INV_INDENT Invalid identifier syntax.
INV_OBJREF Invalid object reference specified.
MARSHAL Error marshalling parameter or result.
NO_IMPLEMENT Operation implementation not available.
NO_MEMORY Dynamic memory allocation failure.
NO_PERMISSION No permission for attempted operation.
NO_RESOURCES Insufficient resources to process request.
NO_RESPONSE Response to request not yet available.
OBJ_ADAPTOR Failure detected by object adaptor.
OBJECT_NOT_EXIST Object is not available.
PERSIST_STORE Persistent storage failure.
TRANSIENT Transient failure.
UNKNOWN Unknown exception

VisiBroker-RT for C++ Programmer’s Reference 77

UserException methods

CORBA::UserException();

To his method creates a UserException object with the specified properties.

UserException derived classes

class AdapterAlreadyExists :
public CORBA::UserException class AdapterInactive :
public CORBA::UserException class AdapterNonExistent :
public CORBA::UserException class InvalidPolicy :
public CORBA::UserException class NoServant :
public CORBA::UserException class ObjectAlreadyActive :
public CORBA::UserException class ObjectNotActive :
public CORBA::UserException class ServantAlreadyActive
:
public CORBA::UserException class ServantNotActive :
public CORBA::UserException class WrongAdapter :
public CORBA::UserException

TCKind

enum TCKind

This enumeration describes the various types that a TypeCode object,
described in “TypeCode”, may represent.The values are shown in the
following table.

Parameter Description
minor The minor code.
status The completion status, one of:

CORBA::COMPLETED_YES
CORBA::COMPLETED_NO
CORBA::COMPLETED_MAYBE

Name Method
tk_null NULL
tk_void void
tk_short short
tk_long long
tk_ushort unsigned short
tk_ulong unsigned long
tk_float float
tk_double double
tk_boolean boolean
tk_char char
tk_octet octet string
tk_any Any
tk_TypeCode TypeCode
tk_Principal Principal
tk_objref object reference
tk_struct struct
tk_union union

78 VisiBroker-RT for C++ Programmer’s Reference

TypeCode

class CORBA::TypeCode

The TypeCode class represents the various types that can be defined in IDL.
Type codes are most often used to describe the type of value being stored
in an Any object, described in“CORBA::Any();”. Type codes may also be
passed as parameters to method invocations.

TypeCode objects can be created using the various
CORBA::ORB.create_<type>_tc methods, whose description begins
in“Object”. You may also use the constructors listed here.

Include file
The corba.h file should be included when you use this class.

tk_enum enum
tk_string string
tk_sequence sequence
tk_array array
tk_alias alias
tk_except exception
tk_longlong long long
tk_ulonglong unsigned long long
tk_longdouble long double
tk_wchar Unicode character
tk_wstring Unicode string
tk_fixed fixed type
tk_value value
tk_value_box value box
tk_native native type
tk_abstract_interface abstract interface

Name Method

VisiBroker-RT for C++ Programmer’s Reference 79

TypeCode constructors

CORBA::TypeCode(CORBA::TCKind kind, CORBA::Boolean
is_constant);

This method constructs a TypeCode object for types that do not require any
additional parameters. A BAD_PARAM exception is raised if kind is not a valid
type for this constructor.

TypeCode methods

CORBA::TypeCode_ptr content_type() const;

This method returns the TypeCode of the elements in a sequence or array. It
also will return the type of an alias. A BadKind exception is raised if this
object’s kind is not CORBA::tk_sequence, CORBA::tk_array, or
CORBA::tk_alias.

CORBA::Long default_index() const;

This method returns the default index of a TypeCode representing a union.
If this object’s kind is not CORBA::tk_union, a BadKind exception is raised.

CORBA::TypeCode_ptr discriminator_type() const;

This method returns the discriminator type of a TypeCode representing a
union. If this object’s kind is not CORBA::tk_union, a BadKind exception is
raised.

CORBA::Boolean equal(CORBA::TypeCode_ptr tc) const;

This method compares this object with the specified TypeCode. If they
match in every respect, true is returned. Otherwise, false is returned.

const char* id() const;

This method returns the repository identifier of the type being represented
by this object. If the type being represented does not have a repository

Parameter Description
kind Describes the type of object being represented. Must be

one of the following:

CORBA::tk_null, CORBA::tk_void,
CORBA::tk_short, CORBA::tk_long, CORBA::tk_ushort,
CORBA::tk_ulong, CORBA::tk_float,
CORBA::tk_double, CORBA::tk_boolean,
CORBA::tk_char, CORBA::tk_octet, CORBA::tk_any,
CORBA::tk_TypeCode, CORBA::tk_Principal,
CORBA::tk_longlong, CORBA::tk_ulonglong,
CORBA::tk_longdouble, or CORBA::tk_wchar,
CORBA::tk_fixed, CORBA::tk_value,
CORBA::tk_value_box, CORBA::native,
CORBA::tk_abstract_interface.

is_constant If true, the type being represented is to be considered a
constant. Otherwise, the object is not a constant.

Parameter Description
tc The object to be compared to this object.

80 VisiBroker-RT for C++ Programmer’s Reference

identifier, a BadKind exception is raised. Types that have a repository
identifier include:

• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_alias
• CORBA::tk_except
• CORBA::tk_objref

CORBA::TCKind kind() const

This method returns this object’s kind.

CORBA::ULong length() const;

This method returns the length of the string, sequence, or array
represented by this object. A BadKind exception is raised if this object’s
kind is not CORBA::tk_string, CORBA::tk_sequence, or CORBA::tk_array.

CORBA::ULong member_count() const;

This method returns the member count of the type being represented by
this object. If the type being represented does not have members, a
BadKind exception is raised. Types that have members include:

• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_except

CORBA::Any_ptr member_label(CORBA::ULong index) const;

This method returns the label of the member with the specified index from a
TypeCode object for a union. If this object’s kind is not CORBA::tk_union, a
BadKind exception is raised. If the index is invalid, a Bounds exception is
raised.

const char *member_name(CORBA::ULong index) const;

This method returns the name of the member with the specified index from
the type being represented by this object. If the type being represented
does not have members, a BadKind exception is raised. If the index is
invalid, a Bounds exception is raised. Types that have members include:

• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_except

Parameter Description
index The label of the union member whose type is to be

returned. This index is zero-based.

Parameter Description
index The index of the member whose name is to be

returned. This index is zero-based.

VisiBroker-RT for C++ Programmer’s Reference 81

CORBA::TypeCode_ptr member_type(CORBA::ULong index)
const;

This method returns the type of the member with the specified index from
the type being represented by this object. If the type being represented
does not have members with types, a BadKind exception is raised. If the
index is invalid, a Bounds exception is raised. Types that have members
include:

• CORBA::tk_union
• CORBA::tk_except

const char *name() const;

This method returns the name of the type being represented by this object.
If the type being represented does not have a name, a BadKind exception is
raised. Types that have a name include:

• CORBA::tk_objref
• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_alias
• CORBA::tk_except

static CORBA::TypeCode_ptr
_duplicate(CORBA::TypeCode_ptr obj)

This static method duplicates the specified TypeCode.

static CORBA::TypeCode_ptr _nil()

This static method returns a NULL TypeCode pointer that can be used for
initialization purposes.

static void _release(CORBA::TypeCode_ptr obj)

This static method decrements the reference count to the specified object.
If the reference count is zero, it also frees all memory that it is managing
and then deletes the object.

CORBA::Boolean equivalent (CORBA_TypeCode_ptr tc) const

The equivalent operation is used by the ORB when determing the type
equivalence for values stored in an IDL Any

CORBA_TypeCode_ptr get_compact_typecode() const

The get_compact_code operation strips out all optional name & member
name fields, but it leaves all alias typecodes intact.

Parameter Description
index The index of the member whose type is to be returned.

This index is zero-based.

Parameter Description
obj The object to be duplicated.

Parameter Description
obj The object to be released.

82 VisiBroker-RT for C++ Programmer’s Reference

virtual CORBA::Visibility
member_visibility(CORBA::ULong index) const;

The member_visibility operation can only be invoked and non_boxed
valuetype TypeCodes. It returns the Visibility of the valuetype member
identified by index.

virtual CORBA::ValueModifier type_modifier() const;

The type_modifier operations can be invoked on non-boxed valuetype
TypeCodes. This method returns the ValueModifier that applies to the
valuetype represented by the target Typecode.

virtual CORBA::TypeCode_ptr concrete_base_types()

The concrete_base_types operations can be invoked on non-boxed
valuetype TypeCodes. If the value represented by the target TypeCode has
a concrete base valuetype, this method returns a TypeCode for the concrete
base, otherwise it returns a nil TypeCode reference.

SupportServices

class SupportServices

This class provides support for user registration of VisiBroker Services.

static SupportServices * instance();

This method returns a reference to the SupportServices instance, which can
then be used to register VisiBroker services via the
register_service_object() method.

void register_service_object(const char* objectId,
CORBA_Object_ptr obj);

This method is provided to allow for the registration of any VisiBroker
Services. The Service provider will specify their Service Name along with a
Object pointer to the service object. Users of the Service can then acquire a
handle to the Service by calling orb-
>resolve_initial_references("service_name").

Include file
The supportServicesLib.h file should be included when you use this class.

Parameter Description
obj CORBA Object which implements the Service.

VisiBroker-RT for C++ Programmer’s Reference 83

Dynamic Interfaces and
Classes
This chapter describes the classes that support the Dynamic Invocation
Interface used by client applications, and the Dynamic Skeleton Interface
used by object servers.

Note

The Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface
(DSI) is not supported as part of the “minimum CORBA” version of
VisiBroker-RT for C++ (that is, liborb_min.o).

The "minimum CORBA" OMG specification identifies dynamic functionality
which should be excluded from an ORB, in an effort to reduce the ORB
footprint.

For details, see the minimum CORBA specification document, OMG
document number orbos/ 98-08-04. This document is available for
download using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

Author note: the link above doesn’t work

Any

class CORBA::Any

This class is used to represent an IDL type so that its value may be passed
in a type-safe manner. Objects of this class have a pointer to a TypeCode
that defines the object’s type and a pointer to the value associated with the
object. Methods are provided to construct, copy, and destroy an object as
well as to initialize and query the object’s type and value. In addition,
streaming operators are provided to read and write the object to a stream.

Include file
The corba.h file should be included when you use this structure.

Any methods

CORBA::Any();

This is the default constructor that creates an empty Any object.

CORBA::Any(const CORBA::Any& val);

This is a copy constructor that creates an Any object that is a copy of the
specified target.

Parameter Description
val The object to be copied.

84 VisiBroker-RT for C++ Programmer’s Reference

CORBA::Any(CORBA::TypeCode_ptr tc, void *value,
CORBA::Boolean release = 0);

This constructor creates an Any object initialized with the specified value
and TypeCode.

static CORBA::Any_ptr _duplicate(CORBA::Any_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::Any_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::Any_ptr *ptr);

This static method decrements the reference count for the specified object.
If the count has reached zero, all memory managed by the object is
released and the object is deleted.

Insertion operators

void operator<<=(CORBA::Short);
void operator<<=(CORBA::UShort);
void operator<<=(CORBA::Long);
void operator<<=(CORBA::ULong);
void operator<<=(CORBA::Float);
void operator<<=(CORBA::Double);
void operator<<=(const CORBA::Any&);
void operator<<=(const char *);
void operator<<=(CORBA::LongLong);
void operator<<=(CORBA::ULongLong);
void operator<<=(CORBA::LongDouble);

These operators will initialize this object with the specified value,
automatically setting the appropriate TypeCode for the value. If this Any
object was constructed with the release flag set to true, the value
previously stored in this Any object will be released before the new value is
assigned.

Parameter Description
tc The TypeCode of the value contained by this Any.
value The value contained by this Any.
release If set to TRUE, the memory associated with this Any

object’s value will be released when this Any object is
destroyed.

Parameter Description
ptr The Any to be duplicated.

Parameter Description
ptr The Any to be released.

VisiBroker-RT for C++ Programmer’s Reference 85

void operator<<=(CORBA::TypeCode_ptr tc);

Extraction operators

CORBA::Boolean operator>>=(CORBA::Short&) const;
CORBA::Boolean operator>>=(CORBA::UShort&) const;
CORBA::Boolean operator>>=(CORBA::Long&) const; CORBA::Boolean
operator>>=(CORBA::ULong&) const; CORBA::Boolean
operator>>=(CORBA::Float&) const; CORBA::Boolean
operator>>=(CORBA::Double&) const; CORBA::Boolean
operator>>=(CORBA::Any&) const; CORBA::Boolean
operator>>=(char *&) const; CORBA::Boolean
operator>>=(CORBA::LongLong&) const; CORBA::Boolean
operator>>=(CORBA::ULongLong&) const; CORBA::Boolean
operator>>=(CORBA::LongDouble&) const;

These operators store the value from this object into the specified target. If
the TypeCode of the target does not match the TypeCode of the stored
value, false is returned and no value is extracted. Otherwise, the stored
value will be assigned to the target and true will be returned.

CORBA::Boolean operator>>=(CORBA::TypeCode_ptr& tc)
const;

This method extracts the TypeCode of the value stored in this object.

ContextList

class CORBA::ContextList

This class contains a list of contexts that may be associated with an
operation request. See “Request”.

ContextList methods

CORBA::ContextList();

This method constructs an empty Context list.

~CORBA::ContextList();

This method is the default destructor.

void add(const char *ctx);

This method adds the specified context to this object’s list.

Parameter Description
tc The object where the typecode for this Any is to be

stored.

Parameter Description
ctx The context to be added to the list.

86 VisiBroker-RT for C++ Programmer’s Reference

void add_consume(char *ctx);

This method adds the specified context code to this object’s list. Ownership
of the passed argument is assumed by this ContextList. You should not
attempt to access or free the argument after invoking this method.

CORBA::ULong count() const;

This method returns the number of items currently stored in the list.

const char *item(CORBA::Long index);

This method returns a pointer to the context that is stored in the list at the
specified index. If the index in invalid, a NULL pointer is returned. You
should not attempt to access or free the argument after invoking this
method. To remove a context from the list, use the remove method.

void remove(CORBA::long index);

This method removes from the list the context with the specified index. If
the index is invalid, no removal will occur.

static CORBA::ContextList_ptr
_duplicate(CORBA::ContextList_ptr ptr);

This static method increments the reference count for the object and then
returns a pointer to it.

static CORBA::ContextList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::ContextList *ptr);

This static method decrements the reference count for this object. If the
count has reached zero, all memory managed by the object is released and
the object is deleted.

Parameter Description
ctx The context to be added to the list.

Parameter Description
index The index of the context to be returned. The index is

zero-based.

Parameter Description
index The index of the context to be removed. The index is

zero-based.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

VisiBroker-RT for C++ Programmer’s Reference 87

DynamicImplementation

class PortableServer::DynamicImplementation : public
PortableServer::ServantBase

This base class is used derive object implementations that wish to use the
Dynamic Skeleton Interface instead of a skeleton class generated by the
IDL compiler. You must provide an implementation of the invoke and
_primary-interface() methods when deriving from this class.

DynamicImplementation methods

virtual void invoke(CORBA::ServerRequest_ptr request) =
0;

This method will be invoked by the POA whenever client operation requests
are received for your object implementation. You must provide an
implementation of this method which validates the ServerRequest object’s
contents, performs the necessary processing to fulfill the request, and
returns the results to the client. For more information on the ServerRequest
class, see “ServerRequest”.

DynAny

virtual CORBA::RepositoryId _primary_interface(const
PortableServer::ObjectId& oid PortableServer::POA_ptr
poa) const;

The _primary_interface() method will be invoked only by the POA in the
context of serving a CORBA request. Invoking this method in other
circumstances may lead to unpredictable results. The _primary_interface
method receives an ObjectId value and a POA_ptr as input parameters and
returns a valid RepositoryId representing the most-derived interface for
that oid.

class DynamicAny::DynAny : public CORBA::Pseudo Object

A DynAny object is used by a client application or server to create and
interpret data types at run-time which were not defined at compile-time. A
DynAny may contain a basic type (such as a boolean, int, or float) or a
complex type (such as s struct or union). The type contained by a DynAny
is defined when it is created and may not be changed during the lifetime of
the object.

A DynAny object may represent a data type as one or more components,
each with its own value. The next, seek, rewind, and current_component
methods are provided to help you navigate through the components.

A DynAny object is created by a DynAnyFactory object by first calling
ORB::resolve_initial_references(“DynAnyFactory”). The factory is then
used to create basic or complex types. The DynAnyFactory belongs to the
DynamincAny module.

Parameter Description
request The ServerRequest object that represents the client’s

operation request.

88 VisiBroker-RT for C++ Programmer’s Reference

DynAny objects for basic types are created using the
DynAnyFactory::create_ dyn_any_from_type_code method, described in
“Core Interfaces and Classes”.

A DynAny object may also be created and initialized from an Any object using
the DynAnyFactory::create_dyn_any method, also described in “Core
Interfaces and Classes”.

The following interfaces are derived from DynAny and provide support for
constructed types that are dynamically managed.

Include file
The dynany.h file should be included when you use this structure.

Important usage restrictions
DynAny objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB::object_to_string
method. However, you may use the DynAny::to_any method to convert a
DynAny object to an Any, which can be used as a parameter.

DynAny methods

void assign(CORBA::DynAny_ptr dyn_any);

Initializes the value in this object from the specified DynAny.

A type mismatch exception is raised if the type contained in the Any does
not match the type contained by this object.

CORBA::DynAny_ptr copy();

Returns a copy of this object.

virtual CORBA::DynAny_ptr current_component();

Returns the current component in this object.

virtual void destroy();

Destroys this object.

virtual void from_any(CORBA::Any& value);

Initializes the current component of this object from the specified Any
object.

A type mismatch exception is raised if the TypeCode of value contained in
the Any does not match the TypeCode defined for this object when it was
created.

Constructed type Interface
Array DynArray

Enumeration DynEnum

Sequence DynSequence

Structure DynStruct

Union DynUnion

VisiBroker-RT for C++ Programmer’s Reference 89

If the passed in Any does not contain a legal value the operation raises an
invalid value exception.

virtual boolean next();

Advances to the next component, if one exists, and returns true. If there
are no more components, false is returned.

virtual void rewind();

Returns to the first component contained in this object’s sequence. A
subsequent invocation of the current_component method will return the
first component in the sequence.

If this object contains only one component, invoking this method will have
no effect.

virtual CORBA::Boolean seek(CORBA::Long index);

If this object contains multiple components, this method advances to the
component with the specified index and returns true. A subsequent
invocation of the current_component method will return the component
with the specified index.

If there is no component at the specified index, false is returned.

virtual CORBA::ULong component_count():

Returns the number of components of the value of the DynAny as an
unsigned long.

virtual CORBA::Any* to_any();

Returns an Any object containing the value of the DynAny.

CORBA::TypeCode_ptr type();

Returns the TypeCode for the value stored in the DynAny.

virtual CORBA::DynAny equal()

Compares two DynAny values for equality.

Extraction methods
A set of methods is provided which return the type contained in this DynAny
object’s current component. Example 54 shows the name of each of the
extraction methods.

A TypeMismatch exception is raised if the value contained in this DynAny
does not match the expected return type for the extraction method used.

Parameter Description
value An Any object containing the value to set for this object

Parameter Description
index The zero-base index of the desired component.

90 VisiBroker-RT for C++ Programmer’s Reference

Example 54 Extraction methods offered by the DynAny class

virtual CORBA::Any* get_any();
virtual CORBA::Boolean get_boolean();
virtual CORBA::Char get_char();
virtual CORBA::Double get_double();
virtual CORBA::Float get_float();
virtual CORBA::Long get_long();
virtual CORBA::LongDouble get_longdouble();
virtual CORBA::Long get_longlong();
virtual CORBA::Octet get_octet();
virtual CORBA::Object_ptr get_reference();
virtual CORBA::Short get_short();
virtual char* get_string();
virtual CORBA::TypeCode_ptr get_typecode();
virtual CORBA::ULong get_ulong();
virtual CORBA::UlongLong get_ulonglong();
virtual CORBA::UShort get_ushort();
virtual CORBA::WChar get_wchar();
virtual CORBA::WChar* get_wstring();
virtual DynamicAny::DynAny* get_dyn_any();
virtual CORBA::ValueBase* get_val();

Insertion methods
A set of methods is provided that copies a particular type of value to this
DynAny object’s current component. Example 55 shows the list of methods
provided for inserting various types.

These methods will raise an InvalidValue exception if the inserted object’s
type does not match the DynAny object’s type.

Example 55 Insertion methods offered by the DynAny class

virtual void insert_any(const CORBA:Any& value);
virtual void insert_boolean(CORBA::Boolean value);
virtual void insert_char(CORBA::char value);
virtual void insert_double(CORBA::Double value);
virtual void insert_float(CORBA::Float value);
virtual void insert_long(CORBA::Long value);
virtual void insert_longdouble(CORBA::LongDouble value);
virtual void insert_longlong(CORBA::LongLong value);
virtual void insert_octet(CORBA::Octet value);
virtual void insert_reference(CORBA:Object_ptr value);
virtual void insert_short(CORBA::Short value);
virtual void insert_string(const char* value);
virtual void insert_typecode(CORBA:TypeCode_ptr value);
virtual void insert_ulong(CORBA::ULong value);
virtual void insert_ulonglong(CORBA::ULongLong value);
virtual void insert_ushort(CORBA::UShort value);
virtual void insert_wchar(CORBA::WChar value);
virtual void insert_wstring(const CORBA::WChar* value);
virtual void insert_dyn_any
(DynamicAny::DynAny_ph_value);
virtual void insert_val(count CORBA::ValueBase& value);

VisiBroker-RT for C++ Programmer’s Reference 91

DynAnyFactory

class DynamicAny::DynAnyFactory : public
CORBA::PseudoObject

A DynAnyFactory object is used to create a new DynAny object from an any
value by invoking an operation on this object. A reference to the
DynAnyFactory object is obtained by calling
ORB::resolve_initial_references(“DynAnyFactory”).

DynAnyFactory methods

DynAny_ptr create_dyn_any (const CORBA::Any& value);

Creates a DynAny object of the specified value.

DynAny_ptr create_dyn_any_from_type_code
(CORBA::TypeCode_ptr value);

Creates a DynAny object of the specified type.

DynArray

class DynamicAny::DynArray : public VISDynComplex

Objects of this class are used by a client application or server to create and
interpret array data types at run-time which were not defined at compile-
time. A DynArray may contain a a sequence of basic type (such as a
boolean, int, or float) or a constructed type (such as struct or union).
The type contained by a DynArray is defined when it is created and may not
be changed during the lifetime of the object.

The next, rewind, seek, and current_component methods, inherited from
DynAny, may be used to navigate through the components.

The VISDynComplex class is a helper class that allows the ORB to manage
complex DynAny types.

Important usage restrictions
DynArray objects cannot be used as parameters on operation requests or
DII requests, nor can they be externalized using the ORB::object_to_string
method. However, you may use the DynAny::to_any method to convert a
DynArray object to a sequence of Any objects, which can be used as a
parameter.

Parameter Description
value A new DynAny object of a specified value.

Parameter Description
type A new DynAny object of a specified type.

92 VisiBroker-RT for C++ Programmer’s Reference

DynArray methods

virtual void destroy();

Destroys this object.

CORBA::AnySeq* get_elements()

Returns a sequence of Any objects containing the values stored in this
object.

void set_elements(CORBA::AnySeq& _value);

Sets the elements contained in this object from the specified sequence of
Any objects.

DynamicAny::DynAnySeq* get_elements_as_dyn_any();

Returns a sequence of DynAny objects contained within.

void set_elements_as_dyn_any (const
DynamicAny::DynAnySeq& value);

Sets the elements contained in the object from the specified sequence of
DynAny objects.

An InvalidValue exception will be raised if the number of elements in
_value is not equal to the number of elements in this DynArray. A type
mismatch exception is raised if the type of the Any values do not match the
TypeCode of the DynAny.

DynEnum

class DynamicAny::DynEnum : public DynamicAny::DynAny

Objects of this class are used by a client application or server to create and
interpret enumeration values at runtime which were not defined at compile-
time.

Since this type contains a single component, invoking the DynAn::rewind
and DynAny::next methods on a DynEnum object will always return FALSE.

Important usage restrictions
DynEnum objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB::object_to_string
method. However, you may use the to_any method to convert a DynEnum
object to an Any, which can be used as a parameter.

Parameter Description
_value An array of Any objects whose values will be set in this

DynArray.

VisiBroker-RT for C++ Programmer’s Reference 93

DynEnum methods

void from_any(const CORBA::Any& value);

Initializes the value of this object from the specified Any object.

An Invalid exception is raised if the TypeCode of value contained in the Any
does not match the TypeCode defined for this object when it was created.

CORBA::Any* to_any();

Returns an Any object containing the value of the current component.

char* get_as_string();

Returns the DynEnum object’s value as a string.

void set_as_string(const char* value_as_string);

Sets the value contained in this DynEnum from the specified string.

CORBA::ULong get_as_ulong()

Returns a int containing the DynEnum object’s value.

void set_as_ulong(CORBA::ULong value_as_ulong)

Sets the value contained in this DynEnum from the specified CORBA::Ulong.

DynSequence

class DynamicAny::DynSequence : public
DynamicAny::DynArray

Objects of this class are used by a client application or server to create and
interpret sequence data types at run-time which were not defined at
compile-time. A DynSequence may contain a sequence of basic type (such
as a boolean, int, or float) or a constructed type (such as a struct or
union). The type contained by a DynSequence is defined when it is created
and may not be changed during the lifetime of the object.

The next, rewind, seek, and current_component methods may be used to
navigate through the components.

Parameter Description
value An Any object containing the value to set for this

object.

Parameter Description
value_as_string A string that will be used to set the value in this

DynEnum.

Parameter Description
value_as_ulong An integer that will be used to set the value in this

DynEnum.

94 VisiBroker-RT for C++ Programmer’s Reference

Important usage restrictions
DynSequence objects cannot be used as parameters on operation requests
or DII requests, nor can they be externalized using the
ORB::object_to_string method. However, you may use the to_any
method to convert a DynSequence object to a sequence of Any objects,
which can be used as a parameter.

DynSequence methods

CORBA::ULong get_length()

Returns the number of components contained in this DynSequence.

void set_length(CORBA::ULong length);

Sets the number of components contained in this DynSequence.

If you specify a length that is less than the current number of components,
the sequence will be truncated.

CORBA::AnySeq * get_elements();

Returns a sequence of Any objects containing the value stored in this
object.

void set_elements (const AnySeq& _value)

Sets the elements within this object with specified sequence of Any objects.

set _elements as dyn_any and get_elements_as_dyn_any;

See “DynArray” on page 6-10 for more details.

DynStruct

class DynamicAny::DynStruct :public VISDynComplex

Objects of this class are used by a client application or server to create and
interpret structures at run-time which were not defined at compile-time.

The next, rewind, seek, and current_component methods may be used to
navigate through the structure members.

You create an DynStruct object by invoking the
DynAnyFactory::create_dyn_any_from_typecode method.

Important usage restrictions
DynStruct objects cannot be used as parameters on operation requests or
DII requests, nor can they be externalized using the
ORB::object_to_string method. However, you may use the to_any method
to convert a DynStruct object to an Any objects, which can be used as a
parameter.

Parameter Description
length The number of components to be contained in this

DynSequence.

VisiBroker-RT for C++ Programmer’s Reference 95

DynStruct methods

void destroy();

Destroys this object.

CORBA::FieldName current_member_name();

Returns the member name of the current component.

CORBA::TCKind current_member_kind();

Returns the TypeCode associated with the current component.

DynamicAny::NameValuePairSeq get_members();

Returns the members of the structure as a sequence of NameValuePair
objects.

void set_members(const DynamicAny::NameValuePairSeq& value);

Sets the structure members from the array of NameValuePair objects.

DynamicAny::Name DynAnyPairSeq get_members_as_dyn_any();

Returns the members of the structure as NameDynAnyPair sequence.

void set_members_as_dyn_any (const
DynamicAny::nameDynAnyPairSeq value);

Sets the structure members from NameDynAnyPair objects.

An InvalidValue exception is raised if the length of the value sequence is
not equal to the number of members of DynStruct, and a type mismatch
exception is raised when any of the element’s typecode does not match that
of the structure.

DynUnion

class DynamicAny::DynUnion : public VISDynComplex

This interface is used by a client application or server to create and interpret
unions at run-time which were not defined at compile-time. The DynUnion
contains a sequence of two elements; the union discriminator and the
actual member.

The next, rewind, seek, and current_component methods may be used to
navigate through the components.

You create an DynUnion object by invoking the
DynamicAny::DynAnyFactory::create_dyn_any_from_type_code method.

Important usage restrictions
DynUnion objects cannot be used as parameters on operation requests or
DII requests, nor can they be externalized using the
ORB::object_to_string method. However, you may use the
DynAny::to_any method to convert a DynUnion object to an Any objects,
which can be used as a parameter.

96 VisiBroker-RT for C++ Programmer’s Reference

DynUnion methods

DynamicAny::DynAny_ptr get_discriminator();

Returns a DynAny object containing the discriminator for the union.

CORBA::TCKind discriminator_kind();

Returns the type code of the discriminator for the union.

DynamicAny::DynAny_ptr member();

Returns a DynAny object for the current component which represents a
member in the union.

CORBA::TCKind member_kind();

Returns the type code for the current component, which represents a
member in the union.

CORBA::FieldName member_name();

Returns the member name of the current component.

void set_discriminator (DynamicAny::DynAny_ptr value);

Sets the discriminator of this DynUnion to the specified value.

void set_to_default_member());

Sets the discriminator to a value that is consistent with the value of the
default case of a union.

void set_to_no_active_member();

Sets the discriminator to a value that does not correspond to any of the
union’s case labels.

boolean has_no_active_member();

Returns true if the union has no active member (that is, the union’s value
consists solely of its discriminator because the discriminator has a value
that is not listed as an explicit case label).

ExceptionList

class CORBA::ExceptionList

This class contains a list of type codes that represent exceptions that may be
raised by an operation request. See “Request” on page 6-21.

ExceptionList methods

CORBA::ExceptionList();

This method constructs an empty exception list.

VisiBroker-RT for C++ Programmer’s Reference 97

CORBA::ExceptionList(CORBA::ExceptionList& list);

This is a copy constructor.

~CORBA::ExceptionList();

This method is the default destructor.

void add(CORBA::TypeCode_ptr tc);

This method adds the specified exception type code to this object’s list.

void add_consume(CORBA::TypeCode_ptr tc);

This method adds the specified exception type code to this object’s list.
Ownership of the passed argument is assumed by this ExceptionList. You
should not attempt to access or free the argument after invoking this
method.

CORBA::ULong count() const;

This method returns the number of items currently stored in the list.

CORBA::TypeCode_ptr item(CORBA::Long index);

This method returns a pointer to the TypeCode stored in the list at the
specified index. If the index is invalid, a NULL pointer is returned. You
should not attempt to access or free the argument after invoking this
method. To remove a TypeCode from the list, use the remove method.

void remove(CORBA::long index);

This method removes from the list, the TypeCode with the specified index. If
the index is invalid, no removal will occur.

static CORBA::ExceptionList_ptr
_duplicate(CORBA::ExceptionList_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

Parameter Description
list The list to be copied.

Parameter Description
tc The type code of an exception to be added to the list.

Parameter Description
tc The type code of an exception to be added to the list.

Parameter Description
index The index of the type code to be returned. The index is

zero-based.

Parameter Description
index The index of the type code to be removed. The index is

zero-based.

Parameter Description
ptr The object to be duplicated.

98 VisiBroker-RT for C++ Programmer’s Reference

static CORBA::ExceptionList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::ExceptionList *ptr);

This static method decrements the reference count for the specified object.
If the count has reached zero, all memory managed by the object is
released and the object is deleted.

NamedValue

class CORBA::NamedValue

The NamedValue class is used to represent a name-value pair used as a
parameter or return value in a Dynamic Invocation Interface request.
Objects of this class are grouped into an NVList, described in “NVList” on
page 6-18. The Any class is used to represent the value associated with this
object. The Request class is described in “Request”.

Include file
You should include the file corba.h when using this class.

NamedValue methods

CORBA::Flags flags() const;

This method returns the flag defining how this name-value pair is to be
used. One of the following is returned.

const char *name() const;

This method returns the name portion of this object’s name-value pair. You
should never release the storage pointed to by the return argument.

CORBA::Any *value() const;

This method returns the value portion of this object’s name-value pair. You
should never release the storage pointed to by the return argument.

Parameter Description
ptr The object to be released.

ARG_IN This object represents an input parameter.
ARG_OUT This object represents an output parameter.
ARG_INOUT This object represents both an input and output parameter.
IN_COPY_VALUE This value can be specified in combination with the

ARG_INOUT flag to specify that the ORB should make a copy
of the parameter. This allows the ORB to release memory
associated with this parameter without impacting the client
application’s memory.

VisiBroker-RT for C++ Programmer’s Reference 99

static CORBA::NamedValue_ptr
_duplicate(CORBA::NamedValue_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::NamedValue_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::NamedValue *ptr);

This static method decrements the reference count for the specified object.
If the count has reached zero, all memory managed by the object is
released and the object is deleted.

NVList

class CORBA::NVList

The NVList class is used to contain a list of NamedValue objects, described
in “NamedValue” in this guide, and is used to pass parameters associated
with a Dynamic Invocation Interface request. The Request class is
described in “Request”.

Several methods are provided for adding items to the list. You should never
release the storage pointed to by the return argument. Always use the
remove method to delete an item from the list.

Include file
You should include the file corba.h when using this class.

NVList methods

CORBA::NamedValue_ptr add(CORBA::Flags flags);

This method adds a NamedValue object to this list, initializing only the flags.
Neither the name or value of the added object are initialized. A pointer is
returned which can be used to initialize the name and value attributes of the
NamedValue. You should never release the storage associated with the
return argument.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

Parameter Description
flags The flag indicating the intended use of the NamedValue

object. It can be one of ARG_IN, ARG_OUT, or
ARG_INOUT.

100 VisiBroker-RT for C++ Programmer’s Reference

CORBA::NamedValue_ptr add_item(const char *name,
CORBA::Flags flags);

This method adds a NamedValue object to this list, initializing the object’s
flags and name attributes. A pointer is returned which can be used to
initialize the value attribute of the NamedValue. You should never release the
storage associated with the return argument.

NamedValue_ptr add_item_consume(char *nm, CORBA::Flags
flags);

This method is the same as the add_item method, except that the NVList
takes over the management of the storage pointed to by nm. You will not be
able to access nm after this method is called because the list may have
copied and released it. When this item is removed, the storage associated
with it is automatically freed.

Caution

You should never release the memory associated with this method’s return
value.

CORBA::NamedValue_ptr add_value(const char *name, const
CORBA::Any *value, CORBA::Flags flags);

This method adds a NamedValue object to this list, initializing the name,
value, and flags. A pointer to the NamedValue object is returned. You should
never release the storage associated with the return argument.

NamedValue_ptr add_value_consume(char *nm, CORBA::Any
*value, CORBA::Flags flags);

This method is the same as the add_value method, except that the NVList
takes over the management of the storage pointed to by nm and value. You
will not be able to access nm or value after this method is called because
the list may have copied and released them. When this item is removed, the
storage associated with it is automatically freed.

Parameter Description
name The name
flags The flag indicating the intended use of the NamedValue

object. It can be one of ARG_IN, ARG_OUT, or
ARG_INOUT.

Parameter Description
name The name
flags The flag indicating the intended use of the NamedValue

object. It can be one of ARG_IN, ARG_OUT, or
ARG_INOUT.

Parameter Description
name The name
value The value
flags The flag indicating the intended use of the NamedValue

object. It can be one of ARG_IN, ARG_OUT, or
ARG_INOUT.

Parameter Description
name The name

VisiBroker-RT for C++ Programmer’s Reference 101

CORBA::Long count() const;

This method returns the number of NamedValue objects in this list.

static CORBA::Boolean CORBA::is_nil(NVList_ptr obj);

This method returns true if the specified NamedValue pointer is NULL.

NamedValue_ptr item(CORBA::Long index);

This method returns the NamedValue in the list with the specified index.
Never release the storage associated with the return argument.

static void CORBA::release(CORBA::NVList_ptr obj);

This static method releases the specified object.

Status remove(CORBA::Long index);

This method deletes the NamedValue object from this list, located at the
specified index. Storage associated with items in the list that were added
using the add_item_consume or add_value_consume methods will be
released before the item is removed.

static CORBA::NVList_ptr _duplicate(CORBA::NVList_ptr
ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::NVList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

value The value
flags The flag indicating the intended use of the NamedValue

object. It can be one of ARG_IN, ARG_OUT, or
ARG_INOUT.

Parameter Description
obj The object pointer to be checked.

Parameter Description
index The index of the desired NamedValue object. Note that

indexing is zero-based.

Parameter Description
obj The object to be released.

Parameter Description
index The index of the NamedValue object. Note that indexing

is zero-based.

Parameter Description
ptr The object to be duplicated.

Parameter Description

102 VisiBroker-RT for C++ Programmer’s Reference

static void _release(CORBA::NVList *ptr);

This static method decrements the reference count for the specified object.
If the count has reached zero, all memory managed by the object is
released and the object is deleted.

Request

class CORBA::Request

The Request class is used by client applications to invoke an operation on
an ORB object using the Dynamic Invocation Interface. A single ORB object
is associated with a given Request object. The Request represents an
operation that is to be performed on the ORB object. It includes the
arguments to be passed, the Context, and an Environment object, if any.
Methods are provided for invoking the request, receiving the response from
the object implementation, and retrieving the result of the operation.

You can create a Request object by using the Object::_create_request,
described in “CORBA::Object methods”.

Note that a Request object will retain ownership of all return parameters, so
you should never attempt to free them.

Include file
The corba.h file should be included when you use this class.

Request methods

CORBA::Any& add_in_arg();

This method adds an unnamed input argument to this Request and returns
a reference to the Any object so that you can set its name, type, and value.

CORBA::Any& add_in_arg(const char *name);

This method adds a named input argument to this Request and returns a
reference to the Any object so that you can set its type, and value.

Caution

You should never release the memory associated with this method’s return
value.

CORBA::Any& add_inout_arg();

This method adds an unnamed inout argument to this Request and returns
a reference to the Any object so that you can set its name, type, and value.

Parameter Description
ptr The object to be released

Option Description
name The name of the input argument to be added.

VisiBroker-RT for C++ Programmer’s Reference 103

CORBA::Any& add_inout_arg(const char *name);

This method adds a named inout argument to this Request and returns a
reference to the Any object so that you can set its type and value.

CORBA::Any& add_out_arg();

This method adds an unnamed output argument to this Request and
returns a reference to the Any object so that you can set its name, type,
and value.

CORBA::Any& add_out_arg(const char *name);

This method adds a named output argument to this Request and returns a
reference to the Any object so that you can set its type, and value.

CORBA::NVList_ptr arguments();

This method returns a pointer to an NVList object containing the
arguments for this request. The pointer can be used to set or retrieve the
argument values. For more information on NVList, see “NVList”.

Caution

You should never release the memory associated with this method’s return
value.

CORBA::ContextList_ptr contexts();

This method returns a pointer to a list of all the Context objects that are
associated with this Request. For more information on the Context class,
see “Context”.

Caution

You should never release the memory associated with this method’s return
value.

CORBA::Context_ptr ctx() const;

This method returns a pointer to the Context associated with this request.

void ctx(CORBA::Context_ptr ctx);

This method sets the Context to be used with this request. For more
information on the Context class, see “Context”.

CORBA::Environment_ptr env();

This method returns a pointer to the Environment associated with this
request. For more information on the Environment class, see “Environment”.

Option Description
name The name of the inout argument to be added.

Option Description
name The name of the output argument to be added.

Option Description
ctx The Context object to be associated with this request.

104 VisiBroker-RT for C++ Programmer’s Reference

CORBA::ExceptionList_ptr exceptions();

This method returns a pointer to a list of all the exceptions that this request
may raise.

Caution

You should never release the memory associated with this method’s return
value.

void get_response();

This method is used after the send_deferred method has been invoked to
retrieve a response from the object implementation. If there is no response
available, this method blocks the client application until a response is
received.

void invoke();

This method invokes this Request on the ORB object associated with this
request. This method will block the client until a response is received from
the object implementation. This Request should be initialized with the
target object, operation name and arguments before this method is
invoked.

const char* operation() const;

This method returns the name of the operation that this request will
represent.

CORBA::Boolean poll_response();

This non-blocking method is invoked after the send_deferred method to
determine if a response has been received. This method returns true if a
response has been received, otherwise false is returned.

CORBA::NamedValue_ptr result();

This method returns a pointer to a NamedValue object where the return
value for the operation will be stored. The pointer can be used to retrieve
the result value after the request has been processed by the object
implementation. For more information on the NamedValue class, see
“NamedValue”.

CORBA::Any& return_value();

This method returns a reference to an Any object that represents the return
value of this Request object.

void set_return_type(CORBA::TypeCode_ptr tc);

This method sets the TypeCode of the return value that is expected. You
must set the return value’s type before using the invoke method or one of
the send methods.

Option Description
tc The return value’s type.

VisiBroker-RT for C++ Programmer’s Reference 105

void send_deferred();

Like the invoke method, this method sends this Request to the object
implementation. Unlike the invoke method, this method does not block
waiting for a response. The client application can retrieve the response
using the get_response method.

void send_oneway();

This method invokes this Request as a oneway operation. Oneway operations
do not block and do not result in a response being sent from the object
implementation to the client application.

CORBA::Object_ptr target() const;

This method returns a reference to the target object on which this request
will operate.

static CORBA::Request_ptr _duplicate(CORBA::Request_ptr
ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::Request_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::Request *ptr);

This static method decrements the reference count for the specified object.
If the count has reached zero, all memory managed by the object is
released and the object is deleted.

ServerRequest

class CORBA::ServerRequest

The ServerRequest class is used to represent an operation request received
by an object implementation that is using the Dynamic Skeleton Interface.
When the POA receives a client operation request, it invokes the object
implementation’s invoke method and passes an object of this type.

This class provides the methods needed by the object implementation to
determine the operation being requested and the arguments. It also
provides methods for setting the return value and reflecting exceptions to
the client application.

You should never attempt to free memory associated with any value
returned by this class.

Option Description
ptr The object to be duplicated.

Option Description
ptr The object to be released.

106 VisiBroker-RT for C++ Programmer’s Reference

Include file
The corba.h file should be included when you use this class.

ServerRequest methods

void arguments(CORBA::NVList_ptr param);

This method obtains the parameter list for this request.

CORBA::Context_ptr ctx()

This method returns the Context object associated with the request.

Caution

You should never release the memory associated with this method’s return
value.

void exception(CORBA::Any_ptr exception);

This method is used to reflect the specified exception to the client
application.

const char *operation() const;

Returns the name of the operation being requested.

const char* op_name() const

This method returns the operation name associated with the request. The
object implementation uses this name to determine if the request is valid,
to perform the appropriate processing to fulfill the request, and to return
the appropriate value to the client.

void params(CORBA::NVList_ptr params);

This method accepts an NVList object, initialized with the appropriate
number of Any objects, and fill it in with the parameters supplied by the
client.

Option Description
params The parameter list to be filled in. You must initialize this

list with the appropriate number of Any objects and set
their type and flag values prior to invoking this method.

Option Description
exception The exception that was raised. If this pointer is NULL, a

CORBA::UnknownUserException will be reflected.

Option Description
params The parameter list to be filled in. You must initialize this

list with the appropriate number of Any objects and set
their type and flag values prior to invoking this method.

VisiBroker-RT for C++ Programmer’s Reference 107

void result(CORBA::Any_ptr result);

This method sets the result that is to be reflected to the client application.

void set_exception(const CORBA::Any& a);

This method sets the exception that is to be reflected to the client
application.

a An Any object representing the exception.

void set_result(const CORBA::Any& a);

This method sets the result that is to be reflected to the client application.

static CORBA::ServerRequest_ptr
_duplicate(CORBA::ServerRequest_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::ServerRequest_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::ServerRequest *ptr);

This static method decrements the reference count for the specified object.
If the count has reached zero, all memory managed by the object is
released and the object is deleted.

Option Description
result An Any object representing the return value.

Parameter Description
a An Any object representing the exception.

Parameter Description
a An Any object representing the exception.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

108 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 109

Interface Repository
Interfaces and Classes
This chapter describes the classes and interfaces that you can use to access
the interface repository. The interface repository maintains information on
modules and the interfaces they contain as well as other types like operations,
attributes, and constants.

Availability
Note that the Interface Repository (IR) is available ONLY on the
development host. VisiBroker-RT for C++ does NOT provide an Interface
Repository as runtime library.

Additionally the IR provides functionality which address the more Dynamic
aspects of CORBA, and therefore the IR is excluded as per the "minimum
CORBA" OMG specification. The "minimum CORBA" OMG specification
identifies dynamic functionality which should be excluded from an ORB, in
an effort to reduce the ORB footprint.

For details, see the minimum CORBA specification document, OMG
document number orbos/ 98-08-04. This document is available for
download using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

Link doesn’t work.

AliasDef

class CORBA::AliasDef : public CORBA::TypedefDef

This class is derived from the TypedefDef class and represents an alias for a
typedef that is stored in the interface repository. This class provides
methods for setting and obtaining the IDLType of the original typedef.

For more information on the TypedefDef class, see “TypedefDef”. For more
information on the IDLType class, see “IDLType”.

AliasDef methods

CORBA::IDLType original_type_def();

This method returns the IDLType of the original typedef for which this
object is an alias.

void original_type_def(CORBA::IDLType_ptr val);

This method sets the IDLType of the original typedef for which this object
is an alias.

Parameter Description
val The IDLType to set for this alias.

110 VisiBroker-RT for C++ Programmer’s Reference

ArrayDef

class CORBA::ArrayDef : public CORBA::IDLType

This class is derived from the IDLType class and represents an array that is
stored in the interface repository. It provides methods for setting and
obtaining the type of the elements in the array as well as the length of the
array.

ArrayDef methods

CORBA::TypeCode element_type();

This method returns the TypeCode of the array’s elements.

CORBA::IDLType_ptr element_type_def();

This method returns the IDLType of the elements stored in this array.

void element_type_def(CORBA:IDLType_ptr
element_type_def);

This method sets the IDLType of the elements stored in the array.

CORBA::ULong length();

This method returns the number of elements in the array.

void length(CORBA::ULong length);

This method sets the number of elements in the array.

AttributeDef

class CORBA::AttributeDef : public CORBA::Contained,
public CORBA::Object

The class is used to represent an interface attribute that is stored in the
interface repository. It provides methods for setting and obtaining the
attribute’s mode, typedef. A method is also provided for obtaining the
attribute’s type.

AttributeDef methods

CORBA::AttributeMode mode();

This method returns the mode of the attribute. It might be either
CORBA::AttributeMode ATTR_READONLY for read only attributes or
CORBA::AttributeMode ATTR_NORMAL for read-write ones. See
“AttributeMode”.

Parameter Description
element_type_def The IDLType of the elements in the array.

Parameter Description
length The number of elements in the array.

VisiBroker-RT for C++ Programmer’s Reference 111

void mode(CORBA::AttributeMode _val);

This method sets the mode of the attribute.

CORBA::TypeCode_ptr type();

This method returns the TypeCode representing the attribute’s type.

CORBA::IDLType_ptr type_def();

This method returns this object’s IDLType.

void type_def(CORBA::IDLType_ptr type_def);

This method sets the IDLType for this object.

AttributeDescription

struct CORBA::AttributeDescription

The AttributeDescription structure describes an attribute that is stored in
the interface repository.

AttributeDescription members

CORBA::Identifier_var name

This member represents the name of the attribute.

CORBA::RepositoryId_var id

This member represents the repository id of the attribute.

CORBA::RepositoryId_var defined_in

This member represents the repository id of the interface in which this
attribute is defined.

CORBA::String_var version

This member represents the attribute’s version.

CORBA::TypeCode_var type

This member represents the attribute’s IDL type.

CORBA::AttributeMode mode

This member represents the mode of this attribute.

Parameter Description
_val The mode to set.

Parameter Description
type_def The IDLType of this object.

112 VisiBroker-RT for C++ Programmer’s Reference

AttributeMode

enum CORBA::AttributeMode

The enumeration defines the values used to represent the mode of an
attribute; either read-only or normal (read-write).

AttributeMode values

ConstantDef

class CORBA::ConstantDef : public CORBA::Contained

The class is used to represent a constant definition that is stored in the
interface repository. This interface provides methods for setting and
obtaining the constant’s type, value, and typedef.

ConstantDef methods

CORBA::TypeCode_ptr type();

This method returns the TypeCode representing the object’s type.

CORBA::IDLType_ptr type_def();

This method returns this object’s IDLType.

void type_def(CORBA::IDLType_ptr type_def);

This method sets the IDLType of the constant.

CORBA::Any *value();

This method returns a pointer to an Any object representing this object’s
value.

void value(CORBA::Any& _val);

This method sets the value for this constant.

ConstantDescription
struct CORBA::ClassName

Constant Represents
ATTR_NORMAL A read-write attribute.
ATTR_READONLY A read-only attribute.

Parameter Description
type_def The IDLType of this constant.

Parameter Description
_val An Any object that represents this object’s value.

VisiBroker-RT for C++ Programmer’s Reference 113

The ConstantDescription structure describes a constant that is stored in
the interface repository.

ConstantDescription members

CORBA::Identifier_var name

This member represents the name of the constant.

CORBA::RepositoryId_var id

This member represents the repository id of the constant.

CORBA::RepositoryId_var defined_in

This member represents the name of the module or interface in which this
constant is defined.

CORBA::String_var version

This member represents the constant’s version.

CORBA::TypeCode_var type

This member represents the constant’s IDL type.

CORBA::Any value

This member represents the value of this constant.

Contained

class CORBA::Contained : public CORBA::IRObject, public
CORBA::Object

The Contained class is used to derive all interface repository objects that
are themselves contained within another interface repository object. This
class provides methods for:

• Setting and retrieving the object’s name and version.

• Determining the Container that contains this object.

• Obtaining the object’s absolute name, containing repository, and
description.

• Moving an object from one container to another.

Include file
The corba.h file should be included when you use this class.

interface Contained: IRObject {
attribute RepositoryId id;
attribute Identifier name;
attribute String_var version;

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_Repository;

struct Description {

114 VisiBroker-RT for C++ Programmer’s Reference

DefinitionKind kind;
any value;

};
Description describe();
void move(

in Container new_Container,
in Identifier new_name,
in String_var new_version

);
};

Contained methods

CORBA::String_var absolute_name();

This method returns the absolute name, which uniquely identifies this
object within its containing Repository. If the object’s defined_in attribute
(set when the object is created) references a Repository, then the absolute
name is simply the object’s name preceded by the string “::”.

CORBA::Repository_ptr containing_repository();

Returns the repository that contains this object.

CORBA::Container_ptr defined_in();

Returns the Container where this object is defined.

Description* describe();

Returns this object’s description. See “Description” for more information on
the Description structure.

CORBA::String_var id();

Returns this object’s repository identifier.

void id(const char *id);

Sets the repository identifier that uniquely identifies this object.

CORBA::String_var name();

This method returns the name of the object, which uniquely identifies it
within the scope of its container.

void name(const char * val);

This method sets the name of the contained object.

CORBA::String_var version();

This method returns the object’s version, which distinguishes this object
from other objects that have the same name.

Parameter Description
id The repository identifier for this object.

Parameter Description
name The object’s name.

VisiBroker-RT for C++ Programmer’s Reference 115

void version(CORBA::String_var& val);

This method sets this object’s version.

void move(CORBA::Container_ptr new_container, const
char *new_name, CORBA::String_var& new_version);

Moves this object from its current Container to the new_container.

Container

class CORBA::Container : public CORBA::Container,
public CORBA::Object

The Container class is used to create a containment hierarchy in the
interface repository. A Container object holds object definitions derived
from the Contained class. All object definitions derived from the Container
class, with the exception of the Repository class, also inherit from the
Contained class.

The Container provides methods to create types of IDL types defined in
orbtypes.h, including InterfaceDef, ModuleDef and ConstantDef classes,
except ValueMEmberDef. Each definition that is created will have its
defined_in attribute initialized to point to this object.

Include file
The corba.h file should be included when you use this class.

interface Container: IRObject {
Contained lookup(in ScopedName search_name);
ContainedSeq contents(

in DefinitionKind limit_type,
in boolean exclude_inherited

);
ContainedSeq lookup_name(

in Identifier search_name,
in long levels_to_search,
in CORBA::DefinitionKind limit_type,
in boolean exclude_inherited

);
struct Description {

Contained Contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq; DescriptionSeq
describe_contents(

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

Parameter Description
val The object’s version.

Parameter Description
new_container The Container to which this object is being moved.
new_name The new name for the object.
new_version The new version specification for the object.

116 VisiBroker-RT for C++ Programmer’s Reference

Container methods

CORBA::ContainedSeq * contents(CORBA::DefinitionKind
limit_type, CORBA::Boolean exclude_inherited);

This method returns a list of contained object definitions directly contained
or inherited into the container. You can use this method to navigate through
the hierarchy of object definitions in the Repository. All object definitions
contained by modules in the Repository are returned, followed by all object
definitions contained within each of those modules.

CORBA::AliasDef_ptr create_alias(const char * id,
const char *name, const CORBA::String_var& version,
CORBA::IDLType_ptr original_type);

This method creates a AliasDef object in this Container with the specified
attributes and returns a pointer to the newly created object.

CORBA::ConstantDef_ptr create_constant(const char * id,
const char *name, const CORBA::String_var& version,
CORBA::IDLType_ptr type, const CORBA::Any& value);

This method creates a ConstantDef object in this Container with the
specified attributes and returns a pointer to the newly created object.

CORBA::EnumDef_ptr create_enum(const char * id, const
char *name, const CORBA::String_var& version, const
CORBA::EnumMemberSeq& members);

This method creates a EnumDef object in this Container with the specified
attributes and returns a pointer to the newly created object.

Parameter Description
limit_type The interface object types to be returned. Specifying

dk_all will return objects of all types.
exclude_inherited If set to TRUE, inherited objects will not be returned.

Parameter Description
id The alias’s id.
name The alias’s name.
version The alias’s version.
original_type The type of the object for which this object is an alias.

Parameter Description
id The constant’s id.
name The constant’s name.
version The constant’s version.
type The type of the value specified below.
value The constant’s value.

Parameter Description
id The enumeration’s id.
name The enumeration’s name.
version The enumeration’s version.
members A list of the enumeration’s fields.

VisiBroker-RT for C++ Programmer’s Reference 117

CORBA::ExceptionDef_ptr create_exception(const char *
id, const char *name, const CORBA::String_var&
version, const CORBA::StructMEmberSeq& members);

This method creates a ExceptionDef object in this Container with the
specified attributes and returns a pointer to the newly created object.

CORBA::InterfaceDef_ptr create_interface(const char *
id, const char *name, const CORBA::String_var&
version, const CORBA::InterfaceDefSeq&
base_interfaces) (CORBA:Boolean is_abstract);:

This method creates a InterfaceDef object in this Container with the
specified attributes and returns a pointer to the newly created object.

CORBA::ModuleDef_ptr create_module(const char * id,
const char *name, const CORBA::String_var& version);

This method creates a ModuleDef object in this Container with the specified
attributes and returns a pointer to the newly created object.

CORBA::StructDef_ptr create_struct(const char * id,
const char *name, const CORBA::String_var& version,
const CORBA::StructMemberSeq& members);

This method creates a StructureDef object in this Container with the
specified attributes and returns a pointer to the newly created object.

CORBA::UnionDef_ptr create_union(const char * id, const
char *name, const CORBA::String_var& version,

Parameter Description
id The exception’s id.
name The exception’s name.
version The exception’s version.
members The sequence for the structure’s fields, if any.

Parameter Description
id The interface’s id.
name The interface’s name.
version The interface’s version.
base_interfaces A list of all interfaces that this interface inherits from.
is_abstract Indicates whether or not this is an abstract interface.

Parameter Description
id The module’s id.
name The module’s name.
version The module’s version.

Parameter Description
id The structure’s id.
name The structure’s name.
version The structure’s version.
members The sequence for the structure’s fields.

118 VisiBroker-RT for C++ Programmer’s Reference

CORBA::IDLType_ptr discriminator_type, const
CORBA::UnionMemberSeq& members);

This method creates a UnionDef object in this Container with the specified
attributes and returns a pointer to the newly created object.

CORBA::DescriptionSeq *
describe_contents(CORBA::DefinitionKind limit_type,
CORBA::Boolean exclude_inherited, CORBA::Long
max_returned_objs);

This method returns a description for all definitions directly contained by or
inherited into this container.

CORBA::Contained_ptr lookup(const char *search_name);

This method locates a definition relative to this container, given a scoped
name. An absolute scoped name, one beginning with “::”, may be specified
to locate a definition within the enclosing repository. If no object is found, a
NULL value is returned.

CORBA::ContainedSeq * lookup_name(const char
*search_name, CORBA::Long levels_to_search,
CORBA::DefinitionKind limit_type, CORBA::Boolean
exclude_inherited);

This method locates an object by name within a particular object. The
search can be constrained by the number of levels in the hierarchy to be
searched, the object type, and whether inherited objects should be
returned.

Parameter Description
id The union’s id.
name The union’s name.
version The union’s version.
discriminator_type The type of the union’s discriminant value.
members The sequence of each of the union’s fields.

Parameter Description
limit_type The interface object types whose descriptions are to be

returned. Specifying dk_all will return the descriptions
for objects of all types.

exclude_inherited If set to true, descriptions for inherited objects will not
be returned.

max_returned_objs The maximum number of descriptions to be returned.
Setting this parameter to –1 will return all objects.

Parameter Description
search_name The object’s interface name.

Parameter Description
search_name The contained object’s name.
levels_to_search The number of levels in the hierarchy to search. Setting

this parameter to a value of –1 will cause all levels to
be searched. Setting this parameter to 1 will search
only this object.

limit_type The interface object types to be returned. Specifying
dk_all will return objects of all types.

exclude_inherited If set to true, inherited objects will not be returned.

VisiBroker-RT for C++ Programmer’s Reference 119

CORBA::ValueDef_ptr create_value(const char * id, const
char *name, const char version, CORBA::boolean
is_custom, CORBA::boolean is_abstract, const
CORBA::ValueDef_ptr _base_value, CORBA::boolean
is_truncatable, const CORBA::ValueDefSeq&
abstract_base_values, const CORBA::InterfaceDefSeq&
supported _interfaces, const CORBA.InitializerSeq&
initializers)

This method creates a ValueDef object in this Container with the specified
attributes and returns a reference to the newly created object.

CORBA::ValueBoxDef_ptr create_value_box(const char* id,
const char* name, const char* version,
CORBA::IDLType_ptr original_type)

This method creates a ValueBoxDef object in this Container with the
specified attributes and returns a reference to the newly created object.

DefinitionKind

enum CORBA::DefinitionKind

The DefinitionKind enumeration contains the constants that define the
possible types of interface repository objects. There are a set of integer
constants, prefixed with dk_, that correspond to all the possible kinds of
repository objects.

DefinitionKind values

Parameter Descrption
id The structure’s repository id.
name The structure’s name.
version The structure’s version.
is_custom If set to true, creates a custom valuetype.
is_abstract If set to true, creates and abstract valuetype.
base_values The list of supported base values.
is_trucatable If set to true, creates a truncatable valuetype.
abstract_base_values The list of supported abstract base values.
supported_interfaces The list of supported interfaces.
initializer The list of initializers this value type supports

Parameter Description
id The structure’s repository id.
name The structure’s name.
version The structure’s version.
original_type The IDL type of the original object for which this is an

alias.

Constant Represents
dk_none Exclude all types (used in repository lookup methods)
dk_all All possible types (used in repository lookup methods)
dk_Alias Alias
dk_Array Array

120 VisiBroker-RT for C++ Programmer’s Reference

Description

struct CORBA::Container::Description

This structure provides a generic description for items in the interface
repository that are derived from the Contained class.

Description members

CORBA::Contained_var contained_object

The object contained in this struct.

CORBA::DefinitionKind kind

The object’s kind.

CORBA::Any value

The object’s value.

EnumDef

class CORBA::EnumDef : public CORBA::TypedefDef, public
CORBA::Object

The class is used to represent an enumeration that is stored in the interface
repository. This interface provides methods for setting and retrieving the
enumeration’s list of members.

dk_Attribute Alias
dk_Constant Constant
dk_Enum Enum
dk_Exception Exception
dk_Fixed Fixed
dk_Interface Interface
dk_Module Module
dk_Native Native
dk_Operation Interface Operation
dk_Primitive Primitive type (such as int or long)
dk_Repository Repository
dk_Sequence Sequence
dk_String String
dk_Struct Struct
dk_Typedef Typedef
dk_Union Union
dk_Value ValueType
dk_ValueBox ValueBox
dk_ValueMember ValueMember
dk_Wstring Unicode string

Constant Represents

VisiBroker-RT for C++ Programmer’s Reference 121

EnumDef methods

CORBA::EnumMemberSeq *members() ;

This method returns the enumeration’s list of members.

void members(CORBA::EnumMemberSeq members) ;

This method sets the enumeration’s list of members.

ExceptionDef

class ExceptionDef : public CORBA::Contained

The class is used to represent an exception that is stored in the interface
repository. This class provides methods for setting and retrieving the
exception’s list of members as well as a method for retrieving the
exception’s TypeCode.

ExceptionDef methods

CORBA::StructMemberSeq *members() ;

This method returns this exception’s list of members.

void members(CORBA:StructMemberSeq& members) ;

This method sets the exception’s list of members.

CORBA::TypeCode_ptr type() ;

This method returns the TypeCode that represents this exception’s type.

ExceptionDescription

struct CORBA::ExceptionDescription

This structure is used to represent information about an exception that is
stored in the interface repository.

ExceptionDescription members

CORBA::String_var defined_in

This member represents the repository Id of the module or interface in
which this exception is defined.

Parameter Description
members The list of members.

Parameter Description
members The list of members

122 VisiBroker-RT for C++ Programmer’s Reference

CORBA::String_var id

This member represents the repository id of the exception.

CORBA::String_var name

This member represents the name of the exception.

CORBA::TypeCode_var type

This member represents the exception’s IDL type.

CORBA::String_var version

This member represents the exception’s version.

FixedDef

CORBA::FixedDef public CORBA::IDLType, public
CORBA::Object

This interface is used to represent a fixed definition that is stored in the
Interface Repository.

Methods

CORBA::UShort digits();

This method sets the number of digits for the fixed type.

void digits (CORBA::UShort _digits);

This method sets the attribute for fixed type.

CORBA::Short scale ();

This method sets the scale for the fixed type.

void scale (CORBA::Short _scale);

This method sets the attribute for the fixed type.

FullInterfaceDescription

struct CORBA::FullInterfaceDescription

The FullInterfaceDescription structure describes an interface that is
stored in the interface repository.

FullInterfaceDescription members

CORBA::String_var Name

This member represents the name of the interface.

VisiBroker-RT for C++ Programmer’s Reference 123

CORBA::String_var id

This member represents the repository id of the interface.

CORBA::String_var defined_in

This member represents the name of the module or interface in which this
interface is defined.

CORBA::String_var version

This member represents the interface’s version.

CORBA::OpDescriptionSeq operations

This member represents a list of operations offered by this interface.

CORBA::AttrDescriptionSeq attributes

This member represents a list of attributes contained in this interface.

CORBA::RepositoryIdSeq base_interfaces

This member represents a list of interfaces from which this interface
inherits.

CORBA::RepositoryIdSeq derived_interfaces

This member represents a list of interfaces derived from this interface.

CORBA::TypeCode_var type

This member represents this interface’s TypeCode.

CORBA::Boolean is_abstract

Indicates whether or not this interface is abstract.

FullValueDescription

struct CORBA::FullValueDescription

This structure is used to represent a full value definition that is stored in the
Interface Repository.

Variables

CORBA::String_var name

This variable represents name of the valuetype.

CORBA::String_var id

This variable represents the repository id of the valuetype.

CORBA::Boolean is_abstract

If this variable is set to true, specifies an abstract valuetype.

124 VisiBroker-RT for C++ Programmer’s Reference

CORBA::Boolean is_custom

If this variable is set to true, specifies custom marshalling for the valuetype.

CORBA::String_var defined_in

This variable represents the repository Id of the module in which this
valuetype is defined.

CORBA::String_var version

This variable represents the valuetype’s version.

CORBA::OpDescriptionSeq operations

This variable represents the list of operations offered by the valuetype.

CORBA::AttrDescriptionSeq attributes

This variable represents valuetype’s list of valuetype’s member attributes.

CORBA::.ValueMemberSeq members

This variable represents an array of value definitions.

IDLType

CORBA::InitializerSeq initializers

This variable represents an array of initializers.

CORBA::RepositoryIdSeq supported_interfaces;

This variable represents the list of supported interfaces.

CORBA::RepositoryIdSeq abstract_base_values;

This variable represents the list of abstract value types from which this
valuetype inherits.

CORBA::Boolean is_truncatable;

This variable is set to true, if the value can be safely truncated to its base
valuetype.

CORBA::String_var base_values;

This variable represents a description of the value type from which this
valuetype inherits.

CORBA::TypeCode_var type

This variable represents the valuetype’s IDL type code.

class CORBA::IDLType : public CORBA::IRObject, public
CORBA::Object

The IDLType class provides an abstract interface that is inherited by all
interface repository definitions that represent IDL types. This class provides

VisiBroker-RT for C++ Programmer’s Reference 125

a method for returning an object’s Typecode, which identifies the object’s
type. The IDLType is unique; the Typecode is not.

Include file
You should include the file corba.h when using this class.

interface IDLType:IRObject {
readonly attribute TypeCode type;

};

IDLType methods

CORBA::Typecode_ptr type();

This method returns the typecode of the current IRObject.

InterfaceDef

class CORBA::InterfaceDef : public CORBA::Container,
public CORBA::Contained, public CORBA::IDLType

The InterfaceDef class is used to define an ORB object’s interface that is
stored in the interface repository.

For more information, see “Container”, “Contained”, and “IDLType”.

Include file
You should include the file corba.h when you use this class.

interface InterfaceDef: Container, Contained, IDLType {
typedef sequence<RepositoryId> RepositoryIdSeq;
typedef sequence<OperationDescription> OpDescriptionSeq;
typedef sequence<AttributeDescription> AttrDescriptionSeq;

attribute InterfaceDefSeq base_interfaces;
attribute boolean is_abstract;
readonly attribute InterfaceDefSeq derived_interfaces
boolean is_a(in RepositoryId interface_id);
struct FullInterfaceDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
String_var version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
RepositoryIdSeq derived_interfaces;
TypeCode type;

boolean is_abstract;
};

FullInterfaceDescription describe_interface();

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
in String_var version,
in IDLType type,
in CORBA::AttributeMode mode

);
OperationDef create_operation(

in RepositoryId id,
in Identifier name,
in String_var version,
in IDLType result,
in OperationMode mode,

126 VisiBroker-RT for C++ Programmer’s Reference

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
struct InterfaceDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
String_var version;
RepositoryIdSeq base_interfaces;
boolean is_abstract;

};
};

InterfaceDef methods

CORBA::InterfaceDefSeq *base_interfaces();

This method returns a list of interfaces from which this class inherits.

void base_interfaces(const CORBA::InterfaceDefSeq&
val);

This method sets the list of the interfaces from which this class inherits.

CORBA::AttributeDef_ptr create_attribute(const char *
id, const char * name, const CORBA::String_var&
version, CORBA::IDLType_ptr type,
CORBA::AttributeMode mode);

This method returns a pointer to a newly created AttributeDef that is
contained in this object. The id, name, version, type, and mode are set to the
specified value.

CORBA::OperationDef_ptr create_operation(const char
*id, const char *name, CORBA::String_var& version,
CORBA::IDLType_ptr result, CORBA::OperationMode mode,
const CORBA::ParDescriptionSeq& params, const
CORBA::ExceptionDefSeq& exceptions, const
CORBA::ContextIdSeq& contexts);

This method creates a new OperationDef that is contained by this object,
using the specified parameters. The defined_in attribute of the newly
created OperationDef is set to identify this InterfaceDef.

Parameter Description
val The list of interfaces from which this interface inherits.

Parameter Description
id The interface id to use.
name The interface name to use.
version The interface version to use.
mode The interface mode. See “AttributeMode” on page 7-4 for

a list of possible values.

Parameter Description
id The interface id for this operation.
name The name of this operation.
version The operation’s version.

VisiBroker-RT for C++ Programmer’s Reference 127

CORBA::InterfaceDef::FullInterfaceDescription
*describe_interface();

This method returns a FullInterfaceDescription, which describes this
object’s interface.

CORBA::Boolean is_a(const char * interface_id);

This method returns true if this interface is identical to or inherits from,
directly or indirectly, from the specified interface.

InterfaceDescription

struct:CORBA:: InterfaceDescription

This structure describes an object that is stored in the interface repository.

InterfaceDescription members

CORBA::String_var name

The name of the interface.

CORBA::String_var id

The interface’s repository identifier.

CORBA::String_var defined_in

The name of the repository Id in which the interface is defined.

CORBA::String_var version

The interface’s version.

CORBA::RepositoryIdSeq base_interfaces

A list of base interfaces for this interface.

CORBA::Boolean is_abstract

Indicates whether or not this interface is abstract.1

result The IDL type returned by the operation.
mode The mode of this operation—oneway or normal.
params The list of parameters to pass to this operation.
exceptions The list of exceptions raised by this operation.
contexts Context lists are names of values expected in context and

passed along with the request.

Parameter Description
interface_id The id of the interface to be checked against this

interface.

Parameter Description

128 VisiBroker-RT for C++ Programmer’s Reference

IRObject

class IRObject : CORBA::Object

The IRObject class offers the most generic interface for interface repository
objects. The Container class, IDLType, Contained, and others are derived
from this class.

Include file
You should include the file corba.h when you use this class.

interface IRObject {
readonly attribute DefinitionKind def_kind;

void destroy();
};

IRObject methods

CORBA::DefinitionKind def_kind();

This method returns the type of this interface repository object. See
“DefinitionKind” for a list of possible types.

void destroy();

This method deletes this object from the interface repository. If this object
is a Container, all of its contents will also be deleted. If the object is
currently contained by another object, it will be removed. The destroy
method returns the Exception(CORBA::BAD_PARAM) when invoked on a
PrimitiveDef or Repository object. The Repository class is described in
“Repository”.

ModuleDef

class ModuleDef : CORBA::Container,CORBA::Contained

The class is used to represent an IDL module in the interface repository.

ModuleDescription

struct ModuleDescription

The ModuleDescription structure describes a module that is stored in the
interface repository.

ModuleDescription members

CORBA::String_var name

This member represents the name of the module.

CORBA::String_var id

This member represents the repository id of the module.

VisiBroker-RT for C++ Programmer’s Reference 129

CORBA::String_var defined_in

This member represents the name of the repository Id in which this module
is defined.

CORBA::String_var version

This member represents the module’s version.

NativeDef

class CORBA::NativeDef

This interface is used to represent a native definition that is stored in the
Interface Repository.

OperationDef

class CORBA::OperationDef : public virtual
CORBA::Contained, public CORBA::Object

The OperationDef class contains information about an interface operation
that is stored in the interface repository. This class is derived from the
Contained class, which is described in “Contained”. The inherited describe
method returns a OperationDescription structure that provides complete
information on the operation.

Include file
You should include the file corba.h when you use this class.

interface OperationDef: Contained {
typedef sequence<ParameterDescription> ParDescriptionSeq;
typedef Identifier ContextIdentifier;
typedef sequence<ContextIdentifier> ContextIdSeq;
typedef sequence<ExceptionDef> ExceptionDefSeq;
typedef sequence<ExceptionDescription> ExcDescriptionSeq;
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute CORBA::OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

readonly attribute OperationKind bind;
};
struct OperationDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
String_var version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

130 VisiBroker-RT for C++ Programmer’s Reference

OperationDef methods

CORBA::ContextIdSeq * contexts();

This method returns a list of context identifiers that apply to the operation.

void context(const CORBA::ContextIdSeq& val);

This method sets the list of the context identifiers that apply to this
operation.

CORBA::ExceptionDefSeq * exceptions();

This method returns a list of the exception types that can be raised by this
operation.

void exceptions(const CORBA::ExceptionDefSeq& val);

This method sets the list of exception types that may be raised by this
operation.

CORBA::OperationMode mode();

This method returns the mode of the operation represented by this
OperationDef. The mode may be normal or oneway. Operations that have a
normal mode are synchronous and return a value to the client application.
Oneway operations do not block and no response is sent from the object
implementation to the client.

void mode(CORBA::OperationMode val);

This method sets the mode of the operation.

CORBA::ParDescriptionSeq * params();

This method returns a pointer to a list of ParameterDescription structures
that describe the parameters to this OperationDef.

void params(const CORBA::ParDescriptionSeq& val);

This method sets the list of the ParameterDescription structures for this
OperationDef. The order of the structures is significant and should
correspond to the order defined in the IDL definition for the operation.

Parameter Description
val The list of context identifiers.

Parameter Description
val The list of exceptions that this operation may raise.

Parameter Description
val The desired mode of this operation, either OP_ONEWAY or

OP_NORMAL. See “OperationMode” on page 7-26 for more
information.

Parameter Description
val The list of ParameterDescription structures.

VisiBroker-RT for C++ Programmer’s Reference 131

CORBA::TypeCode_ptr result();

This method returns a pointer to a TypeCode representing the type of the
value returned by this Operation. The TypeCode is a read-only attribute.

CORBA::IDLType_ptr result_def();

This method returns a pointer to the definition of the IDL type returned by
this OperationDef.

void result_def(CORBA::IDLType_ptr val);

This method sets the definition of the type returned by this OperationDef.

OperationDescription

struct CORBA::OperationDescription

The OperationDescription structure describes an operation that is stored
in the interface repository.

OperationDescription members

CORBA::String_var name

This variable represents the name the of the operation.

CORBA::String_var id

This variable represents the repository id of the operation.

CORBA::String_var defined_in

This variable represents the repository Id of the interface or valuetype in
which this operation is defined.

CORBA::String_var version

This variable represents the operation’s version.

CORBA::TypeCode_var result

This variable represents the operation’s result.

CORBA::OperationMode mode

This variable represents the operation’s mode.

CORBA::ContextIdSeq contexts

This variable represents the operation’s associated context list.

CORBA::ParameterDescriptionSeq parameters

This variable represents the operation’s parameters.

Parameter Description
val A pointer to the type definition to use

132 VisiBroker-RT for C++ Programmer’s Reference

CORBA::ExceptionDescriptionSeq exceptions

This variable represents the exceptions that this operation may raise.

OperationMode

enum CORBA:OperationMode

The enumeration defines the values used to represent the mode of an
operation; either oneway or normal. Oneway operations are those for which
the client application does not expect a response. Normal requests involve a
response being sent to the client by the object implementation that contains
the results of the request.

OperationMode values

ParameterDescription

struct CORBA::ParameterDescription

The ParameterDescription structure describes a parameter for an
operation that is stored in the interface repository.

ParameterDescription members

CORBA::String_var name

This member represents the name of the parameter.

CORBA::TypeCode_var type

This member represents the parameter’s typecode.

CORBA::IDLType_var type_def

This member represents the parameter’s IDL type.

CORBA::ParameterMode mode

This member represents the parameter’s mode.

ParameterMode

enum CORBA::ParameterMode

The enumeration defines the values used to represent the mode of a
parameter for an operation.

Constant Represents
OP_NORMAL A normal operation request.
OP_ONEWAY A one-way operation request.

VisiBroker-RT for C++ Programmer’s Reference 133

ParameterMode values

PrimitiveDef

class PrimitiveDef : public CORBA::IDLType, public
CORBA::Object

The class is used to represent a primitive (such as an int or a long) that is
stored in the interface repository. It provides a method for retrieving the
kind of primitive that is being represented.

PrimitiveDef methods

CORBA::PrimitiveKind kind();

This method returns the kind of primitive represented by this object.

PrimitiveKind

enum CORBA::PrimitiveKind

The PrimitiveKind enumeration contains the constants that define the
primitive types of objects that may be stored in the interface repository.

PrimitiveKind values

Constant Represents
PARAM_IN Parameter is for input from the client to the server.
PARAM_OUT Parameter is for output of results from the server to the

client.
PARAM_INOUT Parameter may be used for both input from the client

and output from the server.

Constant Represents
pk_null Null value
pk_void Void
pk_short Short
pk_long Long
pk_ushort Unsigned short
pk_ulong Unsigned long
pk_float Float
pk_double Double
pk_boolean Boolean
pk_char Character
pk_octet Octet
pk_any Any
pk_TypeCode TypeCode
pk_Principal Principal
pk_string String

134 VisiBroker-RT for C++ Programmer’s Reference

Repository

class Repository : public CORBA::Container, public
CORBA::Object

The Repository class provides access to the interface repository and is
derived from the Container class, described in “Container”.

Include file
You should include the file corba.h when using this class.

interface Repository: Container {
Contained lookup_id(in RepositoryId search_id);
PrimitiveDef get_primitive(in CORBA::PrimitiveKind kind);
StringDef create_string(in unsigned long bound);
WStringDef create_wstring (in unsigned long bound);
SequenceDef create_sequence(

in unsigned long bound,
in IDLType element_type

};
ArrayDef create_array(

in unsigned long length,
in IDLType element_type

);
FixedDef create_fixed(

in unsigned short digits,
in short scale

);
};

Repository methods

CORBA::ArrayDef_ptr create_array(CORBA::ULong length,
CORBA::IDLType_ptr element_type);

This method creates a new ArrayDef and returns a pointer to that object.

pk_objref Object reference
pk_longlong Long long
pk_ulonglong Unsigned long long
pk_longdouble Long double
pk_wchar Unicode character
pk_wstring Unicode string

Constant Represents

Parameter Description
length The maximum number of elements in the array. This

value must be greater than zero.
element_type The IDLType of the elements stored in the array.

VisiBroker-RT for C++ Programmer’s Reference 135

CORBA::SequenceDef_ptr create_sequence(CORBA::ULong
bound, CORBA::IDLType_ptr element_type);

This method creates a new SequenceDef object and returns a pointer to that
object.

CORBA::StringDef_ptr create_string(CORBA::Ulong bound);

This method creates a new StringDef object and returns a pointer to that
object.

CORBA::StringDef_ptr create_wstring(CORBA::Ulong
bound);

This method creates a new WstringDef object and returns a pointer to that
object.

CORBA::PrimitiveDef_ptr
get_primitive(CORBA::PrimitiveKind kind);

This method returns a reference to a PrimitiveKind.

CORBA::Contained_ptr lookup_id(const char * search_id);

This method searches for an object in the interface repository that matches
the specified search id. If no match is found, a NULL value is returned.

CORBA::FixedDef_ptr create_fixed(CORBA::UShort digits,
CORBA::Short scale)

This method sets the number of digits and the scale for the fixed type.

Parameter Description
bound The maximum number of items in the sequence. This

value must be greater than zero.
element_type A pointer to the IDLType of the items stored in the

sequence.

Parameter Description
bound The maximum length of the string. This value must be

greater than zero.

Parameter Description
bound The maximum length of the string. This value must be

greater than zero.

Parameter Description
kind The reference to be returned.

Parameter Description
search_id The identifier to use for the search.

Parameter Description
Ushort digits The number of digits for the fixed type.
short scale The scale of the fixed type

136 VisiBroker-RT for C++ Programmer’s Reference

SequenceDef

class SequenceDef : public CORBA::IDLType, public
CORBA::Object

The class is used to represent a sequence that is stored in the interface
repository. This interface provides methods for setting and retrieving the
sequence’s bound and element type.

SequenceDef methods

CORBA::ULong bound()

This method returns the bounds of the sequence.

void bound(CORBA::LUong bound)

Should this be ULong? And where does “members” in the table
below fit in? Should the parameter be “bound” as in the StringDef
equivalent below?

This method sets the bound of the sequence.

CORBA::TypeCode_ptr element_type() ;

This method returns a TypeCode representing the type of elements in this
sequence.

CORBA::IDLType_ptr element_type_def() ;

This method returns the IDL type of the elements stored in this sequence.

void element_type_def(CORBA::IDLType_ptr
element_type_def);

This method sets the IDL type for the elements stored in this sequence.

StringDef

class StringDef : public CORBA::IDLType, public
CORBA::Object

The class is used to represent a String that is stored in the interface
repository. This interface provides methods for setting and retrieving the
bounds of the string.

Parameter Description
members The list of members.

Parameter Description
element_type_def The IDL type to set.

VisiBroker-RT for C++ Programmer’s Reference 137

StringDef methods

CORBA::ULong bound() ;

This method returns the bounds of the String.

void bound(CORBA::ULong bound) ;

This method sets the bounds of the String.

StructDef

class StructDef : public CORBA::TypedefDef, public
CORBA::Container, public CORBA::Object

The class is used to represent a structure that is stored in the interface
repository.

StructDef methods

CORBA::StructMemberSeq *members() ;

This method returns the structure’s list of members.

void members(CORBA::StructMemberSeq& members) ;

This method sets the structure’s list of members.

StructMember

struct CORBA::StructMenber

This interface is used to define the member for the struct. It uses the name
and type variables in the definition.

StructMember methods

CORBA::String_var name

This variable represents name of the type.

CORBA::TypeCode_var type

This variable represents the type’s IDL type.

CORBA::IDLType_var type_def

This variable represents the IDL type’s IDL type definition.

Parameter Description
bound The list of members.

Parameter Description
members The list of members.

138 VisiBroker-RT for C++ Programmer’s Reference

TypedefDef

class TypedefDef : public CORBA::Contained, public
CORBA::IDLType, public CORBA::Object

This abstract base class represents a user-defined structure that is stored in
the interface repository. The following interfaces all inherit from this
interface:

• “AliasDef”
• “EnumDef”
• “ExceptionDef”
• “StructDef”
• “UnionDef”
• “WstringDef”

TypeDescription
structure TypeDescription

The TypeDescription structure contains the information that describes a
type for an operation stored in the interface repository.

TypeDescription members

CORBA::String_var name

This member represents the name of the type.

CORBA::String_var id

This member represents the repository id of the type.

CORBA::String_var defined_in

This member represents the name of the module or interface in which this
type is defined.

CORBA::String_var version

This member represents the type’s version.

CORBA::TypeCode_var type

This member represents the type’s IDL type.

UnionDef

class UnionDef : public CORBA::TypedefDef, public
CORBA::Container, public CORBA::Object

The class is used to represent a Union that is stored in the interface
repository. This class provides methods for setting and retrieving the
union’s list of members and discriminator type.

VisiBroker-RT for C++ Programmer’s Reference 139

UnionDef methods

CORBA::TypeCode_ptr discriminator_type() ;

This method returns the TypeCode of the discriminator for the Union.

CORBA::IDLType_ptr discriminator_type_def() ;

This method returns the IDL type of the union’s discriminator.

void discriminator_type_def(CORBA::IDLType_ptr
discriminator_type_def);

This method sets the IDL type of the union’s discriminator.

CORBA::UnionMemberSeq *members() ;

This method returns the union’s list of members.

void members(CORBA::UnionMembersSeq& members) ;

This method sets the union’s list of members.

UnionMember

struct CORBA::UnionMember

The UnionMember struct contains information that describes a union that is
stored in the interface repository.

UnionMember members

CORBA::String_var name

This member represents the name of the union.

CORBA::Any label

This member represents the label of the union.

CORBA::TypeCode_var type

This member represents the union’s typecode.

CORBA::IDLType_var type_def

This member represents the union’s IDL type.

Parameter Description
discriminator_type_def The list of members.

Parameter Description
members The list of members.

140 VisiBroker-RT for C++ Programmer’s Reference

ValueBoxDef

class ValueBoxDef public CORBA::Contained, public
COBRA::IDLType, public CORBA::Object

This interface is used as a simple valuetype that contains a single public
member of any IDL type. ValueBoxDef is a simplified version of ValueType:

public valuetype <IDLType> value;

This declaration is almost equal to valuetype boxed type <IDLType> but
ValueBoxDef is not the same as simple ValueTypeDef.

Methods

CORBA::IDLType_ptr original_type_def ();

This method identifies the type being boxed.

void original_type_def (CORBA::IDLType_ptr
original_type_def);

This method sets the type being boxed.

ValueDef

class CORBA::ValueDef public CORBA::Container, public
CORBA::Contained, public CORBA::IDLType, public
CORBA::Object

This interface is used to describe the IDL value type called a construct. This
interface is very close to a class type. It represent a value definition that is
stored in the Interface Repository.

Methods

CORBA::InterfaceDefSeq supported_interfaces();

This method lists the interfaces which this value type supports.

void supported_interfaces (const
CORBA::interfaceDefSeq& supported_interfaces);

This method sets the supported interfaces.

CORBA::InitializerSeq& initializers();

This method lists the initializers.

void initializers (const CORBA::InitializerSeq&
initializers);

This method sets the initializers.

CORBA.ValueDef_ptr base_value();

This method describes the value types from which this value inherits.

VisiBroker-RT for C++ Programmer’s Reference 141

void base_value (CORBA::ValueDef_ptr base_value);

This method sets the value types

CORBA.ValueDefSeq& abstract_base_values();

This method lists the abstract value types from which this value inherits.

void abstract_base_values (const CORBA::ValueDef[Seq&
abstract_base_values);

This method defines the abstract value type’s base value.

CORBA::Boolean is_abstract();

This method is true if the value is an abstract value type.

void is_abstract (CORBA::Boolean is_abstract);

This method sets the valuetype to be an abstract value type.

CORBA::Boolean is_custom();

This method is true if the value uses custom marshalling.

void is_custom (CORBA::Boolean is_custom);

This method sets the custom marshalling for the value.

CORBA::Boolean is_trucatable():

This method is true if the value can be safely truncated from its base value.

void is_truncatable (CORBA::Boolean is_truncatable);

This method sets the truncated attribute for this value.

CORBA::Boolean is_a (const char* value_id);

This method returns true if the value on which it is invoked either is
identical to or inherits, directly or indirectly from the interface or value
defined by its ID parameter. Otherwise it returns false.

CORBA::ValueDef _ptr FullValueDescription*
describe_value ();

This method returns a FullValueDescription describing the value including
its operations and attributes.

CORBA::ValueMemberDef_ptr create_value_member (const
Char* id, const Char* name, const Char* version,
CORBA::IDLType_ptr type_def, CORBA::short access);

This method returns a new ValueMemberDef contained in the ValueDef on
which it is invoked.

Parameter Description
id The repository id for this type.
name The name of this type.
version The object’s version.

142 VisiBroker-RT for C++ Programmer’s Reference

CORBA::AttributeDef_ptr create_attribute (const Char*
id, const Char* name, const Char* version,
CORBA::IDLType_ptr type, CORBA::AttributeMode mode);

This method creates a new attribute definition for this valuetype and
returns a new AttributeDef for it.

CORBA::OperationDef_ptr create_operation (const Char*
id, const Char* name, const Char* version,
CORBA::IDLType_ptr result, CORBA::OperationMode
mode,const CORBA::ParDescriptionSeq& params, const
CORBA::ExceptionDefSeq& exceptions, const
CORBA::ContextIDSeq& contexts);

This method creates a new Operation for this valuetype and returns an
OperatioDef for it.

ValueDescription

struct CORBA::ValueDescription

This interface is used to represent a description of the value type that is
stored in the Interface Repository.

Values

CORBA::String_var name

This variable represents name of the type.

CORBA::String_var id

This variable represents the repository id of the type.

type_def The value’s IDL type.
short access The access value.

Parameter Description
id The repository id for this type.
name The name of this type.
version The object’s version.
type The type’s IDL type.
mode The object’s mode.

Parameter Description
id The repository id for this type.
name The name of this type.
version The object’s version.
result The IDL type of the operation.
mode The object’s mode.
params The list of the operation’s parameters.
exceptions The list of the operation’s exceptions.
contexts The list of the operation’s contexts.

Parameter Description

VisiBroker-RT for C++ Programmer’s Reference 143

CORBA::Boolean is_abstract

This variable is true if the value is an abstract value type.

CORBA::Boolean is_custom

This variable is true if the valuetype is custom marshalled.

CORBA::String_var defined_in.

This variable represents the repository Id of the module in which this type is
defined.

CORBA::String_var version

This variable represents the type’s version.

CORBA::RepositoryIdSeq& supported_interfaces

This variable represents the list of interfaces which this value type supports.

CORBA::RepositoryIdSeq& abstract_base_values

This variable represents the list of abstract value types from which this
value inherits.

CORBA::Boolean is_truncatable

This variable represents the value type’s setting for whether or not it can
safely be truncated to its base value type.

CORBA::String_var base_value

This variable represents the value types from which this value inherits.

WstringDef

class WstringDef : public CORBA::IDLType, public
CORBA::Object

This class is used to represent a Unicode string that is stored in the
interface repository. It provides methods for setting and retrieving the
bounds of the string.

WStringDef methods

CORBA::ULong bound() ;

This method returns the bounds of the Wstring.

void members(CORBA::ULong bound) ;

This method sets the bounds of the Wstring.

Parameter Description
members The list of members.

144 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 145

Activation Interfaces and
Classes
This chapter describes the interfaces and classes used in the activation of
object implementations.

ImplementationDef
Note

This feature is deprecated since VisiBroker 4.0.

class CORBA::ImplementationDef

The ImplementationDef class is used in the activation and deactivation of
object implementations when using the Basic Object Adapter. It contains
the object name, interface name, and reference data associated with an
object implementation.

Include file
The corba.h file should be included when you use this class.

ImplementationDef methods

ImplementationDef(const char *interface_name, const
char *object_name, const CORBA::ReferenceData& id);

This method creates an ImplementationDef object, initialized with the
specified parameters.

CORBA::ReferenceData_ptr id() const;

Returns the reference data identifier for the implementation. Reference data
is not interpreted by the ORB and can contain any application-specific data
you desire.

void id(const CORBA::ReferenceData& data);

Sets the reference data identifier for the implementation. Reference data is
not interpreted by the ORB and can contain any application-specific data
you desire.

Parameter Description
interface_name The interface name for the object implementation.
object_name The object name for the object implementation.
id The reference data for the object implementation.

Reference data is not interpreted by the ORB and can
contain any application-specific data you desire.

Parameter Description
data The implementation’s reference data identifier.

146 VisiBroker-RT for C++ Programmer’s Reference

const char *interface_name() const;

This method returns a string containing the interface name of the object
implementation.

void *interface_name(const char * val);

This method sets the interface name for the object implementation.

const char *object_name() const;

This method returns a string containing the object name of the object
implementation.

void *object_name(const char * val);

This method sets the object name for the object implementation.

StringSequence

class CORBA::StringSequence

The StringSequence class can be used to contain a list of arguments or
environment variables.

Include file
The corba.h file should be included when you use this class.

StringSequence methods

CORBA::StringSequence(CORBA::ULong max = 0);

This method creates a StringSequence object with the specified length.

CORBA::StringSequence(CORBA::ULong max, CORBA::ULong
length, char **data, CORBA::Boolean release = 0);

This method creates a StringSequence object with the specified
parameters.

Parameter Description
val The new interface name for the object implementation.

Parameter Description
val The new object name for the object implementation.

Parameter Description
max The maximum number of arguments in the list. The

default length is 0.

Parameter Description

max The maximum number of arguments in the list.
length The length of the sequence.
data The strings that will make up the sequence.
release If set to 1, all memory associated with the list will be

released when this object is destroyed.

VisiBroker-RT for C++ Programmer’s Reference 147

~CORBA::StringSequence();

This method destroys this object.

Methods

static char **allocbuf(CORBA::ULong nelemes);

This method allocates memory to accommodate the number of list elements
specified.

CORBA::ULong compare(const CORBA::StringSequence& seq1,
const CORBA::StringSequence& seq2);

This method compares two StringSequence objects and returns 0 if they
are equal; otherwise a non-zero value is returned.

static void freebuf(char **data);

This method frees the memory associated with the specified pointer.

static void freebuf_elems(char **data, CORBA::ULong
nelemes);

This method allocates memory to accommodate the number of list elements
specified.

CORBA::ULong hash(CORBA::StringSequence&);

This returns a hash value for the specified object.

CORBA::ULong length() const;

This method returns the number of elements in the sequence.

void length(CORBA::ULong);

This method sets the number of elements in the sequence.

Parameter Description
nelemes The number of elements in the list.

Parameter Description
seq1 The first object to be compared.
seq2 The second object to be compared.

Parameter Description
data The list memory to be freed.

Parameter Description
data The list memory to be freed.
nelemes The number of elements.

Parameter Description
StringSequence The StringSequence for which a hash value is returned.

Parameter Description
ULong The new length

148 VisiBroker-RT for C++ Programmer’s Reference

CORBA::ULong maximum() const;

This method returns the number of arguments in the list.

CORBA::StringSequence& operator=(const
CORBA::StringSequence& seq);

This operator allows a StringSequence to be copied through assignment.

CORBA::StringSequence& operator[](const CORBA::ULong
index);

This operator allows arguments within a StringSequence to be accessed
with an index.

static void *_release(CORBA::StringSequence* ptr);

This method releases the specified StringSequence object.

Parameter Description
seq The object to be copied.

Parameter Description
index The zero-based index of the desired string sequence.

Parameter Description
obj The ImplementationDef object to be duplicated.

VisiBroker-RT for C++ Programmer’s Reference 149

Naming Service Interfaces
and Classes
This chapter describes the interfaces and classes for the VisiBroker-RT for
C++ Naming Service.

NamingContext

class NamingContext : public virtual CORBA_Object

This object is used to contain and manipulate a list of names that are bound
to ORB objects or to other NamingContext objects. Client applications use this
interface to resolve or list all of the names within that context. Object
implementations use this object to bind names to object implementations or
to bind a name to a NamingContext object. IDL sample 9.1 shows the IDL
specification for the NamingContext.

Example 56 IDL specification for the NamingContext interface
module CosNaming {

interface NamingContext {
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName,

AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName);
Object resolve(in Name n)

raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void destroy()
raises(NotEmpty);

void list(in unsigned long how_many,
out BindingList bl,
out BindingIterator bi);

};
};

NamingContext methods

virtual void bind(const Name& -n, CORBA::Object _ptr
_obj): raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

This method attempts to bind the specified Object to the specified Name by
resolving the context associated with the first NameComponent and then
binding the object to the new context using the following Name:

Name[NameComponent2,...,NameComponent(n–1),NameComponentn]

150 VisiBroker-RT for C++ Programmer’s Reference

This recursive process of resolving and binding continues until the context
associated with the NameComponent (n–1) is resolved and the actual name-
to-object binding is stored. If parameter n is a simple name, the obj will be
bound to n within this NamingContext.

The following exceptions may be raised by this method.

virtual void rebind(const Name& _n, CORBA::Object _ptr
_obj) raises(NotFound, CannotProceed, InvalidName);

This method is exactly the same as the bind method, except that the
AlreadyBound exception will never be raised. If the specified Name has
already been bound to another object, that binding is replaced by the new
binding.

The following exceptions may be raised by this method.

virtual void bind_context(const Name& _n,
NamingContext_ptr _nc) raises(NotFound,
CannotProceed, InvalidName, AlreadyBound);

This method is identical to the bind method, except that the supplied Name
will be associated with a NamingContext, not an arbitrary ORB object.

Parameter Description
n A Name, initialized with the desired name for the

object.
obj The object to be named.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned naming context.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has
already been bound to another object within the
NamingContext.

Parameter Description
n A Name structure, initialized with the desired name for

the object.
obj The object to be named.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned naming context.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

Parameter Description
n A Name structure, initialized with the desired name for

the naming context. The first (n–1) NameComponent
structures in the sequence must resolve to a
NamingContext.

nc The NamingContext object to be bound.

VisiBroker-RT for C++ Programmer’s Reference 151

The following exceptions may be raised by this method.

virtual void rebind_context(const Name& _n,
NamingContext _ptr _nc) raises(NotFound,
CannotProceed, InvalidName);

This method is exactly the same as the bind_context method, except that
the AlreadyBound exception will never be raised. If the specified Name has
already been bound to another naming context, that binding is replaced by
the new binding.

The following exceptions may be raised by this method.

virtual CORBA::Object _ptr resolve(const Name& _n)
raises(NotFound, CannotProceed, InvalidName);

This method attempts to resolve the specified Name and return an object
reference. If parameter n is a simple name, it is resolved relative to this
NamingContext.

If n is a complex name, it is resolved using the context associated with the
first NameComponent. Next, the new context to resolve the following Name:

Name[NameComponent(2),...,NameComponent(n–1),NameComponentn]

This recursive process continues until the object associated with the nth
NameComponent is returned.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned naming context.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has
already been bound to another object within the
NamingContext.

Parameter Description
n A Name structure, initialized with the desired name for

the naming context.
nc The NamingContext object to be rebound.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned naming context.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

Parameter Description
n A Name structure, initialized with the name for the

desired object.

152 VisiBroker-RT for C++ Programmer’s Reference

The following exceptions may be raised by this method.

virtual void unbind(const Name& _n) raises(NotFound,
CannotProceed, InvalidName);

This method performs the inverse operation of the bind method, removing
the binding associated with the specified Name.

The following exceptions may be raised by this method.

virtual NamingContext_ptr new_context();

This method creates a new naming context. The newly created context will
be implemented within the same server as this object. The new context is
initially not bound to any Name.

virtual NamingContext_ptr bind_new_context(const Name&
_n) raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

This method creates a new context and binds it to the specified Name within
this Context.

The following exceptions can be raised by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned naming context.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

Parameter Description
n A Name structure, initialized with the desired name to be

unbound.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned naming context.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

Parameter Description
n A Name structure, initialized with the desired Name for the

newly created NamingContext object.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned NamingContext.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has
already been bound to another object within the
NamingContext.

VisiBroker-RT for C++ Programmer’s Reference 153

virtual void destroy() raises(NotEmpty);

This method deactivates this naming context. Any subsequent attempt to
invoke operations on this object will raise a CORBA::OBJECT_NOT_EXIST
runtime exception.

Before using this method, all Name objects that have been bound relative to
this NamingContext should be unbound using the unbind method. Any
attempt to destroy a NamingContext that is not empty will cause a NotEmpty
exception to be raised.

virtual void list(CORBA::ULong _how_many,
BindingList_out _bl, BindingIterator_out _bi)

This method returns all of the bindings contained by this context. Up to
“how_many” Names are returned with the BindingList. Any left over
bindings will be returned via the BindingIterator. The returned
BindingList and BindingIterator, described in detail on “Binding and
BindingList” and can be used to navigate the list of names.

NamingContextExt

class NamingContextExt : public virtual NamingContect,
public virtual CORBA Object

The NamingContextExt interface, which extends NamingContext, provides
the operations required to use stringified names and URLs.

Example 57 IDL Specification for the NamingContextExt interface
module CosNaming {

interface NamingContextExt {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n)
raises(InvalidName);

Name to_name(in StringName sn)
raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName,

AlreadyBound);
;

Parameter Description
how_many The maximum number of Names to be returned in the

list.
bl A list of Names returned to the caller. The number of

names in the list will not exceed how_many.
bi An iterator for use in traversing the rest of the Names.

154 VisiBroker-RT for C++ Programmer’s Reference

NamingContextExt methods

virtual char* to_string(const Name& _n)
raises(InvalidName);

This operation returns the stringified representation of the specified Name.

The following exceptions can be raised by this method.

virtual Name* to_name(const char* _sn);
raises(InvalidName);

This operation returns a Name object for the specified stringified name.

The following exceptions can be raised by this method.

virtual char* to_url(const char* _addr, const char*
_sn); raises(InvalidAddress, InvalidName);

This operation returns a fully-formed string URL given the specified URL
component and the stringified name.

The following exceptions can be raised by this method.

virtual CORBA::Object _ptr resolve_str(const char* _n);
raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

This operation returns a Name object for the specified stringified name.

Parameter Description
n A Name structure initialized with the desired name for

object.

Exception Description
InvalidName The specified Name has zero name components or the id

field of one of its name components is an empty string.

Parameter Description
sn The stringified name of an object.

Exception Description
InvalidName The specified Name has zero name components or the id

field of one of its name components is an empty string.

Parameter Description
addr A URL component of the form

“myhost.inprise.com:800”. If the Address is empty, it is
the local host.

sn A stringified name of an object

Exception Description
InvalidAddress The specified Address is malformed.
InvalidName The specified Name has zero name components or the id

field of one of its name components is an empty string.

Parameter Description
n A stringified name of an object.

VisiBroker-RT for C++ Programmer’s Reference 155

The following exceptions can be raised by this method.

NamingLib

class NamingLib

The NamingLib interface provides the operations required to create the
Initial Orphaned Naming Context Servant.

NamingLib methods

static POA_CosNaming::NamingContext *
create_NamingServiceServant();

This operation returns a POA_CosNaming::NamingContext servant object which the
user then activates on their POA.

After the user has registered their POA_CosNaming::NamingContext servant
with their POA, this new NamingContext can then be made accessible via
resolve_initial_references() by registering the NamingContext object with the
ORB via the interface “void register_service_object(const char* objectId,
CORBA_Object_ptr obj);”.

Binding and BindingList
The Binding, BindingList, and BindingIterator interfaces are used to
describe the name-object bindings contained in a NamingContext. The
Binding struct encapsulates one such pair. The binding_name field
represents the Name and the binding_type indicates whether the Name is
bound to an ORB object or a NamingContext object.

The BindingList is a sequence of Binding structures contained by a
NamingContext object. An example program that uses the BindingList can
be found in “Using the Naming Service” in the VisiBroker-RT for C++
Programmer’s Guide.

Example 58 IDL specification for the Binding structure
module CosNaming {

enum BindingType {
nobject,
ncontext

}
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

};

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could

not be resolved. The client may still be able to continue
the operation from the returned NamingContext.

InvalidName The specified Name has zero name components or the id
field of one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has
already been bound to another object within the
NamingContext.

156 VisiBroker-RT for C++ Programmer’s Reference

BindingIterator

class BindingIterator : public virtual CORBA_Object

This object allows a client application to walk through the unbounded
collection of bindings returned by the NamingContext operation list,
described in “virtual void list(CORBA::ULong _how_many, BindingList_out _bl,
BindingIterator_out _bi)”. An example program that uses the BindingIterator
can be found in the chapter “Using the Naming Service,” of the VisiBroker-
RT for C++ Programmer’s Guide.

Example 59 IDL specification for the BindingIterator interface
module CosNaming {

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList b);
void destroy();

};
};

BindingIterator methods

virtual CORBA::Boolean next_one(Binding_out b_);

This method returns the next Binding from the collection. CORBA::FALSE is
returned if the list has been exhausted. Otherwise, CORBA::TRUE is
returned.

virtual CORBA::Boolean next_n(CORBA::ULong _how_many,
BindingList_out _b);

This method returns a BindingList containing the number of requested
Binding objects from the list. The number of bindings returned may be less
than the requested amount if the list is exhausted. CORBA::FALSE is
returned when the list has been exhausted. Otherwise, CORBA::TRUE is
returned.

virtual void destroy();

This method destroys this object and releases the memory associated with
the object. Failure to call this method will result in increased memory
usage.

Parameter Description
b The next Binding object from the list.

Parameter Description
how_many The maximum number of Binding object desired.
b A BindList containing no more than the requested

number of Binding objects.

VisiBroker-RT for C++ Programmer’s Reference 157

Event Service Interfaces and
Classes
This chapter describes the interfaces and classes for the VisiBroker-RT for
C++ Event Service.

EventLib

class EventLib

The EventLib interface provides the operations required to create a Event
Channel Factory servant.

EventLib methods

static POA_CosEventChannelAdmin::EventChannelFactory
*create_EventFactoryServant(CORBA::Ulong
maxQueueLenght = MQL_DEFAULT);

This operation returns a POA_CosEventChannelAdmin::EventChannelFactory
servant object which the user then activates on their POA.

After the user has registered their
POA_CosEventChannelAdmin::EventChannelFactory servant with their POA, this
new EventChannelFactory can then be made accessible via
resolve_initial_references() by registering the EventChannelFactory obect
with the ORB via the interface “void register_service_object(const char* objectId,
CORBA_Object_ptr obj);”.

ConsumerAdmin

public interface ConsumerAdmin extends ConsumerAdminPOA

This interface is used by consumer applications to obtain a reference to a
proxy supplier object. This is the second step in connecting a consumer
application to an EventChannel.

IDL definition
module CosEventChannelAdmin {

interface ConsumerAdmin {
ProxyPushConsumer obtain_push_supplier();
ProxyPullConsumer obtain_pull_supplier();

};
};

ConsumerAdmin methods

public ProxyPushSupplier obtain_push_supplier();

The obtain_push_supplier method is invoked if the calling consumer
application is implemented using the push model. If the application is

158 VisiBroker-RT for C++ Programmer’s Reference

implemented using the pull model, the obtain_pull_supplier method
should be invoked.

public ProxyPullSupplier obtain_pull_supplier();

The returned reference is used to invoke either the connect_push_consumer,
described in “ProxyPushConsumer”, or the connect_pull_consumer method,
described in “ProxyPullConsumer”.

EventChannel

public interface EventChannel

The EventChannel provides the administrative operations for adding
suppliers and consumers to the channel and for destroying the channel. For
information on creating an event channel, see “EventChannelFactory”.

Suppliers and consumers both use the _bind method to obtain an
EventChannel reference. As with any _bind invocation, the caller can
optionally specify the object name of the desired EventChannel as well as
any desired bind options. These arguments can be passed to the supplier or
consumer as initial parameters or they may be obtained from the Naming
Service, if it is available. If the object name is not specified, a suitable
EventChannel will be located by VisiBroker-RT for C++. Once a supplier or
consumer is connected to an EventChannel, they may then invoke any of
the EventChannel methods.

Methods
Example 60 Supplier binding to an EventChannel with the object name “power”

...
CosEventChannelAdmin::EventChannel_var my_channel =

CosEventChannelAdmin::EventChannel::_bind(“power”);
CosEventChannelAdmin::SupplierAdmin_var =

channel->for_suppliers();
...

}

ConsumerAdmin for_consumers();

This method returns a ConsumerAdmin object that can be used to add
consumers to this EventChannel.

SupplierAdmin for_suppliers();

This method returns a SupplierAdmin object that can be used to add
suppliers to this EventChannel.

void destroy();

This method destroys this EventChannel.

EventChannelFactory

public interface EventChannelFactory

The EventChannelFactory provides methods for creating, locating, and
destroying event channels.

VisiBroker-RT for C++ Programmer’s Reference 159

IDL definition
module CosEventChannelAdmin { interface EventCHannelFactory {
exception AlreadyExists(); exception ChannelsExist();
EventChannel create(CORBA::ULong = MQL_DEFAULT); EventChannel
create_by_name(in string name,CORBA::ULong =MQL_DEFAULT)
raises(AlreadyExists);
EventChannel lookup_by_name(in string name);
void remove(const char * name, CORBA::Boolean destroy); void
destroy()
raises(ChannelsExist)
};
};

EventChannelFactory methods

EventChannel create();

This method creates an anonymous, transient event channel.

EventChannel create_by_name(in string name)
raises(AlreadyExists);

This method creates a named, persistent event channel. If an event channel
with the specified name has already been created, an AlreadyExists
exception is raised.

EventChannel lookup_by_name(in string name);

This method attempts to return the EventChannel with the specified name.
If no channel exits with the specified name, a NULL value is returned.

void remove();

This method removes the specified channel from the Event Channel
Factory’s list of managed channels, additionally the specified channel will be
destroyed if the destroy paramater is true.

void destroy();

This method destroys this event channel factory. If any event channels
exists which still belong to this factory, this method will raise a
ChannelsExist exception.

Channels can be removed by calling the remove method on the factory.

ProxyPullConsumer

public interface ProxyPullConsumer

This interface is used by a pull supplier application and provides the
connect_pull_supplier method for connecting the supplier‘s
PullSupplier-derived object to the EventChannel. An AlreadyConnected
exception will be raised if an attempt is made to connect the same proxy
more than once.

160 VisiBroker-RT for C++ Programmer’s Reference

IDL definition
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPullConsumer : CosEventComm::PullConsumer {

void connect_pull_supplier(in CosEventComm::PullSupplier
pull_supplier)

raises(AlreadyConnected);
};

};

ProxyPushConsumer

public interface ProxyPushConsumer

This interface is used by a push supplier application and provides the
connect_push_supplier method, used for connecting the supplier‘s
PushSupplier-derived object to the EventChannel. An AlreadyConnected
exception will be raised if an attempt is made to connect the same proxy
more than once.

IDL definition
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPushConsumer : CosEventComm::PushConsumer {

void connect_push_supplier(in CosEventComm::PushSupplier
push_supplier)

raises(AlreadyConnected);
};

};

ProxyPullSupplier

public interface ProxyPullSupplier

This interface is used by a pull consumer application and provides the
connect_pull_consumer method, used for connecting the consumer’s
PullConsumer-derived object to the EventChannel. An AlreadyConnected
exception will be raised if an attempt is made to connect the same
PullConsumer more than once.

IDL definition
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPullSupplier : CosEventComm::PullSupplier {

void connect_pull_consumer(in CosEventComm::PullConsumer
pull_consumer)

raises(AlreadyConnected);
};

};

VisiBroker-RT for C++ Programmer’s Reference 161

ProxyPushSupplier

public interface ProxyPushSupplier

This interface is used by a push consumer application and provides the
connect_push_consumer method, used for connecting the consumer’s
PushConsumer-derived object to the EventChannel. An AlreadyConnected
exception will be raised if an attempt is made to connect the same
PushConsumer more than once.

IDL definition
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPushSupplier : CosEventComm::PushSupplier {

void connect_push_consumer(in CosEventComm::PushConsumer
push_consumer)

raises(AlreadyConnected);
};

};

PullConsumer

public interface PullConsumer

This interface is used to derive consumer objects that use the pull model of
communication. The pull method is called by a consumer whenever it
wants data from the supplier. A Disconnected exception will be raised if the
supplier has disconnected.

The disconnect_push_consumer method is used to deactivate this consumer
if the channel is destroyed.

IDL definition
module CosEventChannelAdmin {

exception Disconnected {};
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

PushConsumer

public interface PushConsumer

This interface is used to derive consumer objects that use the push model of
communication. The push method is used by a supplier whenever it has
data for the consumer. A Disconnected exception will be raised if the
consumer has disconnected.

162 VisiBroker-RT for C++ Programmer’s Reference

IDL definition
module CosEventComm {

exception Disconnected();
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

PullSupplier

public interface PullSupplier

This interface is used to derive supplier objects that use the pull model of
communication.

IDL definition
module CosEventComm {

interface PullSupplier {
any pull() raises(Disconnected);
any try_pull(out boolean has_event) raises(Disconnected);
void disconnect_pull_supplier();

};
};

PullSupplier methods

any pull();

This method blocks until there is data available from the supplier. The data
is returned an Any type. If the consumer has disconnected, this method
raises a Disconnected exception.

any try_pull(out boolean has_event);

This non-blocking method attempts to retrieve data from the supplier.
When this method returns, has_event is set to the value true and the data
is returned as an Any type if there was data available. If has_event is set to
the value false, then no data was available and the return value will be
NULL.

void disconnect_pull_supplier();

This method deactivates this pull server if the channel is destroyed.

PushSupplier
public interface PushSupplier

This interface is used to derive supplier objects that use the push model of
communication. The disconnect_push_supplier method is used by the
EventChannel to disconnect supplier when it is destroyed.

VisiBroker-RT for C++ Programmer’s Reference 163

IDL definition
module CosEventComm {

exception AlreadyConnected();
interface PushSupplier {

void disconnect_push_supplier();
};

};

SupplierAdmin

public interface SupplierAdmin

This interface is used by supplier applications to obtain a reference to the
proxy consumer object. This is the second step in connecting a supplier
application to an EventChannel.

IDL definition
module CosEventChannelAdmin {

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};
};

public ProxyPushConsumer obtain_push_consumer();

The obtain_push_consumer method is invoked if the supplier application is
implemented using the push model. If the application is implemented using
the pull model, the obtain_pull_consumer method should be invoked.

public ProxyPullConsumer obtain_pull_consumer();

The returned reference is used to invoke the either the
connect_push_supplier, described in “ProxyPushSupplier”, or the
connect_pull_supplier method, described in “ProxyPullSupplier”.

164 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 165

Portable Interceptor
Interfaces and Classes for
C++
This chapter describes the VisiBroker-RT for C++ implementation of Portable
Interceptors interfaces and classes defined by the OMG Specification. For a
complete description of these interfaces and classes, refer to OMG Final
Adopted Specification, ptc/2001-04-03, Portable Interceptors.

Note

Refer to the Portable Interceptors chapter in the VisiBroker-RT for C++
Developer’s Guide before using these interfaces.

Introduction
VisiBroker-RT for C++ provides a set of APIs known as interceptors which
provide a way to plug in additional VisiBroker ORB behavior such as support
for transactions and security. Interceptors are hooked into the VisiBroker
ORB through services that can intercept the normal flow of execution of the
VisiBroker ORB. The table below lists the types of interceptor that
VisiBroker supports.

Table 5 Types of Interceptor

For more information about using the 4.x interceptors, refer to the section
Using 4.x interceptor in the VisiBroker-RT for C++Developer's Guide and the
4.x Interceptor and object wrapper interfaces and classes for C++ in the
VisiBroker-RT for C++ Programmer's Reference.

The table below lists the two forms of Portable Interceptor.

Interceptor Type Description
Portable Interceptor Portable Interceptors are OMG standardized feature that

allow writing of portable code for interceptors and use it
with different vendor ORBs.

4.x Interceptors 4.x Interceptors are VisiBroker-RT for C++ proprietary
interceptors defined in VisiBroker version 4.x.

166 VisiBroker-RT for C++ Programmer’s Reference

Table 6 Types of Portable Interceptor

For more information about using the Portable Interceptors, refer to the
Using Portable Interceptors section in the VisiBroker-RT for C++
Developer's Guide.

ClientRequestInfo

class PortableInterceptor::ClientRequestInfo : public
virtual RequestInfo

This class is derived from RequestInfo. It is passed to client side
interceptors point.

Some methods on ClientRequestInfo are not valid at all interception
points. The table below shows the validity of each attribute or method. If it
is not valid, attempting to access it will result in a BAD_INV_ORDER being
raised with a standard minor code of 14.

Table 7 ClientRequestInfo validity

Portable
Interceptor type Description
Request Interceptor Request Interceptors can be used to enable

VisiBroker ORB services to transfer context
information between clients and servers. Request
Interceptors are further divided into Client
Request Interceptors and Server Request
Interceptors.

IOR Interceptors IOR interceptor is used to enable an VisiBroker
ORB service to add information in an IOR
describing the server's or object's ORB service
related capabilities. For example, a security
service (like SSL) can add its tagged component
into the IOR so that clients recognizing that
component can establish the connection with the
server based on the information in the
component.

send_
request send_poll

receive_
reply

receive_
exception

receive_
other

request_id yes yes yes yes yes
operation yes yes yes yes yes
arguments yes1 no yes no no
exception yes no yes yes yes
contexts yes no yes yes yes
operation_context yes no yes yes yes
result no no yes no no
response_expected yes yes yes yes yes
sync_scope yes no yes yes yes
reply_status no no yes yes yes
forward_reference no no no no yes2

get_slot yes yes yes yes yes
get_request_service_context yes no yes yes yes
get_reply_service_context no no yes yes yes
target yes yes yes yes yes
effective_target yes yes yes yes yes

VisiBroker-RT for C++ Programmer’s Reference 167

1 When ClientRequestInfo is passed to send_request(), there is an entry
in the list for every argument, whether in, inout, or out. But only the in and
inout arguments will be available.
2 If the reply_status() does not return LOCATION_FORWARD, accessing this
attribute will raise BAD_INV_ORDER with a standard minor code of 14.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ClientRequestInfo methods

virtual CORBA::Object_ptr target() = 0;

This method returns the object which the client called to perform the
operation. See effective_target() below.

virtual CORBA::Object_ptr effective_target() = 0;

This method returns the actual object on which the operation will be
invoked. If the reply_status() returns LOCATION_FORWARD, then on
subsequent requests, effective_target() will contain the forwarded IOR
while target will remain unchanged.

virtual IOP::TaggedProfile* effective_profile() = 0;

This method returns the profile, in the form of IOP::TaggedProfile, that will
be used to send the request. If a location forward has occurred for this
operation's object and that object's profile changed accordingly, then this
profile will be that located profile.

virtual CORBA::Any* received_exception() = 0;

This method returns the data, in the form of CORBA::Any, that contains the
exception to be returned to the client.

If the exception is a user exception which cannot be inserted into a
CORBA::Any (e.g., it is unknown or the bindings don't provide the
TypeCode), then this attribute will be a CORBA::Any containing the system
exception UNKNOWN with a standard minor code of 1. However, the
RepositoryId of the exception is available in the received_exception_id
attribute.

virtual char* received_exception_id() = 0;

This method returns the ID of the received_exception to be returned to
the client.

effective_profile yes yes yes yes yes
received_exception no no no yes yes
received_exception_id no no no yes no
get_effective_component yes no yes yes yes
get_effective_components yes no yes yes yes
get_request_policy yes no yes yes yes
add_request_service_cont ext yes no no no no

send_
request send_poll

receive_
reply

receive_
exception

receive_
other

168 VisiBroker-RT for C++ Programmer’s Reference

virtual IOP::TaggedComponent*
get_effective_component(CORBA::ULong _id) = 0;

This methods returns the IOP::TaggedComponent with the given ID from the
profile selected for this request.

If there is more than one component for a given component ID, it is
undefined which component this operation returns. If there is more than
one component for a given component ID, get_effective_components()
will be called instead.

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

virtual IOP::TaggedComponentSeq*
get_effective_components(CORBA::ULong _id) = 0;

This method returns all the tagged components with the given ID from the
profile selected for this request. This sequence is in the form of an
IOP::TaggedComponentSeq.

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

virtual CORBA::Policy_ptr
get_request_policy(CORBA::ULong _type) = 0;

This method returns the given policy in effect for this operation.

If the policy type is not valid either because the specified type is not
supported by this ORB or because a policy object of that type is not
associated with this Object, INV_POLICY with a standard minor code of 2 is
raised.

virtual void add_request_service_context(const
IOP::ServiceContext& _service_context, CORBA::Boolean
_replace) = 0;

This method allows Interceptors to add service contexts to the request.

There is no declaration of the order of the service contexts. They may or
may not appear in the order that they are added.

Parameter Description
id The ID of the component which is to be returned.

Parameter Description
id The ID of the components which are to be returned.

Parameter Description
_type The type of policy which specifies the policy to be

returned.

Parameter Description
_service_context The IOP::ServiceContext to be added to the request.
_replace Indicates the behavior of this method when a service

context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 15 is
raised. If true, then the existing service context is
replaced by the new one.

VisiBroker-RT for C++ Programmer’s Reference 169

ClientRequestInterceptor

class PortableInterceptor::ClientRequestInterceptor :
public virtual Interceptor

This ClientRequestInterceptor class is used to derive user-defined client
side interceptor. A ClientRequestInterceptor instance is registered with
the VisiBroker ORB (see “ORBInitializer”).

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ClientRequestInterceptor methods

virtual void send_request(ClientRequestInfo_ptr _ri)
= 0;

This send_request() interception point allows an Interceptor to query
request information and modify the service context before the request is
sent to the server.

This interception point may raise a system exception. If it does, no other
Interceptors' send_request() interception points are called. Those
Interceptors on the Flow Stack are popped and their receive_exception()
interception points are called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest”). If an Interception raises this exception, no other
Interceptors' send_request methods are called. The remaining Interceptors
in the Flow Stack are popped and have their receive_other() interception
point called.

virtual void send_poll(ClientRequestInfo_ptr _ri) = 0;

This send_poll() interception point allows an Interceptor to query
information during a Time-Independent Invocation (TII) polling get reply
sequence.However, as the VisiBroker ORB does not support TII, this
send_poll() interception point will never be called.

virtual void receive_reply(ClientRequestInfo_ptr _ri) = 0;

This receive_reply() interception point allows an Interceptor to query the
information on a reply after it is returned from the server and before control
is returned to the client.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_reply() methods are called. The remaining

Parameter Description
_ri This is the ClientRequestInfo instance to be used by

Interceptor.

Parameter Description
_ri This is the ClientRequestInfo instance to be used by

Interceptor.

170 VisiBroker-RT for C++ Programmer’s Reference

Interceptors in the Flow Stack will have their receive_exception()
interception point called.

virtual void receive_exception(ClientRequestInfo_ptr
_ri) = 0;

This receive_exception() interception point is called when an exception
occurs. It allows an Interceptor to query the exception's information before
it is raised to the client.

This interception point may raise a system exception. This has the effect of
changing the exception which successive Interceptors popped from the Flow
Stack receive on their calls to receive_exception(). The exception raised to
the client will be the last exception raised by an Interceptor, or the original
exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest”). If an Interceptor raises this exception, no other
Interceptors' receive_exception() interception points are called. The
remaining Interceptors in the Flow Stack are popped and have their
receive_other() interception point called.

virtual void receive_other(ClientRequestInfo_ptr _ri) =
0;

This receive_other() interception point allows an Interceptor to query the
information available when a request results in something other than a
normal reply or an exception. For example, a request could result in a retry
(e.g., a GIOP Reply with a LOCATION_FORWARD status was received); or on
asynchronous calls, the reply does not immediately follow the request, but
control will return to the client and an ending interception point will be
called.

For retries, depending on the policies in effect, a new request may or may
not follow when a retry has been indicated. If a new request does follow,
while this request is a new request, with respect to Interceptors, there is
one point of correlation between the original request and the retry: because
control has not returned to the client, the request scoped
PortableInterceptor::Current for both the original request and the
retrying request is the same (see “Current”).

This interception point may raise a system exception. If it does, no other
Interceptors' receive_other() interception points are called. The remaining
Interceptors in the Flow Stack are popped and have their
receive_exception() interception point called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest”). If an Interceptor raises this exception, successive
Interceptors' receive_other() methods are called with the new information
provided by the ForwardRequest exception.

Parameter Description
_ri This is the ClientRequestInfo instance to be used by

Interceptor.

Parameter Description
_ri This is the ClientRequestInfo instance to be used by

Interceptor.

Parameter Description
_ri This is the ClientRequestInfo instance to be used by

Interceptor.

VisiBroker-RT for C++ Programmer’s Reference 171

Codec

class IOP::Codec

The formats of IOR components and service context data used by ORB
services are often defined as CDR encapsulations encoding instances of IDL
defined data types. The Codec provides a mechanism to transfer these
components between their IDL data types and their CDR encapsulation
representations.

A Codec is obtained from the CodecFactory. The CodecFactory is obtained
through a call to ORB::resolve_initial_references(”CodecFactory”).

Include file
Include the IOP_c.hh file when you use this class.

Codec member classes
class Codec::InvalidTypeForEncoding : public CORBA_UserException

This exception is raised by encode() or encode_value() when an invalid type
is specified for the encoding.

class Codec::FormatMismatch : public CORBA_UserException

This exception is raised by decode() or decode_value() when the data in
the octet sequence cannot be decoded into a CORBA::Any.

class Codec::TypeMismatch : public CORBA_UserException

This exception is raised by decode_value() when the given TypeCode does
not match the given octet sequence.

Codec methods

virtual CORBA::OctetSequence* encode(const CORBA::Any&
_data) = 0;

This method converts the given data in the form of a CORBA::Any into an
octet sequence based on the encoding format effective for this Codec. This
octet sequence contains both the TypeCode and the data of the type.

This operation may raise InvalidTypeForEncoding.

virtual CORBA::Any* decode(const CORBA::OctetSequence&
_data) = 0;

This method decodes the given octet sequence into a CORBA::Any object
based on the encoding format effective for this Codec.

This method raises FormatMismatch if the octet sequence cannot be
decoded into a CORBA::Any.

Parameter Description
_data The data, in the form of a CORBA::Any, to be encoded

into an octet sequence.

Parameter Description
_data The data, in the form of an octet sequence, to be

encoded into a CORBA::Any.

172 VisiBroker-RT for C++ Programmer’s Reference

virtual CORBA::OctetSequence* encode_value(const
CORBA::Any& _data) = 0;

This method converts the given CORBA::Any object into an octet sequence
based on the encoding format effective for this Codec. Only the data from
the CORBA::Any is encoded, not the TypeCode.

This operation may raise InvalidTypeForEncoding.

virtual CORBA::Any* decode_value(const
CORBA::OctetSequence& _data, CORBA::TypeCode_ptr _tc)
= 0;

This method decodes the given octet sequence into a CORBA::Any based on
the given TypeCode and the encoding format effective for this Codec.

This method raises FormatMismatch if the octet sequence cannot be
decoded into anCORBA::Any.

CodecFactory

class IOP::CodecFactory

This class is used to obtained a Codec. The CodecFactory is obtained
through a call to ORB::resolve_initial_references(”CodecFactory”).

Include file
Include the IOP_c.hh file when you use this class.

CodecFactory member

class CodecFactory::UnknownEncoding : public
CORBA_UserException

This exception is raised if CodecFactory cannot create a Codec. See
create_codec()function below.

CodecFactory method

virtual Codec_ptr create_codec(const Encoding& _enc)
= 0;

This create_codec() method creates a Codec of the given encoding.

Parameter Description
_data An octet sequence containing the data from the

encoded CORBA::Any.

Parameter Description
_data The data, in the form of an octet sequence to be

decoded into a CORBA::Any.
tc The Typecode to be used to decode the data.

VisiBroker-RT for C++ Programmer’s Reference 173

This method raises UnknownEncoding if this factory cannot create a Codec of
the given encoding.

Current

class PortableInterceptor::Current : public virtual
CORBA::Current, public virtual CORBA_Object

The Current class is merely a slot table, the slots of which are used by each
service to transfer their context data between their context and the
request's or reply's service context.

Each service that wishes to use Current reserves a slot or slots at
initialization time (see allocate_slot_id() on page 11-20) and uses those
slots during the processing of requests and replies.

Before an invocation is made, Current is obtained via a call to

ORB::resolve_initial_references(”PICurrent”).

From within the interception points, the data on Current that has moved
from the thread scope to the request scope is available via the get_slot()
method on the RequestInfo object. A Current can still be obtained via
resolve_initial_references(), but that is the Interceptor's thread scope
Current.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Current methods

virtual CORBA::Any* get_slot(CORBA::ULong _id);

A service can get the slot data it sets in PICurrent via the get_slot()
method. The data is in the form of a CORBA::Any object.

If the given slot has not been set, a CORBA::Any containing a type code with
a TCKind value of tk_null and no value is returned.

If get_slot() is called on a slot that has not been allocated, InvalidSlot is
raised.

If get_slot() is called from within an ORB initializer (see “ORBInitializer”
on page 11-17), BAD_INV_ORDER with a minor code of 14 is raised.

virtual void set_slot(CORBA::ULong _id, const
CORBA::Any& _data);

A service sets data in a slot with set_slot(). The data is in the form of a
CORBA::Any object.

If data already exists in that slot, it is overridden.

Parameter Description
enc This specifies the encoding to be used for creating a

Codec.

Parameter Description
_id The SlotId of the slot from which the data will be

returned.

174 VisiBroker-RT for C++ Programmer’s Reference

If set_slot() is called on a slot that has not been allocated, InvalidSlot is
raised.

If set_slot() is called from within an ORB initializer (see “ORBInitializer”)
BAD_INV_ORDER with a minor code of 14 is raised.

Encoding

struct IOP::Encoding

This structure defines the encoding format of a Codec. It details the
encoding format, such as CDR Encapsulation encoding, and the major and
minor versions of that format.

• ENCODING_CDR_ENCAPS, version 1.0;
• ENCODING_CDR_ENCAPS, version 1.1;
• ENCODING_CDR_ENCAPS, version 1.2;
• ENCODING_CDR_ENCAPS for all future versions of GIOP as they arise.

Include file
Include the IOP_c.hh file when you use this struct.

Encoding members

CORBA::Short format;

This member holds the encoding format for a Codec.

CORBA::Octet major_version;

This member holds the major version number for a Codec.

CORBA::Octet minor_version;

This member holds minor version number for a Codec.

ExceptionList

class Dynamic::ExceptionList

This class is used to hold exceptions information returned from the method
exceptions() in the class RequestInfo. It is an implementation of variable-
length array of type CORBA::TypeCode. The length of ExceptionList is
available at run-time.

For more information, see exceptions() in “RequestInfo methods”.

Include file
Include the Dynamic_c.hh file when you use this class.

Parameter Description
_id The SlotId of the slot from which the data will be set.
_data The data, in the form of a CORBA::Any object, which will

be set to the identified slot.

VisiBroker-RT for C++ Programmer’s Reference 175

ForwardRequest

class PortableInterceptor::ForwardRequest : public
CORBA_UserException

The ForwardRequest exception is the means by which an Interceptor can
indicate to the ORB that a retry of the request should occur with the new
object given in the exception. This behavior of causing a retry only occurs if
the ORB receives a ForwardRequest from an interceptor. If ForwardRequest
is raised anywhere else it is passed through the ORB as is normal for a user
exception.

If an Interceptor raises a ForwardRequest exception in response to a call of
an interceptor, no other Interceptors are called for that interception point.
The remaining Interceptors in the Flow Stack will have their appropriate
ending interception point called: receive_other() on the client, or
send_other() on the server. The reply_status() in the receive_other()
or send_other() will return LOCATION_FORWARD.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Interceptor

class PortableInterceptor::Interceptor

This is the base class from which all interceptors are derived.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Interceptor methods

virtual char* name() = 0;

This method returns the name of the Interceptor. Each Interceptor may
have a name which can be used to order the lists of Interceptors. Only one
Interceptor of a given name can be registered with the VisiBroker ORB for
each Interceptor type. An Interceptor may be anonymous, i.e., has an
empty string as the name attribute. Any number of anonymous Interceptors
may be registered with the VisiBroker ORB.

virtual void destroy() = 0;

This method is called during ORB::destroy(). When ORB::destroy() is
called by an application, the VisiBroker ORB:

• waits for all requests in progress to complete;

• calls the Interceptor::destroy() method for each interceptor;

• completes destruction of the ORB.

Method invocations from within Interceptor::destroy() on object
references for objects implemented on the ORB being destroyed result in
undefined behavior. However, method invocations on objects implemented
on VisiBroker ORB other than the one being destroyed are permitted. (This

176 VisiBroker-RT for C++ Programmer’s Reference

means that the VisiBroker ORB being destroyed is still capable of acting as a
client, but not as a server.)

IORInfo

class PortableInterceptor::IORInfo

The IORInfo interface provides the server side ORB service with access to
the applicable policies during IOR construction and the ability to add
components. The ORB passes an instance of its implementation of this
interface as a parameter to IORInterceptor::establish_components().

The table below defines the validity of each attribute or method in IORInfo
in the methods defined in the IORInterceptor.

Table 8 IORInfo validity

If an illegal call is made to an attribute or method in IORInfo, the
BAD_INV_ORDER system exception is raised with a standard minor code value
of 14.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

IORInfo methods

virtual CORBA::Policy_ptr
get_effective_policy(CORBA::ULong _type) = 0;

An ORB service implementation may determine what server side policy of a
particular type is in effect for an IOR being constructed by calling the
get_effective_policy() method. When the IOR being constructed is for an
object implemented using a POA, all Policy objects passed to the
PortableServer::POA::create_POA() call that created that POA are
accessible via get_effective_policy.

If a policy for the given type is not known to the ORB, then this method will
raise INV_POLICY with a standard minor code of 3.

establish_
components

components_
established

get_effective_policy yes yes
add_component yes no
add_component_to_profile yes no
manager_id yes yes
state yes yes
adapter_template no yes
current_factory no yes

Parameter Description
_type The CORBA::PolicyType specifying the type of policy to

return.

VisiBroker-RT for C++ Programmer’s Reference 177

virtual void add_ior_component(const
IOP::TaggedComponent& _a_component) = 0;

This method is called from establish_components() to add a tagged
component to the set which will be included when constructing IORs. The
components in this set will be included in all profiles.

Any number of components may exist with the same component ID.

virtual void add_ior_component_to_profile(const
IOP::TaggedComponent&_a_component,
CORBA::ULong _profile_id) = 0;

This method is called from establish_components() to add a tagged
component to the set which will be included when constructing IORs. The
components in this set will be included in the specified profile.

Any number of components may exist with the same component ID.

If the given profile ID does not define a known profile or it is impossible to
add components to that profile, BAD_PARAM is raised with a standard minor
code of 29.

virtual CORBA::Long manager_id() = 0;

This method returns the attribute that provides an opaque handle to the
manager of the adapter. This is used for reporting state changes in adapters
managed by the same adapter manager.

virtual CORBA::Short state() = 0;

This method returns the current state of the adapter. This must be one of
HOLDING, ACTIVE, DISCARDING, INACTIVE, NON_EXISTENT.

virtual ObjectReferenceTemplate_ptr adapter_template()
= 0;

This method returns the attribute that provides a means to obtain an object
reference template whenever an ior interceptor is invoked. There is no
standard way to directly create an object reference template. The value of
adapter_template() returns is the template created for the adapter policies
and IOR interceptor calls to add_component() and
add_component_to_profile(). The value of the adapter_template() returns
is never changed for the lifetime of the object adapter.

virtual ObjectReferenceFactory_ptr current_factory() = 0;

This method returns the attribute provides access to the factory that will be
used by the adapter to create object references. current_factory() initially
has the same value as the adapter_template attribute, but this can be
changed by setting current_factory toanothe r factory. All object
references created by the object adapter must be created by calling the
make_object() method on current_factory.

Parameter Description
_a_component The IOP::TaggedComponent to be added.

Parameter Description
_a_component The IOP::TaggedComponent to be added.
_profile_id The IOP::ProfileId of the profile to which this

component will be added.

178 VisiBroker-RT for C++ Programmer’s Reference

virtual void current_factory(ObjectReferenceFactory_ptr
_current_factory) = 0;

This method sets the current_factory attribute. The value of the
current_factory attribute that is used by the adapter can only be set during
the call to the components_established method.

IORInfoExt

class IORInfoExt : public PortableInterceptor::IORInfo

This is the VisiBroker extensions to Portable Interceptors to allow installing
of a POA scoped Server Request Interceptor. This IORInfoExt interface is
inherited from IORInfo interface and has additional methods to support POA
scoped Server Request Interceptor.

Include file
Include the PortableInterceptorExt_c.hh file when you use this class.

IORInfoExt methods

virtual void add_server_request_interceptor(
ServerRequestInterceptor_ptr _interceptor) = 0;

This method is used to add a POA-scoped server side request Interceptor to
a service.

virtual char* full_poa_name();

This method return the full POA name.

IORInterceptor

class PortableInterceptor::IORInterceptor : public
virtual Interceptor

In some cases, a portable ORB service implementation may need to add
information describing the server's or object's ORB service related
capabilities to object references in order to enable the ORB service
implementation in the client to function properly.

This is supported through the IORInterceptor and IORInfo interfaces.

The IOR Interceptor is used to establish tagged components in the profiles
within an IOR.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Parameter Description
_current_factory The current_factory object which is to be set.

Parameter Description
_interceptor The ServerRequestInterceptor to be added.

VisiBroker-RT for C++ Programmer’s Reference 179

IORInterceptor methods

virtual void establish_components(IORInfo_ptr _info)
= 0;

A server side ORB calls the establish_components() method on all
registered IORInterceptor instances when it is assembling the list of
components that will be included in the profile or profiles of an object
reference.

This method is not necessarily called for each individual object reference. In
the case of the POA, these calls are made each time POA::create_POA() is
called. In other adapters, these calls would typically be made when the
adapter is initialized.

The adapter template is not available at this stage since information (the
components) needed in the adapter template is being constructed.

virtual void components_established(IORInfo_ptr _info)
= 0;

After all of the establish_components() methods have been called, the
components_established() methods are invoked on all registered IOR
interceptors. The adapter template is available at this stage. The
current_factory attribute may be get or set at this stage.

Any exception that occurs in components_established() is returned to the
caller of components_established(). In the case of the POA, this causes the
create_POA call to fail, and an OBJ_ADAPTER exception with a standard
minor code of 6 is returned to the invoker of create_POA().

virtual void adapter_manager_state_changed(CORBA::Long
_id, CORBA::Short _state) = 0;

Any time the state of an adapter manager changes, the
adapter_manager_state_changed() method is invoked on all registered IOR
interceptors.

If a state change is reported through adapter_manager_state_changed(), it
is not reported through adapter_state_changed().

virtual void adapter_state_changed(const
ObjectReferenceTemplateSeq&_templates,
CORBA::Short _state) = 0;

Object adapter state changes are reported to this method any time the
state of one or more adapters changes for reasons unrelated to adapter

Parameter Description
_info The IORInfo instance used by the ORB service to query

applicable policies and add components to be included
in the generated IORs.

Parameter Description
_info The IORInfo instance used by the ORB service to access

applicable policies.

Parameter Description
_id The IORInfo instance used by the ORB service to

access applicable policies.
_state The new state of the object adapter.

180 VisiBroker-RT for C++ Programmer’s Reference

manager state changes. The templates argument identifies the object
adapters that have changed state by the template ID information. The
sequence contains the adapter templates for all object adapters that have
made the state transition being reported.

ORBInitializer

class PortableInterceptor::ORBInitializer

An Interceptor is registered by registering an associated ORBInitializer
object which implements the ORBInitializer class. When an ORB is
initializing, it will call each registered ORBInitializer, passing it an
ORBInitInfo object which is used to register its Interceptor.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ORBInitializer methods

virtual void pre_init(ORBInitInfo_ptr _info) = 0;

This method is called during ORB initialization. If it is expected that initial
services registered by an interceptor will be used by other interceptors,
then those initial services are registered at this point via calls to
ORBInitInfo::register_initial_reference().

virtual void post_init(ORBInitInfo_ptr _info) = 0;

This method is called during ORB initialization. If a service must resolve
initial references as part of its initialization, it can assume that all initial
references will be available at this point.

Calling the post_init() methods is not the final task of ORB initialization.
The final task, following the post_init() calls, is attaching the lists of
registered interceptors to the ORB. Therefore, the ORB does not contain the
interceptors during calls to post_init(). If an ORB-mediated call is made
from within post_init(), no request interceptors will be invoked on that
call. Likewise, if a method is performed which causes an IOR to be created,
no IOR interceptors will be invoked.

Parameter Description
_templates This identifies the object adapters that have changed

state by the template ID information.
_state The new state of the object adapter.

Parameter Description
_info This object provides initialization attributes and

methods by which Interceptors can be registered.

Parameter Description
_info This object provides initialization attributes and

methods by which Interceptors can be registered.

VisiBroker-RT for C++ Programmer’s Reference 181

ORBInitInfo

class PortableInterceptor::ORBInitInfo

This ORBInitInfo class is passed to ORBInitializer object for registering
interceptors.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ORBInitInfo member classes

class DuplicateName : public CORBA_UserException;

Only one Interceptor of a given name can be registered with the ORB for
each Interceptor type. If an attempt is made to register a second
Interceptor with the same name, DuplicateName is raised.

An Interceptor may be anonymous, i.e., has an empty string as the name
attribute. Any number of anonymous Interceptors may be registered with
the ORB so, if the Interceptor being registered is anonymous, the
registration operation will not raise DuplicateName.

class InvalidName: public CORBA_UserException

This exception is raised by register_initial_reference() and
resolve_initial_references(). register_initial_reference() raises
InvalidName if:

• this method is called with an empty string id; or

• this method is called with an id that is already registered, including the
default names defined by OMG.

resolve_initial_references() raises InvalidName if the name to be
resolved is invalid.

ORBInitInfo methods

virtual CORBA::StringSequence* arguments() = 0;

This method returns the arguments passed to ORB_init(). They may or may
not contain the ORB's arguments.

virtual char* orb_id() = 0;

This method returns the ID of the ORB being initialized.

virtual IOP::CodecFactory_ptr codec_factory() = 0;

This method returns the IOP::CodecFactory. The CodecFactory is normally
obtained via a call to ORB::resolve_initial_references(”CodecFactory”),
but since the ORB is not yet available and Interceptors, particularly when
processing service contexts, will require a Codec, a means of obtaining a
Codec is necessary during ORB initialization.

182 VisiBroker-RT for C++ Programmer’s Reference

virtual void register_initial_reference(const char*
_id, CORBA::Object_ptr _obj) = 0;

If this method is called with an id, ”Y”, and an object, YY, then a subsequent
call to register_initial_reference() will return object YY.

This method is identical to ORB::register_initial_reference(). This same
functionality exists here because the ORB, not yet fully initialized, is not yet
available but initial references may need to be registered as part of
Interceptor registration. The only difference is that the version of this
method on the ORB uses PIDL (CORBA::ORB::ObjectId and
CORBA::ORB::InvalidName) whereas the version in this interface uses IDL
defined in this interface; the semantics are identical.

register_initial_reference() raises InvalidName if:

• this method is called with an empty string id; or

• this method is called with an id that is already registered, including the
default names defined by OMG.

virtual CORBA::Object_ptr
resolve_initial_references(const char* _id) = 0;

This method is only valid during post_init(). It is identical to
ORB::resolve_initial_references(). This same functionality exists here
because the ORB, not yet fully initialized, is not yet available but initial
references may be required from the ORB as part of Interceptor
registration.

If the name to be resolved is invalid, resolve_initial_references() will
raise InvalidName.

virtual void add_client_request_interceptor(
ClientRequestInterceptor_ptr _interceptor) = 0;

This method is used to add a client side request Interceptor to the list of
client side request Interceptors.

If a client side request Interceptor has already been registered with this
Interceptor's name, DuplicateName will be raised.

virtual void add_server_request_interceptor(
ServerRequestInterceptor_ptr _interceptor) = 0;

This method is used to add a server side request Interceptor to the list of
server side request Interceptors.

Parameter Description
_id The ID by which the initial reference will be known.
_obj The initial reference itself.

Parameter Description
_id The ID by which the initial reference will be known.

Parameter Description
_interceptor The ClientRequestInterceptor to be added.

VisiBroker-RT for C++ Programmer’s Reference 183

If a server side request Interceptor has already been registered with this
Interceptor's name, DuplicateName is raised.

virtual void add_ior_interceptor(IORInterceptor_ptr
_interceptor) = 0;

This method is used to add an IOR Interceptor to the list of IOR
Interceptors. If an IOR Interceptor has already been registered with this
Interceptor's name, DuplicateName is raised.

virtual CORBA::ULong allocate_slot_id() = 0;

This method returns the index to the slot which has been allocated.

A service calls allocate_slot_id to allocate a slot on
PortableInterceptor::Current.

Note

While slot id's can be allocated within an ORB initializer, the slots
themselves cannot be initialized. Calling set_slot() or get_slot() on the
Current (see “Current”) within an ORB initializer will raise a BAD_INV_ORDER
with a minor code of 14.

virtual void register_policy_factory(CORBA::ULong
_type, PolicyFactory_ptr _policy_factory) = 0;

This method registers a PolicyFactory for the given PolicyType.

If a PolicyFactory already exists for the given PolicyType, BAD_INV_ORDER
is raised with a standard minor code of 16.

Parameter

struct Dynamic::Parameter

This structure holds the parameter information. This structure is the
element used in ParameterList (see “ParameterList” for more information).

Include file
Include the Dynamic_c.hh file when you use this struct.

Parameter members

CORBA::Any argument;

This member stores the parameter data in the form of CORBA::Any.

Parameter Description
_interceptor The ServerRequestInterceptor to be added.

Parameter Description
_interceptor The IORInterceptor to be added.

Parameter Description
_type The CORBA::PolicyType that the given PolicyFactory

serves.
_policy_factory The factory for the given CORBA::PolicyType.

184 VisiBroker-RT for C++ Programmer’s Reference

CORBA::ParameterMode mode;

This member specifies the mode of a parameter. Its value can be one of the
enum values:

PARAM_IN, PARAM_OUT or PARAM_INOUT.

ParameterList

class Dynamic::ParameterList

This class is used to pass parameters information returned from the method
arguments() in the class RequestInfo. It is an implementation of variable-
length array of type Parameter. The length of ParameterList is available at
run-time.

For more information, see arguments() in “RequestInfo methods”.

Include file
Include the Dynamic_c.hh file when you use this class.

PolicyFactory

class PortableInterface::PolicyFactory

A portable ORB service implementation registers an instance of the
PolicyFactory interface during ORB initialization. The POA is required to
preserve any policy which is registered with ORBInitInfo in this manner.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

PolicyFactory method

virtual CORBA::Policy_ptr create_policy(CORBA::ULong
_type, const CORBA::Any& _value) = 0;

The ORB calls create_policy() on a registered PolicyFactory instance
when CORBA::ORB::create_policy() is called for the PolicyType under
which the PolicyFactory has been registered. The create_policy()
method then returns an instance of the appropriate interface derived from
CORBA::Policy whose value corresponds to the specified CORBA::Any. If it
cannot, it will raise an exception as described for
CORBA::ORB::create_policy().

Parameter Description
_type A CORBA::PolicyType specifying the type of policy being

created.
_value A CORBA::Any containing data with which to construct

the CORBA::Policy.

VisiBroker-RT for C++ Programmer’s Reference 185

RequestInfo

class PortableInterceptor::RequestInfo

This is the base class from which ClientRequestInfo and
ServerRequestInfo are derived. Each interception point is given an object
through which the Interceptor can access request information. client side
and server side interception points are concerned with different information,
so there are two information objects: ClientRequestInfo is passed to the
client side interception points and ServerRequestInfo is passed to the
server side interception points. But there is information that is common to
both, so they both inherit from this common interface: RequestInfo.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

RequestInfo methods

virtual CORBA::ULong request_id() = 0;

This method returns the ID which uniquely identifies an active request /
reply sequence. Once a request / reply sequence is concluded this ID may
be reused.

Note

This ID is not the same as the GIOP request_id. If GIOP is the transport
mechanism used, then these IDs may very well be the same, but this is not
guaranteed nor required.

virtual char* operation() = 0;

This method returns name of the operation being invoked.

virtual Dynamic::ParameterList* arguments() = 0;

This method returns a Dynamic::ParameterList containing the arguments
on the operation being invoked. If there are no arguments, this attribute
will be a zero length sequence.

virtual Dynamic::ExceptionList* exceptions() = 0;

This method returns a Dynamic::ExceptionList describing the TypeCodes of
the user exceptions that this operation invocation may raise. If there are no
user exceptions, this attribute will be a zero length sequence.

virtual CORBA::StringSequence* contexts() = 0;

This method returns a CORBA::StringSequence describing the contexts that
may be passed on this operation invocation. If there are no contexts, this
attribute will be a zero length sequence.

virtual CORBA::StringSequence* operation_context() = 0;

This method returns a CORBA::StringSequence containing the contexts being
sent on the request.

186 VisiBroker-RT for C++ Programmer’s Reference

virtual CORBA::Any* result() = 0;

This method returns the data, in the form of CORBA::Any, that contains the
result of the operation invocation. If the operation return type is void, this
attribute will be a CORBA::Any containing a type code with a TCKind value of
tk_void and no value.

virtual CORBA::Boolean response_expected() = 0;

This method returns a boolean value which indicates whether a response is
expected.

On the client, a reply is not returned when response_expected() is false, so
receive_reply() cannot be called. receive_other() is called unless an
exception occurs, in which case receive_exception() is called.

virtual CORBA::Short sync_scope() = 0;

This method returns an attribute, defined in the Messaging specification, is
pertinent only when response_expected() is false. If response_expected()
is true, the value of sync_scope() is undefined. It defines how far the
request will progress before control is returned to the client. This attribute
may have one of the following values:
• Messaging::SYNC_NONE
• Messaging::SYNC_WITH_TRANSPORT
• Messaging::SYNC_WITH_SERVER
• Messaging::SYNC_WITH_TARGET

On the server, for all scopes, a reply will be created from the return of the
target operation call, but the reply will not return to the client. Although it
does not return to the client, it does occur, so the normal server side
interception points are followed (that is,
receive_request_service_contexts(), receive_request(), send_reply()
or send_exception()).

For SYNC_WITH_SERVER and SYNC_WITH_TARGET, the server does send an
empty reply back to the client before the target is invoked. This reply is not
intercepted by server side Interceptors.

virtual CORBA::Short reply_status() = 0;

This method returns an attribute which describes the state of the result of
the operation invocation. Its value can be one of the following:
• PortableInterceptor::SUCCESSFUL = 0
• PortableInterceptor::SYSTEM_EXCEPTION = 1
• PortableInterceptor::USER_EXCEPTION = 2
• PortableInterceptor::LOCATION_FORWARD = 3
• PortableInterceptor::TRANSPORT_RETRY = 4

On the client:

• Within the receive_reply interception point, this attribute will only be
SUCCESSFUL.

• Within the receive_exception interception point, this attribute will be
either SYSTEM_EXCEPTION or USER_EXCEPTION.

• Within the receive_other interception point, this attribute will be any of:
SUCCESSFUL, LOCATION_FORWARD, or TRANSPORT_RETRY. SUCCESSFUL
means an asynchronous request returned successfully. LOCATION_FORWARD
means that a reply came back with LOCATION_FORWARD as its status.
TRANSPORT_RETRY means that the transport mechanism indicated a retry -
a GIOP reply with a status of NEEDS_ADDRESSING_MODE, for instance.

VisiBroker-RT for C++ Programmer’s Reference 187

On the server:

• Within the send_reply interception point, this attribute will only be
SUCCESSFUL.

• Within the send_exception interception point, this attribute will be either
SYSTEM_EXCEPTION or USER_EXCEPTION.

• Within the send_other interception point, this attribute will be any of:
SUCCESSFUL, or LOCATION_FORWARD. SUCCESSFUL means an asynchronous
request returned successfully. LOCATION_FORWARD means that a reply came
back with LOCATION_FORWARD as its status.

virtual CORBA::Object_ptr forward_reference() = 0;

If the reply_status() returns LOCATION_FORWARD, then this method returns
an object to which the request will be forwarded. It is indeterminate
whether a forwarded request will actually occur.

virtual CORBA::Any* get_slot(CORBA::ULong _id) = 0;

This method returns the data, in the form of a CORBA::Any, from the given
slot of the

PortableInterceptor::Current that is in the scope of the request.

If the given slot has not been set, then a CORBA::Any containing a type code
with a TCKind value of tk_null is returned.

If the ID does not define an allocated slot, InvalidSlot is raised. See
“Current” for an explanation of slots and the PortableInterceptor::Current.

virtual IOP::ServiceContext*
get_request_service_context(CORBA::ULong _id) = 0;

This method returns a copy of the service context with the given ID that is
associated with the request.

If the request's service context does not contain an entry for that ID,
BAD_PARAM with a standard minor code of 26 is raised.

virtual IOP::ServiceContext*
get_reply_service_context(CORBA::ULong _id) = 0;

This method returns a copy of the service context with the given ID that is
associated with the reply.

If the request's service context does not contain an entry for that ID,
BAD_PARAM with a standard minor code of 26 is raised.

Parameter Description
_id The SlotId of the slot which is to be returned.

Parameter Description
_id The IOP::ServiceContext of the slot which is to be

returned.

Parameter Description
_id The IOP::ServiceContext of the slot which is to be

returned.

188 VisiBroker-RT for C++ Programmer’s Reference

ServerRequestInfo

class PortableInterceptor::ServerRequestInfo : public
virtual RequestInfo

This class is derived from RequestInfo. It is passed to server side
interception points.

Some methods on ServerRequestInfo are not valid at all interception
points. The table below shows the validity of each attribute or method. If it
is not valid, attempting to access it will result in a BAD_INV_ORDER being
raised with a standard minor code of 14.

Table 9 ServerRequestInfo

1 When ServerRequestInfo is passed to receive_request(), there is an
entry in the list for every argument, whether in, inout, or out. But only the
in and inout arguments will be available.
2 If the reply_status()does not return LOCATION_FORWARD, accessing this
attribute will raise BAD_INV_ORDER with a standard minor code of 14.
3 If the servant locator caused a location forward, or raised an exception,
this attribute / method may not be available in this interception point.

receive_
request_
service_
contexts

receive_
request

send_
reply

send_
exception

send_
other

request_id yes yes yes yes yes
operation yes yes yes yes yes
arguments no yes1 yes no2 no2

exception no yes yes yes yes
contexts no yes yes yes yes
operation_context no yes yes no no
result no no yes no no
response_expected yes yes yes yes yes
sync_scope yes yes yes yes yes
reply_status no no yes yes yes
forward_reference no no no no yes2

get_slot yes yes yes yes yes
get_request_service_
context

yes yes yes yes yes

get_reply_service_
context

no no yes yes yes

sending_exception no no no yes no
object_id no yes yes yes3 yes3

adapter_id no yes yes yes3 yes3

server_id no yes yes yes yes
orb_id no yes yes yes yes
adapter_name no yes yes yes yes
target_most_derived_
interface

no yes no4 no4 no4

get_server_policy yes yes yes yes yes
set_slot yes yes yes yes yes
target_is_a no yes no4 no4 no4

add_reply_service_
context

yes yes yes yes yes

VisiBroker-RT for C++ Programmer’s Reference 189

NO_RESOURCES with a standard minor code of 1 will be raised if it is not
available.
4 The method is not available in this interception point because the
necessary information requires access to the target object's servant, which
may no longer be available to the ORB. For example, if the object's adapter
is a POA that uses a ServantLocator, then the ORB invokes the interception
point after it calls ServantLocator::postinvoke().

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ServerRequestInfo methods

virtual CORBA::Any* sending_exception() = 0;

This method returns data, in the form CORBA::Any, that contains the
exception to be returned to the client.

If the exception is a user exception which cannot be inserted into a
CORBA::Any (e.g., it is unknown or the bindings don't provide the
TypeCode), then this attribute will be an CORBA::Any containing the system
exception UNKNOWN with a standard minor code of 1.

virtual char* server_id() = 0;

This method returns the value that was passed into the ORB::init call
using the - ORBServerId argument when the ORB was created.

virtual char* orb_id() = 0;

The method returns the value that was passed into the ORB::init() call.

In Java, this is accomplished using the -ORBid argument in the ORB.init
call that created the ORB containing the object adapter that created this
template. What happens if the same ORBid is used on multiple ORB::init()
calls in the same server is currently undefined.

virtual CORBA::StringSequence* adapter_name() = 0;

The method returns the name for the object adapter, in the form of
CORBA::StringSequence, that services requests for the invoked object. In
the case of the POA, the adapter_name is the sequence of names from the
root POA to the POA that services the request. The root POA is not named in
this sequence.

virtual CORBA::OctetSequence* object_id() = 0;

This method returns the opaque object_id, in the form of
CORBA::OctetSequence, that describes the target of the operation
invocation.

virtual CORBA::OctetSequence* adapter_id() = 0;

This method returns opaque identifier for the object adapter, in the form of
CORBA::OctetSequence.

190 VisiBroker-RT for C++ Programmer’s Reference

virtual char* target_most_derived_interface() = 0;

This method returns the RepositoryID for the most derived interface of the
servant.

virtual CORBA::Policy_ptr
get_server_policy(CORBA::ULong _type) = 0;

This method returns the policy in effect for this operation for the given
policy type. The returned CORBA::Policy object will only be a policy whose
type was registered via register_policy_factory().

If a policy for the given type was not registered via
register_policy_factory, this method will raise INV_POLICY with a
standard minor code of 3.

virtual void set_slot(CORBA::ULong _id, const
CORBA::Any& _data) = 0;

This method allows an Interceptor to set a slot in the
PortableInterceptor::Current that is in the scope of the request. If data
already exists in that slot, it will be overwritten.

If the ID does not define an allocated slot, InvalidSlot is raised.

See “Current” for an explanation of slots and
PortableInterceptor::Current.

virtual CORBA::Boolean target_is_a(const char* _id) =
0;

This method returns true if the servant is the given RepositoryId, false if
it is not.

virtual void add_reply_service_context(const
IOP::ServiceContext&_service_context,
CORBA::Boolean _replace) = 0;

This method allows Interceptors to add service contexts to the request.

Parameter Description
_type The CORBA::PolicyType which specifies the policy to be

returned.

Parameter Description
_id The SlotId of the slot.
_data The data, in the form of a CORBA::Any, to store in that

slot.

Parameter Description
_id The caller wants to know if the servant is this

CORBA::RepositoryId.

VisiBroker-RT for C++ Programmer’s Reference 191

There is no declaration of the order of the service contexts. They may or
may not appear in the order that they are added.

ServerRequestInterceptor
class PortableInterceptor::ServerRequestInterceptor : public virtual
Interceptor

This ServerRequestInterceptor class is used to derive user-defined server
side interceptor. A ServerRequestInterceptor instance is registered with
the ORB (see “ORBInitializer”).

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ServerRequestInterceptor methods

virtual void receive_request_service_contexts
(ServerRequestInfo_ptr _ri) = 0;

At this receive_request_service_contexts() interception point,
Interceptors must get their service context information from the incoming
request and transfer it to PortableInterceptor::Current's slots.

This interception point is called before the servant manager is called.
Operation parameters are not yet available at this point. This interception
point may or may not execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_request_service_contexts() interception points are
called. Those Interceptors on the Flow Stack are popped and their
send_exception() interception points are called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest”). If an Interceptor raises this exception, no other
Interceptors' receive_request_service_contexts() methods are called.
Those Interceptors on the Flow Stack are popped and their send_other
interception points are called

virtual void receive_request(ServerRequestInfo_ptr _ri)
= 0;

This receive_request() interception point allows an Interceptor to query
request information after all the information, including method parameters,
are available. This interception point will execute in the same thread as the
target invocation.

Parameter Description
_service_context The IOP::ServiceContext to add to the reply.
_replace Indicates the behavior of this method when a service

context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 15 is
raised. If true, then the existing service context is
replaced by the new one.

Parameter Description
_ri This is the ServerRequestInfo instance to be used by

Interceptor.

192 VisiBroker-RT for C++ Programmer’s Reference

In the DSI model, since the parameters are first available when the user
code calls arguments(), receive_request() is called from within
arguments(). It is possible that arguments() is not called in the DSI model.
The target may call set_exception() before calling arguments(). The ORB
will guarantee that receive_request() is called once, either through
arguments() or through set_exception(). If it is called through
set_exception(), requesting the arguments() will result in NO_RESOURCES
being raised with a standard minor code of 1.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_request() methods are called. Those Interceptors on
the Flow Stack are popped and their send_exception interception points are
called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest”). If an Interceptor raises this exception, no other
Interceptors' receive_request() methods are called. Those Interceptors on
the Flow Stack are popped and their send_other() interception points are
called.

virtual void send_reply(ServerRequestInfo_ptr _ri) = 0;

This send_reply() interception point allows an Interceptor to query reply
information and modify the reply service context after the target operation
has been invoked and before the reply is returned to the client. This
interception point will execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' send_reply() interception points are called. The remaining
Interceptors in the Flow Stack will have their send_exception()
interception point called.

virtual void send_exception(ServerRequestInfo_ptr _ri)
= 0;

This send_exception() interception point is called when an exception occurs.
It allows an Interceptor to query the exception information and modify the
reply service context before the exception is raised to the client. This
interception point will execute in the same thread as the target invocation.

This interception point may raise a system exception. This has the effect of
changing the exception which successive Interceptors popped from the Flow
Stack receive on their calls to send_exception. The exception raised to the
client will be the last exception raised by an Interceptor, or the original
exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest”. If an Interceptor raises this exception, no other
Interceptors' send_exception() interception points are called. The
remaining Interceptors in the Flow Stack will have their send_other
interception points called.

Parameter Description
_ri This is the ServerRequestInfo instance to be used by

Interceptor.

Parameter Description
_ri This is the ServerRequestInfo instance to be used by

Interceptor.

VisiBroker-RT for C++ Programmer’s Reference 193

virtual void send_other(ServerRequestInfo_ptr _ri) = 0;

This send_other() interception point allows an Interceptor to query the
information available when a request results in something other than a
normal reply or an exception. For example, a request could result in a retry
(e.g., a GIOP Reply with a LOCATION_FORWARD status was received). This
interception point will execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' send_other() methods are called. The remaining Interceptors
in the Flow Stack will have their send_exception interception points called.

This interception point may also raise a ForwardRequest exception.

194 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 195

4.x Interceptor and Object
Wrapper Interfaces and
Classes
This chapter describes the interfaces and classes that you can use with 4.x
interceptors and object wrappers.

Note

To begin with this section, read the chapters on 4.x interceptors and object
wrappers in the VisiBroker-RT for C++ Developer's Guide before using
these interfaces.

Introduction
4.x Interceptors are interceptors that are defined and implemented in
VisiBroker version 4.x and later. Similar to Portable Interceptor, 4.x
interceptor offers VisiBroker-RT for C++ ORB services a mechanism to
intercept normal flow of execution of the ORB. The table below lists the
three forms of 4.x interceptor.

Table 10 Types of Interceptor

For more information about using the 4.x interceptors and object wrapper
interfaces and classes for C++, refer to the 4.x interceptors and object
wrapper interfaces and classes for C++ section in the VisiBroker
Programmer's Reference.

For more information about how to use the object wrapper, refer to using
the Object Wrappers section in the VisiBroker Developer's Guide.

InterceptorManagers
Interceptors are installed and managed via interceptor managers. The
InterceptorManager interface is the generic interceptor manager from which
all interceptor-specific managers inherit. An InterceptorManager type is
associated with each interceptor type. An InterceptorManager holds a list or
chain of a particular kind of interceptors, all of which have the same scope
and need to start at the same time. Therefore, global interceptors, such as
POALifeCycle and Bind have global InterceptorManagers while scoped
interceptors, per-POA and per-object, have an InterceptorManager for each
scope. Each scope, either global, POAs, or objects, may hold multiple types

Interceptor Type Description
Client Interceptor System level interceptors which can be used to hook ORB

services such as transactions and security into the client
ORB processing..

Server Interceptor System level interceptors which can be used to hook ORB
services such astransactions and security into the server
ORB processing.

Object Wrappers User level interceptors which provide a simple
mechanism for users to intercept calls to stubs and
skeletons. These allow for simple tracing and data
caching among other things.

196 VisiBroker-RT for C++ Programmer’s Reference

of interceptors. You get the right kind of manager for a particular
interceptor from an InterceptorManagerControl.

Global interceptors may be handed additional interceptor managers to
install localized interceptors, for example, per-POA interceptors use the
POAInterceptorManager.

To obtain an instance of the global interceptor manager,
InterceptorManager, call ORB.resolve_initial_references and pass the
StringInterceptorManager as an argument.

This value is only available when the ORB is in administrative mode, that is,
during ORB initialization. It can only be used to install global interceptors
such as, POALifeCycle interceptors or Bind interceptors.

The POA interceptor manager is a per-POA manager and is only available to
POALifeCycleInterceptors during their create call. POALifeCycleInterceptors
may set up all other server side interceptors during the call to create. The
Bind Interceptor Manager is avper-object manager and is only available to
Bind interceptors during their bind_succeeded() call. Bind interceptors may
set up ClientRequest interceptors during the bind_succeeded call.

IOR templates
In addition to the interceptor, the Interoperable Object Reference (IOR)
template may be modified directly on the POAIntercptorManager interface
during the call to POALifeCycleInterceptor::create(). The IOR template
is a full IOR value with the type_id not set, and all
GIOP::ProfileBodyValues have incomplete object keys. The POA sets the
type_id and fills in the object keys of the template before calling the
IORCreationInterceptors.

InterceptorManager

class Interceptor::InterceptorManager

This is the base class from which all interceptor managers are derived.
Interceptor managers are interfaces which are used to manage the
installation and removal of interceptors from the system.

InterceptorManagerControl

class Interceptor::InterceptorManagerControl public
CORBA::PseudoObject

This is the class that is responsible for controlling a set of related
interceptor managers. It holds all available managers identified by a string
that corresponds to the type of interceptors to be managed. There is one
InterceptorManagerControl per scope.

Include file
Include the interceptor_c.hh file when you use this class.

VisiBroker-RT for C++ Programmer’s Reference 197

InterceptorManagerInterceptor method

InterceptorManager_ptr get_manager(const char name);

This method returns an instance of the InterceptorManager which returns a
string identifying the manager.

BindInterceptor

class Interceptor::BindInterceptor public
VISPseudoInterface

You can use this class to derive your own interceptor for handling bind and
rebind events for a client or server application. The Bind Interceptors are
global interceptors invoked on the client side before and after binds.

If an exception is thrown during a bind, the remaining interceptors in the
chain are not called and the chain is truncated to only those interceptors
already called. Exceptions thrown during bind_succeeded or bind_failed
are ignored.

Include file
You should include the interceptor_c.hh file when you use this class.

BindInterceptor methods

virtual IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,
CORBA::Object_ptr obj, CORBA::Boolean rebind,
VISClosure& closure);

This method is called during all ORB bind operations.

Parameter Description
name The name of the interceptor

Parameter Description
ior The Interoperable Object Reference (IOR) for the server

object to which the client is binding.
obj The client object which is being bound to the server. The

object will not be properly initialized at this time, so do
not attempt an operation on it. However, it may be
stored in a data structure and used after the bind has
completed.

rebind An attempt to rebind to the server. After a bind() has
failed, depending on the current quality of service, a
rebind may be attempted.

closure A new closure object for the bind operation. The closure
will be used in corresponding calls to either bind_failure
or bind_succeeded.

return Returns a new IOR, if the bind operation is to be
continued using this new IOR. Otherwise, it returns a null
value and the bind will proceed using the original IOR.

Returning the same IOR as the parameter passed in is
incorrect and generates an exception at bind time.

198 VisiBroker-RT for C++ Programmer’s Reference

virtual IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr
ior, CORBA::Object_ptr obj, VISClosure& closure);

This method is called if a bind operation failed.

virtual void bind_succeeded(IOP::IORValue_ptr ior,
CORBA::Object_ptr obj, CORBA::Long profileIndex,
InterceptorManagerControl_ptr interceptorControl,
VISClosure& closure);

This method is called if a bind operation succeeded.

BindInterceptorManager

class Interceptor::BindInterceptorManager public
InterceptorManager, public VISPseudoInterface

This is the class that manages all the global bind interceptors. It only has
one public method, which allows you to register interceptors.

The BindInterceptorManager must always be used at ORB_init(). It has
no effect after the orb is initialized. Therefore, it only needs to be used in
the context of a loader class that inherits from VISinit.

To obtain a BindInterceptorManager from the InterceptorManagerControl,
use InterceptorManagerControl::get_manager() with the identification
string Bind.

Include file
You should include the interceptor_c.hh file when you use this class.

BindInterceptorManager method

void add(BindInterceptor _ptr interceptor);

This method is used to add a BindInterceptor to the list of interceptors to be
started at bind time.

Parameter Description
ior The IOR of the server object on which the bind operation

failed.
obj The client object which is being bound to the server.
closure The closure object previously given in the bind call.
return Returns a new IOR if a rebind is to be attempted against

this IOR. Otherwise, it returns null, and a rebind is not
attempted.

Parameter Description
ior The IOR of the server object on which the bind operation

succeeded.
obj The client object which is being bound to the server.
interceptorControl This Manager provides a list of the types of Managers.
closure The closure object previously given in the bind call.

VisiBroker-RT for C++ Programmer’s Reference 199

ClientRequestInterceptor

class Interceptor::ClientRequestInterceptor public
VISPseudoInterface

You use this class to derive your own client side interceptor. The Client
Request interceptors may be installed during the bind_succeeded call of a
bind interceptor and remain active for the duration of the connection. The
methods defined in your derived class will be invoked by the ORB during the
preparation or sending of an operation request, during the receipt of a reply
message, or if an exception is raised.

Include file
Include the interceptor_c.hh file when you use this class.

ClientRequestInterceptor methods

virtual void preinvoke_premarshal(CORBA::Object_ptr
target, const char* operation,
IOP::ServiceContextList& service_contexts,
VisClosure& closure);

This method is invoked by the ORB on every request, before the request
has been marshalled. An exception thrown from this interceptor results in
the request being completed immediately. In this case, the chain is
shortened to only those interceptors that have already fired, the request will
not be sent, and exception_occurred() is called on all interceptors still in the
chain.

virtual void preinvoke_postmarshal(CORBA::Object_ptr
target, CORBA_MarshalOutBuffer& payload, VISClosure&
closure);

This method is invoked after every request has been marshaled, but before
it was sent.

If an exception is thrown in this method:

• the rest of the chain is not invoked,

• the request is not sent to the server, and

• exception_occurred() is called on the whole interceptor chain.

Parameter Description
target The client object which is being bound to the server.
operation The name of the operation being invoked.
service_context The services assigned by the ORB. These services are

identified by a tag registered with the OMG.
closure The closure object previously given in the bind call.

Parameter Description
target The client object which is being bound to the server.
payload Marshalled buffer.
closure The closure object previously given in the bind call.

200 VisiBroker-RT for C++ Programmer’s Reference

virtual void postinvoke(CORBA::Object_ptr target, const
IOP::ServiceContextList& service_contexts,
CORBA_MarshalInBuffer& payload,
CORBA::Environment_ptr env, VISClosure& closure);

This method is invoked after a request completes correctly or by throwing
an exception. It is called after the ServantLocator has been invoked.
Should an interceptor in the chain throw an exception, that interceptor also
calls exception_occurred() and all remaining interceptors in the chain call
exception() instead of calling postinvoke().

The CORBA::Environment parameter is changed to reflect this exception,
even when a two-way call had already written an exception in that
argument.

virtual void exception_occurred(CORBA::Object_ptr target,
CORBA::Environment_ptr env, VISClosure& closure);

This method is invoked by the ORB when an exception is thrown before the
invocation. All exceptions thrown after the invocation are gathered in the
environment parameter of the postinvoke method.

ClientRequestInterceptorManager

class Interceptor::ClientRequestInterceptorManager :
public InterceptorManager,public VISPseudoInterface

This is the class that holds the chain of ClientRequestInterceptors for the
current object.

A ClientRequestInterceptorManager should be used inside of the
BindInterceptor::bind_succeeded() method within the scope set by the
InterceptorManagerControl passed as an argument to bind_succeeded().

Include file
Include the interceptor_c.hh when you use this class.

ClientRequestInterceptorManager methods

virtual void add(ClientRequestInterceptor_ptr
interceptor);

This method may be invoked to add a ClientRequestInterceptor to the
local chain.

Parameter Description
target The client object which is being bound to the server.
service_context The services assigned by the ORB. These services are

identified by a tag registered with the OMG.
payload Marshalled buffer.
env Contains information on the exception that was raised.
closure The closure object previously given in the bind call.

Parameter Description
target The client object which is being bound to the server.
env Contains information on the exception that was raised.
closure The closure object previously given in the bind call.

VisiBroker-RT for C++ Programmer’s Reference 201

virtual void remove(ClientRequestInterceptor_ptr
interceptor);

This method removes a ClientRequestInterceptorManager.

POALifeCycleInterceptor

class InterceptorManager::POALifeCycleInterceptor
public VISPseudoInterface

The POALifeCycleInterceptor is a global interceptor which is invoked every
time a POA is created or destroyed. All other server side interceptors may
be installed either as global interceptors or for specific POAs. You install the
POALifeCycleInterceptor through the POALifeCycleInterceptorManager
interface. See “POALifeCycleInterceptorManager”. The
POALifeCycleInterceptor is called during POA creation and destruction.

Include file
Include the PortableServerExt_c.hh file when you use this class.

POALifeCycleInterceptor methods

virtual void create(PortableServer::POA_ptr poa,
CORBA::PolicyList& policies, IOP::IORValue*&
iorTemplate,
interceptor::InterceptorManagerControl_ptr poaAdmin);

This method is invoked when a new POA is created either explicitly through
a call to create_POA or via AdapterActivator. With AdapterActivator, the
interceptor is called only after the unknown_adapter method successfully
returns from the AdapterActivator. The create method is passed as a
reference to the recently created POA and as a reference to that POA
instance's POAInterceptorManager.

virtual void destroy(PortalServer::POA_ptr poa);

This method is called before a POA is destroyed and all of its objects have
been etherealized. It guarantees that destroy will be called on all
interceptors before create will be called again for a POA with the same
name. If the destroy operation throws a system exception, the exception is
ignored, and the remaining interceptors are called.

Parameter Description
poa The ID associated with the current POA being created.
policies The policies for the POA being created.
iorTemplate The IOR template is a full IOR value with the type_id not

set, and all GIOP::ProfileBodyValues will have
incomplete object keys.

poaAdmin The control for the POA being created. See
“InterceptorManagerControl” on page 12-3 for more
information.

Parameter Description
poa The Portable Object Adapter (POA) being destroyed.

202 VisiBroker-RT for C++ Programmer’s Reference

POALifeCycleInterceptorManager

class InterceptorExt::POALifeCycleInterceptorManager
public interceptor::InterceptorManager, public
VISPseudoInterface

This class manages all POALifeCycle global interceptors. There is a single
instance of the POALifeCycleInterceptorManager defined in an ORB.

The scope of this interface is global, per-ORB. This class is only active
during ORB_init() time.

Include file
Include the PortalServerExt_c.hh file when you use this class.

POALifeCycleInterceptorManager method

virtual void add(POALifeCycleInterceptor_ptr
interceptor);

This method may be invoked to add a POALifeCycleInterceptor to the global
chain of POALifeCycle interceptors.

ActiveObjectLifeCycleInterceptor

class
PortableServerExt::ActiveObjectLifeCycleInterceptor
public VISPseudoInterface

The ActiveObjectLifeCycleInterceptor interceptor is called when objects
are added and removed from the active object map. It is only used when
POA has RETAIN policy. This lass is a POA-scoped interceptor which may be
installed by a POALifeCycleInterceptor when the POA is created.

Include file
Include the PortableServerExt_c.hh file when you use this class.

ActiveObjectLifeCycleInterceptor methods

virtual void create(const PortableServer::ObjectId&
oid, PortableServer::ServantBase* ,
PortableServer::POA_ptr adapter);

This method is invoked after an object has been added to the Active Object
Map, either through explicit or implicit activation, using either direct APIs or
a ServantActivator. The object reference and the POA of the new active
object are passed as parameters.

Parameter Description
interceptor The interceptor to be added.

Parameter Description
oid Object ID for the object currently activated.

VisiBroker-RT for C++ Programmer’s Reference 203

virtual void destroy(const PortableServer::ObjectId&
oid, PortableServer::ServantBase* servant,
PortableServer::POA_ptr adapter);

This method is called after an object has been deactivated and etherealized.
The object reference and the POA of the object are passed as parameters.

ActiveObjectLifeCycleInterceptorManager

class
PortableServerExt::ActiveObjectLifeCycleInterceptorMa
nager public interceptor::InterceptorManager, public
VISPseudoInterface

This is the class that manages all ActiveObjectLifeCycleInterceptors
registered in its scope. Each POA has one single
ActiveObjectLifeCycleInterceptorManager.

Include file
Include the PortableServer_c.hh file when you use this class.

ActiveObjectLifeCycleInterceptorManager
method

virtual void add(ActiveObjectLifeCycleInterceptor
interceptor_ptr interceptor);

This method may be invoked to add an ActiveObjectLifeCycleInterceptor
to the chain.

ServerRequestInterceptor

class Interceptor::ServerRequestInterceptor public
VISPseudoInterface

The ServerRequestInterceptor class is a POA-scoped interceptor which
may be installed by a POALifeCycleInterceptor at POA creation time. This
class may be used to perform access control, to examine and insert service
contexts, and to change the reply status of a request.

Include file
Include the interceptor_c.hh file when you use this class.

servant Associated servant.
activator The Portable Object Adapter (POA) being created or

destroyed.

Parameter Description
oid Object ID for the object currently activated.
servant Associated servant.
activator The Portable Object Adapter (POA) being created or

destroyed.

Parameter Description

204 VisiBroker-RT for C++ Programmer’s Reference

ServerRequestInterceptor methods

virtual void preinvoke(CORBA::Object_ptr _target, const
char* operation, const IOP::ServiceContextList&
service_contexts, CORBA::MarshalInBuffer& payload,
VISClosure& closure) raises
(ForwardRequestException);

This method is invoked by the ORB on every request, before the request is
demarshaled. An exception thrown from this interceptor results in the
request being completed immediately. This method is called before any
ServantLocators are invoked. The result may be that the servant may not
be available while this method is running.

virtual void postinvoke_premarshal(CORBA::Object_ptr
target, IOP::ServiceContextList&
ServiceContextList,CORBA::Environment_ptr env,
VISClosure& closure);

This method is invoked after an upcall to the servant but before marshalling
the reply. An exception here is handled by interrupting the chain: the
request is not sent to the server and exception_occurred() is called on all
interceptors in the chain.

virtual void postinvoke_postmarshal(CORBA::Object_ptr _target,
CORBA::MarshalOutBuffer& _payload, VISClosure& _closure);

This method is invoked after marshalling the reply but before sending the
reply to the client. Exceptions thrown here are ignored. The entire chain is
guaranteed to be called.

Parameter Description
target The client object that is being bound to the server.
operation Identifies the name of the operation being invoked.
service_contexts Identifies the services assigned by the Orb. These

services are registered with the OMG.
payload Marshalled buffer.
closure May contain data saved by one interceptor method that

can be retrieved later by another interceptor method.

Parameter Description
target The client object that is being bound to the server.
ServiceContextList Identifies the services assigned by the Orb. These

services are registered with the OMG.
env Contains information on the exception that was raised.
closure May contain data saved by one interceptor method that

can be retrieved later by another interceptor method.

Parameter Description
target The object to which that application was attempting to

bind.
payload Marshalled buffer.
closure May contain data saved by one interceptor method that

can be retrieved later by another interceptor method.

VisiBroker-RT for C++ Programmer’s Reference 205

virtual void exception_occurred(CORBA::Object_ptr
_target, CORBA::Environment_ptr _env, VISClosure&
_closure);

This method is invoked by the ORB when an exceptionoccurred interceptor
is called on all remaining interceptors in the chain after an exception
occurred in one of the prepare_reply interceptors. An exception thrown
during this call replaces the existing exception in the environment.

ServerRequestInterceptorManager

class Interceptor::ServerRequestInterceptorManager
public InterceptorManager, public VISPseudoInterface

This is the class that manages all ServerRequestInterceptors registered in
its scope. Each POA has one single ServerRequestInterceptorManager.

Include file
Include the interceptor_c.hh file when you use this class.

ServerRequestInterceptorManager method

virtual void add(ServerRequestInterceptor_ptr
interceptor);

Invoke this method to add a ServerRequestInterceptor to the chain.

IORCreationInterceptor

class PortableServerExt::IORCreationInterceptor public
VISPseudoInterface

The IORCreationInterceptor is a per-POA interceptor which may be installed
by a POALifeCycleInterceptor at POA creation time. The interceptor may be
used to modify IORs by adding additional profiles or components. This class
is typically used to support services such as transactions or firewall.

This kind of interceptor is used to automatically change the IOR templates
on certain classes of POAs whose names and identities may not be known at
development time. This may be the case with services such as Transaction
and Firewall.

Note

To change all the IORs created by a POA, simply modify the IORTemplate
for that POA. The change will apply only to newly created IORs and not to
any existing ones.

Making radical changes to the IOR is not recommended.

Parameter Description
target The client object which is being bound to the server.
payload Contains information on the exception that was raised.
closure May contain data saved by one interceptor method that

can be retrieved later by another interceptor method.

206 VisiBroker-RT for C++ Programmer’s Reference

Include file
Include the PortableServerExt_c.hh file when you use this class.

IORInterceptor method

virtual void create(PortableServer::POA poa,
IOP::IORValue*& ior);

The method is called whenever the POA needs to create an object
reference. It takes the POA and the IORValue for the reference as
arguments. The interceptor may modify the IORValue by adding additional
profiles or components, or changing the existing profiles or components.

IORCreationInterceptorManager

class PortableServerExt::IORCreationInterceptorManager
public interceptor::InterceptorManager, public
VISPseudoInterface

This is the class that is used to manage (add) IOR interceptors to the local
chain. Each POA has one single IORInterceptorManager.

Include file
Include the PortableServerExt_c.hh file when you use this class.

IORCreationInterceptorManager method

virtual void add(IORCreationInterceptor_ptr
_interceptor);

This method may be invoked to add an IORInterceptor to the local chain.

VISClosure

struct VISClosure

This structure is used to store data so that it can be shared between
different invocations of interceptor methods. The data that is stored is un-
typed and can represent state information related to an operation request
or a bind or locate request. It is used in conjunction with theVISClosureData
class.

Include file
Include the vclosure.h file when you use this class.

Parameter Description
poa The ID associated with the current poa being created.
ior The IOR for the server object with which the client is

binding.

VisiBroker-RT for C++ Programmer’s Reference 207

VISClosure members

CORBA::ULong id

You can use this data member to uniquely identify this object if you are
using more than one VISClosure object.

void

This data member points to the un-typed data that may be stored or
accessed by an interceptor method.

VISClosureData *managedData

This data member points to the VISClosureData class that represents the
actual data. You may cast your managed data to this type.

VISClosureData

class VISClosureData

This class represents managed data that can be shared between different
invocations of interceptor methods.

VISClosureData methods

virtual ~VisClosureData();

This is the default destructor.

virtual void _release();

Releases this object and decrements the reference count. When the
reference count reaches 0, the object is deleted.

ChainUntypedObjectWrapperFactory

class
VISObjectWrapper::ChainUntypedObjectWrapperFactory :
public UntypedObjectWrapperFactory

This interface is used by a client or server application to add or remove an
UntypedObjectWrapperFactory object. An UntypedObjectWrapperFactory is
used to create an UntypedObjectWrapper for each object a client application
binds to or for each object implementation created by a server application.

Refer to the Using Object Wrappers section in the VisiBroker-RT for C++
Developer's Guide for more information about how to use the object
wrappers.

Include file
Include the vobjwrap.h file when you use this class.

208 VisiBroker-RT for C++ Programmer’s Reference

ChainUntypedObjectWrapperFactory methods

void add(UntypedObjectWrapperFactory_ptr factory,
Location loc);

This method adds the specified un-typed object wrapper factory for a client
application, server application, or collocated application.

If your application is acting as both a client application and a server
application, that is, a collocated application, you can install an un-typed
object wrapper factory. If you do so, the wrapper's methods are invoked for
both invocations on bound objects and operation requests received by
object implementations. In other words, they are invoked on both the

client and server portions of the application.

Note

On the client side, un-typed object wrapper factories must be defined
before any objects are bound. On the server side, un-typed object wrapper
factories must be defined before an invocation for an object implementation
is received.

void remove(UntypedObjectWrapperFactory_ptr factory,
Location loc);

This method removes the specified un-typed object wrapper factory from
the specified location.

If your application is acting as both a client and a server, you can remove
the object wrapper factories for either the client side objects, server side
implementations, or both.

Note

Removing one or more object wrapper factories from a client does not affect
objects of that class which are already bound by the client. Only
subsequently bound objects will be affected.

Removing object wrapper factories from a server does not affect object
implementations that have already serviced requests. Only subsequently
created object implementations will be affected.

Parameter Description
factory A pointer to the factory to be registered.
loc The location of the factory being added, which should be

one of the following values:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

Parameter Description
factory A pointer to the factory to be registered.
loc The location of the factory being removed, which should

be one of the following values:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

VisiBroker-RT for C++ Programmer’s Reference 209

static CORBA::ULong count(Location loc);

This static method returns the number of un-typed object wrapper factories
installed for the specified location.

UntypedObjectWrapper

class VISObjectWrapper::UntypedObjectWrapper : public
VISResource

You use this class to derive and implement an un-typed object wrapper for
a client application, a server application, or co-located application. When
you derive an un-typed object wrapper from this class, you define a
pre_method method that is invoked before a request is issued by a client
application or before it is processed by an object implementation on the
server side. You also define a post_method method that will be invoked
after an operation request is processed by an object implementation on the
server side or after a reply has been received by a client application.

You must also derive a factory class that will create your un-typed wrapper
objects. Derive it from the UntypedObjectWrapperFactory class, described
in “UntypedObjectWrapperFactory”.

Refer to the VisiBroker-RT for C++ Developer's Guide for more information
about how to use the object wrappers.

Include file
Include the vobjwrap.h file when you use this class.

UntypedObjectWrapper methods

virtual void pre_method(const char* operation,
CORBA::Object_ptr target, VISClosure& closure);

This method is invoked before an operation request is sent on the client side
or before it is processed by an object implementation on the server side.

virtual void post_method(const char* operation,
CORBA::Object_ptr target, CORBA::Environment& env,
VISClosure& closure);

This method is invoked after an operation request has been processed by
the object implementation on the server side or before the reply message is
processed by the stub on the client side.

Parameter Description
operation The name of the operation being requested.
target The object that is the target of the request
closure The Closure object can be used to pass data between

object wrapper methods.

Parameter Description
operation The name of the operation being requested.
target The object that is the target of the request

210 VisiBroker-RT for C++ Programmer’s Reference

UntypedObjectWrapperFactory

class VISObjectWrapper::UntypedObjectWrapperFactory

You use this interface to derive your own un-typed object wrapper factories.
Your factory will be used to create an instance of your un-typed object
wrapper for an application whenever a new object is bound to or an object
implementation services a request.

Include file
Include the vobjwrap.h file when you use this class.

UntypedObjectWrapperFactory constructor

UntypedObjectWrapperFactory(Location loc,
CORBA::Boolean doAdd=1);

Creates an un-typed object wrapper factory for the specified location and by
default registers it with the ChainUntypedObjectWrapperFactory. If your
application is acting as both a client application and a server application,
you can install an un-typed object wrapper factory so the wrapper's
methods will be invoked for both invocations on bound objects and
operation requests received by object implementations.

If you don't want to use the default parameter, you can specify that the
doAdd not be performed. However, to create an untyped object wrapper,
you will have to call ChainUntypedObjectWrapper::add.

UntypedObjectWrapperFactory methods

virtual UntypedObjectWrapper_ptr
create(CORBA::Object_ptr target, Location loc);

This method is called to create an instance of your type of
UntypedObjectWrapper. Your implementation of this method can examine
the type of bound object or object implementation to determine whether or
not it wants to create an object wrapper for that object. With the loc

env An Environment object that is used to reflect exceptions
that might have occurred in the processing of the
operation request.

closure The Closure object can be used to pass data between
object wrapper methods.

Parameter Description

Parameter Description
loc The location of the factory being added, which should be

one of the following values:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

doAdd A flag specifying whether or not the factory is to
be registered.

VisiBroker-RT for C++ Programmer’s Reference 211

parameter, you specify whether the create request is called to wrap a client
object or a server implementation.

Parameter Description
target The object being bound by a client application for which

the un-typed object wrapper is being created. If this
method is being invoked on the server side, this
represents the object implementation that is being
created.

loc The location of the factory being added.

212 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 213

Real-Time CORBA
Interfaces and Classes
This chapter describes the Real-Time CORBA interfaces and classes supported
by VisiBroker-RT for C++.

Note

Read the chapter on Real-Time CORBA in the VisiBroker-RT for C++
Developer's Guide before using these interfaces.

Introduction
Real-Time CORBA provides a set of APIs that support the development of
predictable CORBA-based systems, through the control of the number and
priority of threads involved in the execution of CORBA invocations.

The majority of the Real-Time CORBA API is specified in IDL, and is mapped
to C++ according to the rules of the CORBA C++ language mapping. The
Real-Time CORBA IDL is scoped within module RTCORBA, and hence the
C++ class names are all prefixed ’RTCORBA::’.

The following Real-Time CORBA interfaces and classes are described in the
sections that follow:

• RTCORBA::ClientProtocolPolicy
• RTCORBA::Current
• RTCORBA::Mutex
• RTCORBA::NativePriority
• RTCORBA::Priority
• RTCORBA::PriorityMapping
• RTCORBA::PriorityModel
• RTCORBA::PriorityModelPolicy
• RTCORBA::RTORB
• RTCORBA::ServerProtocolPolicy
• RTCORBA::ThreadpoolId
• RTCORBA::ThreadpoolPolicy

Include file
To use any of the Real-Time CORBA features described in this chapter, the
application should include the file rtcorba.h, which is one of the include
files supplied with VisiBroker.

RTCORBA::ClientProtocolPolicy

class RTCORBA::ClientProtocolPolicy : CORBA::Policy

An instance of this Real-Time Policy type is created by calling the
create_client_protocol_policy method of RTCORBA::RTORB. The Policy
instance may then be used to configure the selection of communication
protocols on the client-side of VisiBroker-RT for C++ applications. The order
of the Protocols in the ProtocolList dictates the order which the client-side
ORB will use to attempt to connect to the CORBA Object.

214 VisiBroker-RT for C++ Programmer’s Reference

IDL
// IDL

module RTCORBA {
// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {

IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};
typedef sequence <Protocol> ProtocolList;
// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 1237;
// locality constrained interface
interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};
interface RTORB {

...
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);
};

RTCORBA::Current

class RTCORBA::Current : public CORBA::Object

typedef RTCORBA::Current* Current_ptr
class RTCORBA::Current_var

The class RTCORBA::Current provides methods that allow a Real-Time
CORBA Priority value to be associated with the current thread of execution,
and the reading of the Real-Time CORBA Priority value presently associated
with the current thread.

When a Real-Time CORBA Priority value is associated with the current
thread, that value is immediately used to set the Native Priority of the
underlying thread. The Native Priority value to apply to the thread is
obtained via the currently installed Priority Mapping.

Where the Client Propagated Priority Model is in use, the Priority associated
with a thread will also determine the priority of CORBA invocations made
from that thread. For details see the section “Real-Time CORBA Priority
Models” in the Programmers Guide.

RTCORBA::Current is defined in IDL, as a locality constrained interface.
(See the above section “Locality Constrained Interfaces” for an explanation
of this term.) Hence applications handle RTCORBA::Current via CORBA
Object References, using the C++ classes RTCORBA::Current_ptr and
RTCORBA::Current_var.

See also the section “RTCORBA::Priority”.

RTCORBA::Current Creation and Destruction
RTCORBA::Current is a special interface. Applications need not be concerned
with which instance of it they are dealing. A reference to RTCORBA::Current
is obtained through the resolve_initial_references method of
RTCORBA::RTORB, and is released in the normal way when it is no longer
required. For details see the section “Real-Time CORBA Current” in the
Programmers Guide.

VisiBroker-RT for C++ Programmer’s Reference 215

IDL
//Locality Constrained Object
interface Current {

attribute Priority the_priority;
};

RTCORBA::Current methods

void the_priority(Priority _val);

Associate the RTCORBA::Priority value _val with the current thread of
execution.

Priority the_priority();

Get the RTCORBA::Priority value associated with the current thread of
execution.

RTCORBA::Mutex

class RTCORBA::Mutex : public CORBA::Object

typedef RTCORBA::Mutex* RTCORBA::Mutex_ptr
class RTCORBA::Mutex_var

class TimeBase {
typedef unsigned long long TimeT;
};

The interface RTCORBA::Mutex provides applications with a mutex
synchronization primitive that is guaranteed to have the same priority
inheritance properties as mutexes used internally by VisiBroker to protect
ORB resources.

RTCORBA::Mutex is defined in IDL, as a locality constrained interface. (See
the section “Locality Constrained Interfaces” for an explanation of this
term.) Hence applications handle RTCORBA::Mutex instances via CORBA
Object References, using the C++ classes RTCORBA::Mutex_ptr and
RTCORBA::Mutex_var.

The paragraph above is one of several references to a “Locality
Constrained Interfaces” section. I can’t find any such section. Any
ideas?

See also the section “RTCORBA::RTORB”.

Mutex Creation and Destruction
A new RTCORBA::Mutex is obtained using the create_mutex operation of
the RTCORBA::RTORB interface. The new RTCORBA::Mutex is created in an
unlocked state.

Parameter Description
_val The Priority value to associate with the thread.

216 VisiBroker-RT for C++ Programmer’s Reference

When the RTCORBA::Mutex is no longer needed, it is destroyed using the
destroy_mutex operation of RTCORBA::RTORB. See the section
“RTCORBA::RTORB” for details.

Note that if the RTCORBA::Mutex_var type is used in place of the
RTCORBA::Mutex_ptr type, the reference is automatically released when
the _var instance goes out of scope, but the RTCORBA::Mutex instance it
refers to is not automatically destroyed. The RTCORBA::Mutex instance must
still be destroyed with a call to destroy_mutex.

IDL
// Locality Constrained Object
interface Mutex {

void lock();
void unlock();
boolean try_lock (in TimeBase::TimeT max_wait);

};

// defined in TimeBase.idl
module TimeBase {

typedef unsigned long long TimeT;
};

RTCORBA::Mutex Methods

void lock();

Lock the RTCORBA::Mutex. When the RTCORBA::Mutex object is in the
unlocked state, the first thread to call the lock() operation will cause the
Mutex object to change to the locked state. Subsequent threads that call the
lock() operation while the Mutex object is still in the locked state will block
until the owner thread unlocks it.

void unlock();

Unlock the locked RTCORBA::Mutex.

CORBA::Boolean try_lock(const TimeBase::TimeT
_max_wait);

Attempt to lock the RTCORBA::Mutex, waiting for a maximum of _max_wait
amount of time. Returns TRUE if the lock is successfully taken within the
time, or FALSE if it could not be taken before the time expired.

RTCORBA::NativePriority

typedef CORBA::Short RTCORBA::NativePriority

The type RTCORBA::NativePriority is used to represent priorities in the
priority scheme of the particular Operating System that the Real-Time ORB
is running on.

Parameter Description
_max_wait The maximum amount of time to wait for the lock, in

100 nanosecond ticks. A value of 0 means do not wait
for the lock.

VisiBroker-RT for C++ Programmer’s Reference 217

Real-Time CORBA applications only use RTCORBA::NativePriority values in
special circumstances:

• When defining a Priority Mapping. See the section
“RTCORBA::PriorityMapping”.

• When interacting directly with the Operating System, or with some other
non-CORBA subsystem, that works in terms of Native Priorities. This
should still be done via the installed Priority Mapping. See the section
“Using Native Priorities in VisiBroker Application Code” in the
Programmers Guide.

Normally, within a Real-Time CORBA application, priorities will be expressed
in terms of RTCORBA::Priority values. See the section “RTCORBA::Priority”.

IDL
typedef CORBA::Short NativePriority;

RTCORBA::Priority

typedef CORBA::Short RTCORBA::Priority
static const Priority RTCORBA::minPriority; // 0
static const Priority RTCORBA::maxPriority; // 32767

The type RTCORBA::Priority should be used to represent priority values in a

Real-Time The only time a Real-Time CORBA application should use Native
Priority values is when interacting directly with the Operating System or
some other non-CORBA subsystem. Even then, this the Programmers
GuideRTCORBA::Priority values may be anywhere in the range 0 to 32767.
However, it is not expected that this full range of priorities will be used in a
Real-Time CORBA system. Instead, the application system designer should
decide on a suitable range of priorities for that system, and implement a
Priority Mapping that only allows priority values in that range. For many
applications the default valid range of 0 to 31 will be acceptable, but there
may still be reasons to override the default Priority Mapping.

Again, see the section “RTCORBA::PriorityMapping” for details.

IDL
typedef CORBA::Short Priority;

static const Priority minPriority; // 0
static const Priority maxPriority; // 32767

RTCORBA::PriorityMapping

class RTCORBA::PriorityMapping

The RTCORBA::PriorityMapping class facilitates the mapping of
RTCORBA::Priority values to and from the Native Priority scheme of the
Operating System the Real-Time ORB is running on. The ORB calls out to a
Priority Mapping object whenever it needs to map a RTCORBA::Priority
value to a RTCORBA::NativePriority value or vice versa.

A Real-Time CORBA application should describe its priorities in terms of
RTCORBA::Priority values. However, the application may need to make
explicit use of the installed Priority Mapping, in order to interact directly
with the Operating System or some other non-CORBA subsystem. For

218 VisiBroker-RT for C++ Programmer’s Reference

details see the section “Using Native Priorities in VisiBroker Application
Code” in the Programmers Guide. The range of RTCORBA::Priority values
supported by a Priority Mapping should always start from zero. The Real-
Time ORB expects RTCORBA::Priority zero to be valid. Also, this convention
makes integration of different Real-Time CORBA systems on the same node
easier.

PriorityMapping Creation and Destruction
It is not necessary to create instances of a Priority Mapping in the code of a
normal Real-Time CORBA application. The available Priority Mapping is
automatically used by the ORB, and may be accessed by the application if
necessary.

Exactly one Priority Mapping is ‘installed’ at any one time. A ‘default’ Priority
Mapping is provided, that is installed by default. This Default Priority
Mapping may be overridden by installing an application-implemented
Priority Mapping object. The installation process is described in the section
“Replacing the Default Priority Mapping” in the Programers Guide.

IDL
// ‘native’ IDL type

native PriorityMapping;

The RTCORBA::PriorityMapping IDL type is defined as a ‘native’ IDL type.
This means that its mapping to different programming languages is defined
on a per-language basis. The C++ class representing
RTCORBA::PriorityMapping has the following declaration:

//C++
class PriorityMapping {

public:
virtual CORBA::Boolean to_native(

RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority)=0;

virtual CORBA::Boolean to_CORBA(
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority)=0;

virtual RTCORBA::Priority max_priority() = 0;
PriorityMapping();
virtual ~PriorityMapping() {}
static RTCORBA::PriorityMapping * instance();

};

PriorityMapping Methods

static RTCORBA::PriorityMapping * instance();

This static method can be used by Real-Time CORBA applications to access
the currently installed Priority Mapping. For details see the section “Using
Native Priorities in VisiBroker Application the Programmers Guide for
details.

This method is implemented by VisiBroker.

virtual RTCORBA::Priority max_priority() = 0;

This method returns the maximum Real-Time CORBA Priority value that is
valid using this Priority Mapping. For example, if the installed Priority

VisiBroker-RT for C++ Programmer’s Reference 219

Mapping maps Real-Time CORBA Priorities in the range 0 to 31, the value
31 will be returned every time this method is called.

This method must be implemented when implementing a new Priority
Mapping.

virtual CORBA::Boolean to_CORBA (
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority) = 0;

This method maps a given Native Priority value, native_priority, to a
Real-Time CORBA Priority value. If the Native Priority value is in the range
supported by this Priority Mapping, the resultant Real-Time CORBA Priority
value is stored in corba_priority, and TRUE is returned. Otherwise
corba_priority is not changed, and FALSE is returned.

This method must be implemented when implementing a new Priority
Mapping.

virtual CORBA::Boolean to_native (RTCORBA::Priority
corba_priority, RTCORBA::NativePriority
&native_priority) = 0;

This method maps a given Real-Time CORBA Priority value, corba_priority,
to a Native Priority value. If the Real-Time CORBA Priority value is in the
range supported by this Priority Map-ping, the resultant Native Priority value
is stored in native_priority, and TRUE is returned. Otherwise native_prioirty
is not changed, and FALSE is returned.

This method must be implemented when implementing a new Priority
Mapping.

RTCORBA::PriorityModel

enum RTCORBA::PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED
};

This enumeration specifies the two Real-Time CORBA Priority Models :
Client Priority Propagation and Server Declared Priority.

These enumeration values are used as values for a parameter to the
create_priority_model_policy methods of RTCORBA::RTORB. See the
section "RTCORBA::PriorityModelPolicy" for details.

Parameter Description
native_priority The Native Priority value to be mapped to a Real-Time

CORBA Priority.
corba_priority The variable to assign the mapped Real-Time CORBA

Priority value to.

Parameter Description
corba_priority The Real-Time CORBA Priority value to be mapped to a

Native Priority.
native_priority The variable to assign the mapped Native Priority value

to.

220 VisiBroker-RT for C++ Programmer’s Reference

RTCORBA::PriorityModelPolicy

class RTCORBA::PriorityModellPolicy : CORBA::Policy

An instance of this Real-Time Policy type is created by calling the
create_priority_model_policy method of RTCORBA::RTORB. The Policy
instance may then be used to configure a Real-Time POA at the time of its
creation, by passing it into the create_POA method, as a member of the
Policy List parameter.

See the sections “RTCORBA::RTORB” and “RTCORBA::PriorityModel”for more
information.

IDL
interface ThreadpoolPolicy : CORBA::Policy {

readonly attribute ThreadpoolId threadpool;
};

RTCORBA::RTORB

class RTCORBA::RTORB : public CORBA::Object

typedef RTCORBA::RTORB* RTCORBA::RTORB_ptr
class RTCORBA::RTORB_var

The interface RTCORBA::RTORB provides methods for the management of
Real-Time CORBA Threadpools and Mutexes, and to create instances of
Real-Time CORBA Policies.

RTCORBA::RTORB is defined in IDL, as a locality constrained interface. (See
the above section “Locality Constrained Interfaces” for an explanation of
this term.) Hence applications handle RTCORBA::RTORB via CORBA Object
References, using the C++ classes RTCORBA::RTORB_ptr and
RTCORBA::RTORB_var.

See also the sections “RTCORBA::Mutex”, “RTCORBA::Priority”,
“RTCORBA::ThreadpoolId” and “RTCORBA::ThreadpoolPolicy”. For details on the
use of Real-Time CORBA Threadpools see the section “Threadpools” in the
Programmers Guide.

RTORB Creation and Destruction
The Real-Time ORB does not need to be explicitly initialized - it is initialized
implicitly as part of the regular CORBA::ORB_init call.

To use the Real-Time ORB operations, the application must have a
reference to the Real-Time ORB instance. This reference can be obtained
any time after the call to ORB_init, and is obtained through the
resolve_initial_references operation on CORBA::ORB, with the object id
string “RTORB” as the parameter. For details, see the section “Real-Time
CORBA ORB” in the Programmers Guide.

IDL
// locality constrained interface
interface RTORB {

VisiBroker-RT for C++ Programmer’s Reference 221

Mutex create_mutex();

void destroy_mutex(in Mutex the_mutex);
exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool(in ThreadpoolId threadpool)
raises (InvalidThreadpool);

void threadpool_idle_time(in ThreadpoolId threadpool,
in unsigned long seconds)
raises (InvalidThreadpool);

PriorityModelPolicy create_priority_model_policy(
in PriorityModel priority_model,
in Priority server_priority);

ThreadpoolPolicy create_threadpool_policy(
in ThreadpoolId threadpool);

};

RTORB Methods

Mutex_ptr create_mutex();

Create a new Real-Time CORBA Mutex and return a reference to it.

void destroy_mutex(Mutex_ptr _the_mutex);

Destroy a Real-Time CORBA Mutex.

ThreadpoolId create_threadpool(
CORBA::ULong _stacksize,
CORBA::ULong _static_threads,
CORBA::ULong _dynamic_threads,
Priority _default_priority,
CORBA::Boolean _allow_request_buffering = 0,
CORBA::ULong _max_buffered_requests = 0,
CORBA::ULong _max_request_buffer_size = 0);

Create a new Real-Time CORBA Threadpool with the specified configuration,
and return a RTCORBA::ThreadpoolId for it.

Parameter Description
_the_mutex Reference of the Mutex to destroy.

Parameter Description
_stacksize Stacksize, in bytes, for each thread in the Threadpool.
_static_threads Number of threads to create at the time of Threadpool

creation. May be zero, as long as _dynamic_threads is
non-zero.

_dynamic_threads Number of extra threads that may be created, if all the
statically created threads are in use and more threads
are required. May be zero (so that no more threads may
be dynamically created), as long as _static_threads is
non-zero.

222 VisiBroker-RT for C++ Programmer’s Reference

void destroy_threadpool(ThreadpoolId _threadpool);

Destroy a Real-Time CORBA Threadpool. The Threadpool must not be in use
by any Object Adapter, or the operation will fail, and a CORBA system
exception is thrown.

void threadpool_idle_time(
ThreadpoolId _threadpool,
CORBA::ULong _seconds);

Set the time, in seconds, that dynamically allocated threads will remain idle
before they are garbage collected. Configured on a per-Threadpool basis.
The default is to garbage collect dynamically allocated threads after 300
seconds.

This method is a proprietary VisiBroker extension.

_default_priority The Real-Time CORBA Priority that the threads will have
when they are idle in the Threadpool.

_allow_request_
buffering

Boolean flag to enable request buffering when all threads
are in use. Not supported by VisiBroker. The value of this
parameter is ignored.

_max_buffered_
requests

Maximum number of requests to buffer when all threads
are in use. Not supported by VisiBroker. The value of this
parameter is ignored.

_max_request_buffer_
size

Maximum amount of data to buffer, in bytes, when all
threads are in use. Not supported by VisiBroker. The
value of this parameter is ignored.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to destroy.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to set the Idle

Time for.
_seconds The maximum number of seconds that a dynamically

allocated thread may be idle in this Threadpool before it
is destroyed. Statically allocated threads are not
destroyed.

Parameter Description

VisiBroker-RT for C++ Programmer’s Reference 223

PriorityModelPolicy create_priority_model_policy(
in PriorityModel _priority_model,
in Priority _server_priority);

Create an instance of the RTCORBA::PriorityModelPolicy policy object, for
use in configuring one or more Real-Time POAs. See also the sections
“RTCORBA::PriorityModel” and “RTCORBA::PriorityModelPolicy”

ThreadpoolPolicy create_threadpool_policy(in
ThreadpoolId threadpool);

Create an instance of the RTCORBA::ThreadpoolPolicy policy object, for use
in configuring one or more Real-Time POAs.

RTCORBA::ServerProtocolPolicy

class RTCORBA::ServerProtocolPolicy : CORBA::Policy

An instance of this Real-Time Policy type is created by calling the
create_server_protocol_policy method of RTCORBA::RTORB. The Policy
instance may then be used to configure the selection of communication
protocols on a Real-Time POA at the time of its creation, by passing it into
the create_POA method, as a member of the Policy List parameter. The
order of the Protocols in the ProtocolList dictates the order which the IOR
Profile(s) will appear in the IOR of the CORBA Objects activated on that
POA.

IDL
// IDL

module RTCORBA {
// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {

IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};
typedef sequence <Protocol> ProtocolList;
// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 1236;

Parameter Description
_priority_model RTCORBA::SERVER_DECLARED, for the Server

Declared Priority Model or
RTCORBA::CLIENT_PROPAGATED for the Client Priority
Propagation Model.

_server_priority In the Server Model, the Real-Time CORBA Priority that
invocations on objects activated on this POA will be
executed at, provided a Priority value is not associated
with the individual object at the time of activation.

In the Client Model, the Real-Time CORBA Priority that
invocations on objects activated on this POA will be
executed at if they come from a non-Real-Time CORBA
client or a Real-Time CORBA client that has not
specified a Real-Time CORBA Priority on
RTCORBA::Current before making the invocation.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to associate this

POPA with.

224 VisiBroker-RT for C++ Programmer’s Reference

// locality constrained interface
interface ServerProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};
interface RTORB {

...
ServerProtocolPolicy create_server_protocol_policy

(in ProtocolList protocols
);
};

RTCORBA::ThreadpoolId

typedef CORBA::ULong RTCORBA::ThreadpoolId

Values of the type RTCORBA::ThreadpoolId are used to identify Real-Time
CORBA Thread-pools. A value of this type is returned from the
create_threadpool method of RTCORBA::RTORB.

The id may be used to initialize an instance of a Threadpool Policy, which in
turn may be passed in to a call to create_POA, as a member of the PolicyList
parameter, to configure a Real-Time POA. For details, see the sections
“RTCORBA::RTORB”, “RTCORBA::ThreadpoolPolicy” and the section
“Association of an Object Adapter with a Threadpool” in the Programmers
Guide.

IDL
typedef unsigned long ThreadpoolId;

RTCORBA::ThreadpoolPolicy

class RTCORBA::ThreadpoolPolicy : CORBA::Policy

An instance of this Real-Time Policy type is created by calling the
create_threadpool_policy method of RTCORBA::RTORB. The Policy instance
may then be used to configure a Real-Time POA at the time of its creation,
by passing it into the create_POA method, as a member of the Policy List
parameter.

See the sections “RTCORBA::RTORB” and “RTCORBA::ThreadpoolId” for more
information.

IDL

interface ThreadpoolPolicy : CORBA::Policy {
readonly attribute ThreadpoolId threadpool;
};

VisiBroker-RT for C++ Programmer’s Reference 225

Pluggable Transport
Interface Classes
This chapter describes the classes of the Pluggable Transport Interface
provided by VisiBroker-RT for C++. For information on how to implement
support for a transport protocol via the VisiBroker Pluggable Transport
Interface, see the chapter "VisiBroker Pluggable Transport Interface" in the
Programmers Guide.

VISPTransConnection

class VISPTransConnection

This class is the abstract base class for a connection class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol.

Each instance of the derived class will represent a single connection
between a server and a client. VisiBroker will request instances of this class
be created (via the corresponding factory class, see
“VISPTransConnectionFactory”) on both the client and server side of the ORB,
whenever a new connection is required.

Include file
The vptrans.h file should be included to use this class.

VISPTransConnection methods

virtual void close() = 0;

To be implemented by the derived connection class. This method closes the
connection in an orderly fashion. This method must be able to close the
connection from either the client- or the server-side of a connection.

virtual void connect(CORBA::ULongLong _timeout) = 0;

To be implemented by the derived connection class. This method will be
called by the client-side ORB, and must communicate with the remote
peer’s ‘Listener’ instance to setup a new connection on the server-side.

The function does not return any error code, but should throw exceptions if
any transport layer errors occur. Any exception may be thrown, including a
CORBA User Exception, as the exception will be thrown back to the client
CORBA application. CORBA::COMM_FAILURE is one possible exception that
could be thrown.

The timeout value is in specified in milliseconds. A value of 0 means no
timeout (block forever), and this is the default value, which is used unless
the timeout is set through the VisiBroker policy system. If the transport
does not support timeouts on connect, it still can be used successfully. In

226 VisiBroker-RT for C++ Programmer’s Reference

this case the connect call must always block until the connection is
established or has failed.

virtual void flush() = 0;

To be implemented by the derived connection class. If this transport buffers
data, this method should immediately send all data buffered for output, and
block until the data is sent. Otherwise, there is nothing to be done and it can
return immediately.

virtual IOP::ProfileValue_ptr getPeerProfile() = 0;

To be implemented by the derived connection class. This method should
return a copy of the Profile describing the peer endpoint used in this
connection. The copy must be created on the heap and the caller is
responsible for releasing the used memory. The Profile does not describe the
actual connection for this instance, but the Profile of the ‘Listener’ endpoint
used during the ‘connect’ call.

virtual CORBA::Long id() = 0;

To be implemented by the derived connection class. This method must
return a unique number for each connection instance. The ID only needs to
be unique for this transport. It is used to lookup/locate a connection
instance during request dispatching for this transport.

virtual CORBA::Boolean isBridgeSignalling() = 0;

To be implemented by the derived connection class. This method is used to
indicate to the ORB which worker thread ’cooling’ strategy is to be used. If
the method returns 0 (FALSE), it means that the protocol plugin itself is
going to handle the re-reading of the connection after a request has been
read. This is only possible if the plugin is capable of doing a blocking read
with timeout on the protocol endpoint.

If it cannot or chooses not to, this method should return 1 (TRUE), and the
transport bridge will notify the thread if another request becomes available
or the when the timeout is reached.

Note that thread cooling only occurs if a cooling time is configured for that
protocol instance.

virtual CORBA::Boolean isConnected() = 0;

To be implemented by the derived connection class. This method should
return 1 (TRUE), if the remote peer is still connected. If the connection was
closed by the peer or any error condition exists that prevents the use of this
connection, it must return 0 (FALSE).

virtual CORBA::Boolean isDataAvailable() = 0;

To be implemented by the derived connection class. This method should
return 1 (TRUE), if data is ready to be read from the connection. Otherwise,
it should return 0 (FALSE).

Parameter Description
_timeout Timeout value to use, in milliseconds. 0 indicates no

timeout (block forever).

VisiBroker-RT for C++ Programmer’s Reference 227

virtual CORBA::Boolean no_callback() = 0;

To be implemented by the derived connection class. This method indicates
whether a connection of this transport can be used to reverse the client/
server setup and call back to a servant in the client code. It should return 0
(FALSE) if it can not, which will cause the ORB to create a new connection
for this kind of call, or 1 (TRUE) if it can.

This feature is provided to support Bi-Directional IIOP, that was introduced
in GIOP-1.2. See the CORBA specification for details.

virtual void read(CORBA::Boolean _isFirst,
CORBA::Boolean _isLast, char* _data, CORBA::ULong
_offset, CORBA::ULong _length, CORBA::ULongLong
_timeout)= 0;

To be implemented by the derived connection class. This method reads data
from the connection. It does not return any error code, but must signal
transport related errors by throwing exceptions.

The arguments describe a byte array with a given length that needs to be
filled. This function must either fill the complete byte array successfully,
timeout, or throw an exception.

The timeout parameter’s value defaults to 0 unless the user sets it through
the VisiBroker QoS policies. A value of 0 indicates no timeout, and hence
that the read should block forever waiting for data. Therefore, if this
transport does not support timeouts on read/write, it still can be used
successfully. In this case the read call must always block until all data has
arrived.

virtual void setupProfile(const char* prefix,
VISPTransProfileBase_ptr peer) = 0;

To be implemented by the derived connection class. This method is used to
tell a newly created client-side connection object what peer it should try to
connect to in later steps. (When connect() is called.)

The given base class should be cast to the Profile class type of the particular
transport and all member data in the connection should be initialized from

 Parameter Description
_isFirst TRUE if this is the first time data is being read from the

connection.
_isLast TRUE if this is the last time data is being read from the

connection.
_data Byte array to read data into.
_offset Offset into the array at which to start storing the read

data.
_length The number of bytes of data to be read.
_timeout Timeout value to use, in milliseconds. 0 indicates no

timeout (block forever).

228 VisiBroker-RT for C++ Programmer’s Reference

that instance. A prefix string is also passed, for property lookup, in case
additional property parameters need to be read.

virtual CORBA::Boolean waitNextMessage(CORBA::ULong
_timeout) = 0;

To be implemented by the derived connection class. This method should
block the calling thread until either data has arrived on this connection or
the given timeout (in milliseconds) has expired. It should return 1 (TRUE) if
data is available, or 0 (FALSE) if not.

Note that a value of 0 for the _timeout parameter should never occur (as in
this case the ORB should not call this method). Therefore receiving this
value should be handled as an error, perhaps by logging an error message.

virtual void write(CORBA::Boolean _isFirst,
CORBA::Boolean _isLast, char* _data, CORBA::ULong
_offset, CORBA::ULong _length, CORBA::ULongLong
_timeout)= 0;

To be implemented by the derived connection class. This method sends
data through the connection to the remote peer. It does not return any
error code, but must signal transport related errors by throwing exceptions.

The arguments describe a byte array with a given length that needs to be
sent. This function must either send the complete byte array successfully,
timeout, or throw an exception.

The timeout parameter’s value defaults to 0 unless the user sets it through
the VisiBroker QoS policies. A value of 0 indicates no timeout, and hence
that the write should block forever waiting for data. Therefore, if this
transport does not support timeouts on read/write, it still can be used
successfully. In this case the write call must always block until all data has
arrived.

Parameter Description
prefix String prefix of the form

"vbroker.se.<SE_name>.scm.<SCM_name>" that the
method can use to read any protocol-specific VisiBroker
properties that may have been set to configure this
instance.

peer Profile for the Listening endpoint that this connection
will connect to. Given as an instance of this protocol’s
Profile class, passed as a pointer to the base
VISPTransProfile class.

Parameter Description
_timeout Maximum amount of time to wait for a message (in

seconds). 0 means wait forever.

 Parameter Description
_isFirst TRUE if this is the first time data is being sent through

the connection.
_isLast TRUE if this is the last time data is being sent through the

connection.
_data Byte array of data that needs ot be sent.
_offset Offset into the array at which to start storing the read

data.
_length The number of bytes of data to be sent.
_timeout Timeout value to use, in milliseconds. 0 indicates no

timeout (block forever).

VisiBroker-RT for C++ Programmer’s Reference 229

VISPTransConnectionFactory

class VISPTransConnectionFactory

This class is the abstract base class for a connection factory class that must
be implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol.

A singleton instance of the derived class is registered with VisiBroker, via
the VISPTransRegistrar class, described on page 14-12. The ORB calls the
connection factory object to create instances of the connection class of the
associated transport. The connection class is the corresponding class
derived from class “VISPTransConnection”.

Include file
The vptrans.h file should be included to use this class.

VISPTransConnectionFactory methods

VISPTransConnection_ptr create(const char* prefix)

To be implemented by the derived connection factory class. This method
creates a new instance of the corresponding connection class and returns
the pointer to it cast to the base class type. The caller is responsible for the
destruction of the instance when it is no longer required.

VISPTransListener

class VISPTransListener

This class is the abstract base class for a listener factory that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol.

Instances of the derived class are created each time a Server Engine is
created that includes Server Connection Managers (‘SCMs’) that specify the
particular transport protocol. One instance is created per SCM instance that
specifies the protocol.

The listener instances are used by the server-side ORB to wait for incoming
connections and requests from clients. New connections and requests on
existing connections are signalled by the listener to the ORB via the
Pluggable Transport Interface’s Bridge class (see “VISPTransBridge”).

When a request is received on an existing connection, the connection goes
through a ‘Dispatch Cycle’. The Dispatch Cycle starts when the connection
delivers data to the transport layer. In this initial state, the arrival of this
data must be signalled to the ORB via the Bridge and then the Listener
ignores the connection until the Dispatch process is completed (in the mean

Parameter Description
prefix String prefix of the form

"vbroker.se.<SE_name>.scm.<SCM_name>" that the
method can use to read any protocol-specific VisiBroker
properties that may have been set to configure this
connection factory.

230 VisiBroker-RT for C++ Programmer’s Reference

time, the connection is said to be in the ‘dispatch state’). The connection is
returned to the initial state when the ORB makes a call to the Listener’s
completedData() method. During the dispatch state the ORB will read
directly from the connection until all requests are exhausted, avoiding any
overhead incurred by the Bridge-Listener communication.

In most cases, the transport layer uses blocking calls that wait for new
connections. In order to handle this situation, the Listener should be made a
subclass of the class VISThread and start a separate thread of execution
that can be blocked without holding up the whole ORB. (See the MQ
example transport.)

Include file
The vptrans.h file should be included to use this class.

VISPTransListener methods

virtual void completedData(CORBA::Long id) = 0;

To be implemented by the derived listener class. This method is called when
the ORB has completed reading a request from the connection with the
given id and wants the Listener once again to signal any new incoming
requests on that connection (via the Bridge).

virtual void destroy() = 0;

To be implemented by the derived listener class. This method instructs the
Listener instance to tear down its endpoint and close all related active
connections.

virtual IOP::ProfileValue_ptr getListenerProfile() = 0;

To be implemented by the derived listener class. This method should return
the Profile describing the Listener instance’s endpoint on this transport. The
returned Profile should be a copy on the heap and the caller (the ORB) takes
over memory management of it.

virtual CORBA::Boolean isDataAvailable(CORBA::Long id)
= 0;

To be implemented by the derived connection factory class. This method
should return 1 (TRUE), if the connection with the given Id has data ready
to be read. Returns 0 (FALSE) otherwise. Normally the call should just be
forwarded to the transport layer to find out.

virtual void setBridge(VISPTransBridge* up) = 0;

To be implemented by the derived listener class. This method establishes
the ‘link’ to the Pluggable Transport Bridge instance to be used by this

Parameter Description
id Id of the connection that may once again be listened

on.

Parameter Description
id Id of the connection that should be queried to see if

data is available.

VisiBroker-RT for C++ Programmer’s Reference 231

Listener instance. The pointer it passes to the Listener should be stored to
allow ‘upcalls’ to be made into ORB when necessary.

VISPTransListenerFactory

class VISPTransListenerFactory

This class is the abstract base class for a listener factory class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol.

A singleton instance of the derived class is registered with VisiBroker, via
the VISPTransRegistrar class. The ORB calls this object to create instances
of the listener class of the associated transport. The listener class is the
corresponding class derived from class VISPTransListener, as described in
the section “VISPTransListener”.

Include file
The vptrans.h file should be included to use this class.

VISPTransListenerFactory methods

VISPTransListener_ptr create(const char* propPrefix)

To be implemented by the derived listener factory class. This method
creates a new instance of the corresponding listener class and returns the
pointer to it cast to the base class type. The caller (the ORB) is responsible
for the destruction of the instance when it is no longer required.

VISPTransProfileBase

class VISPTransProfileBase :
public GIOP::ProfileBodyValue,
public CORBA_DefaultValueRefCountBase

This class is the abstract base class for a Profile class that must be
implemented for each transport protocol that is to be plugged in to

Parameter Description
up Pointer to Pluggable Transport Bridge instance that the

Listener instance should use to communicate with the
ORB.

Parameter Description
propPrefix String prefix of the form

"vbroker.se.<SE_name>.scm.<SCM_name>" that the
method can use to read any protocol-specific VisiBroker
properties that may have been set to configure the
listener instance or the particular listener instance that
is being created.

Note that the factory can pass the prefix into the
constructor of the listener instance it is creating, to
allow it to read properties itself. This would require the
derived listener class to have a constructor that takes
the prefix as a parameter.

232 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker, to allow VisiBroker to work with that particular transport
protocol.

This class provides the functionality to convert between a transport specific
endpoint description and an CORBA IOP based IOR that can be exchanged
with other CORBA implementations. It is also used during the process of
binding a client to a server, by passing a ProfileValue to a ‘parsing’ function
that has to return TRUE or FALSE, to determine whether a particular IOR is
usable for this transport or not.

An instance of the derived Profile class is frequently passed to functions via
a pointer to its base class type. In order to support safe runtime
downcasting with any C++ compiler, a ‘_downcast’ function must be
provided that can test if the cast is legal or not. See the ‘MQ’ example code
for an example.

Include file
The vptrans.h file should be included to use this class.

VISPTransProfileBase methods

static GIOP::ObjectKey* convert(const
PortableServer::ObjectId& seq);

Converts octet sequence representation of an Object Key into the in-
memory representation.

void object_key(GIOP::ObjectKey_ptr k);

Set the Object Key for this Profile instance.

const GIOP::ObjectKey_ptr object_key() const;

Get the Object Key for this Profile instance.

void version(const GIOP::Version& v);

Set the GIOP version for this Profile.

GIOP::Version& version();

Get the GIOP version of this Profile. const GIOP::Version& version() const; Get
the GIOP version of this Profile.

static const VISValueInfo& _info();

Get the VisiBroker ValueInfo for this Profile type.

Parameter Description
seq Octet sequence version of Object Key, to be converted

into in-memory representation.

Parameter Description
k Object key

Parameter Description
v GIOP version.

VisiBroker-RT for C++ Programmer’s Reference 233

VISPTransProfileBase members

static const VISValueInfo& _stat_info;

Stores the VisiBroker ValueInfo for this particular Profile type.

VISPTransProfileBase base class methods

IOP::ProfileValue_ptr copy()

To be implemented by the derived listener factory class. This method should
make an exact copy on the free store and return a pointer to it. It is good
coding practice to use the copy constructor inside of this function.

CORBA::Boolean matchesTemplate(IOP::ProfileValue_ptr
body)

To be implemented by the derived Profile class. This method should return 1
(TRUE) if there is an IOR in the given data, that can be used to connect
through this transport.

Otherwise return 0 (FALSE).

IOP::ProfileId tag()

To be implemented by the derived Profile class. This method should return
the unique tag value for this Profile.

IOP::TaggedProfile* toTaggedProfile()

To be implemented by the derived Profile class. This method should return a
tagged (stringified) Profile instance created with the values read from this
instance’s member data.

static VISPTransProfileBase*
_downcast(CORBA::ValueBase* vbptr);

To be implemented by the derived Profile class. Function to downcast a base
class pointer to an instance of this Profile class.

virtual void* _safe_downcast(const VISValueInfo &info)
const;

To be implemented by the derived listener factory class. Virtual method
called by ORB during downcast, to check type info data.

Parameter Description
body Profile to be checked, to see if it can be used by this

transport.

Parameter Description
vbptr Profile instance passed as base Value type pointer.

Parameter Description
info VisiBroker Value Info for this Profile type.

234 VisiBroker-RT for C++ Programmer’s Reference

VISPTransProfileFactory

class VISPTransProfileFactory

This class is the abstract base class for a Profile factory class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol.

A singleton instance of the derived class is registered with VisiBroker, via
the VISPTransRegistrar class. The ORB calls this object to create instances
of the Profile class of the associated transport. The Profile class is the
corresponding class derived from class VISPTransProfileBase, as described
in the section “VISPTransProfileBase”.

Include file
The vptrans.h file should be included to use this class.

VISPTransProfileFactory methods

IOP::ProfileValue_ptr create(const IOP::TaggedProfile&
profile)

Read the tagged IOR and create a Profile describing a Listener endpoint.

CORBA::ULong hash(VISPTransProfileBase_ptr prof)

Support the optimized storage of profiles in a hashed lookup table by
calculating a hash number for the given instance. Return 0 if you do not
provide hash values.

IOP::ProfileId getTag()

Return the unique Profile Id tag for the type of Profile created by this
factory.

VISPTransBridge

class VISPTransBridge

This class provides a generic interface between the transport classes and
the ORB. It provides methods to signal various events occuring in the
transport layer.

Include file
The vptrans.h file should be included to use this class.

Parameter Description
profile CDR encoded IOR to be read.

Parameter Description
prof Profile instance to produce hash value for.

VisiBroker-RT for C++ Programmer’s Reference 235

VISPTransBridge methods

CORBA::Boolean addInput(VISPTransConnection_ptr con)

Send a connection request to the ORB through the bridge, by passing a
pointer to the Connection instance representing the Listener endpoint. The
returned flag signals whether the ORB has accepted the new connection
(returns 1 (TRUE)) or refused it (returns 0 (FALSE)). The latter might
happen due to resource constraints or due to a restriction on connections
(set up through the property system).

void signalDataAvailable(CORBA::Long conId)

Passes the connection id to the ORB of a connection that just got new data
from the transport layer. This will start the dispatch cycle for incoming
requests.

void closedByPeer(CORBA::Long conId)

Tell the ORB that the connection with the given id was closed by the remote
peer.

VISPTransRegistrar

class VISPTransRegistrar

This class must be used to register a new transport with the ORB. The
protocol name string given during registration is used as identifier of this
transport and must be unique in the scope of that ORB. It is also used as a
prefix in the name string of properties related to this transport.

Include file
The vptrans.h file should be included to use this class.

VISPTransRegistrar methods

static void addTransport(const char* protocolName,
VISPTransConnectionFactory*connFac,

Parameter Description
con Connection object representing the Listener endpoint

wish to connect to.

Parameter Description
conId Connection Id of connection want to indicate data is

available on.

Parameter Description
conId Connection Id of connection want to indicate was closed

by the remote peer.

236 VisiBroker-RT for C++ Programmer’s Reference

VISPTransListenerFactory* listFac,
VISPTransProfileFactory* profFac)

Register the protocol name string and the three Factory instances used to
create specific classes for this transport. This method is static and can
therefore be called at any time during the initialization of the ORB.

Parameter Description
protocolName Name to be used to identify this transport protocol.
connFac Pointer to singleton instance of connection factory.
listFac Pointer to singleton instance of Listener factory.
profFac Pointer to singleton instance of Profile factory.

VisiBroker-RT for C++ Programmer’s Reference 237

VisiBroker Logging Classes
This chapter describes the VisiBroker Logging classes. Read the VisiBroker
Logging chapter in the VisiBroker-RT for C++ Programmer’s Guide before
using these classes.

Introduction
VisiBroker-RT for C++ provides a logging mechanism which allows
applications to log messages and have them directed, via configurable
logging forwarders, to an appropriate destination or destinations. The ORB
itself uses this mechanism for the output of any error, warning or
informational messages.

VisiBroker Logging employs one or more Logger objects, that applications
(including the ORB) may log messages to. When a message is logged to a
Logger, it is queued rather than being output by the calling thread.

Each Logger has one or more Forwarders associated with it: application-
definable pieces of code that read the queued messages and forward them
to desired destinations such as standard error, a file or over a network. All
the Forwarders associated with a given Logger run on a single Forwarder
Thread. The priority of the Forwarder Thread is configurable.

However, forwarding is not enabled when a Logger is created. Messages
logged before forwarding is enabled are queued until it is enabled. This
allows messages to be logged before the Logger or all of the output
destinations have been fully configured (for example during static
initialization of C++ constructors.)

The ORB uses a special Logger instance (the ‘Default Logger’), which is
created automatically the first time the ORB logs a message to it.
Applications can log messages to the Default Logger as well, to integrate
their logging output with that of the ORB, or they can create one or more
other Loggers, to log messages independently. The ‘standard error’
iostream is the default destination for messages logged to the Default
Logger.

The following interfaces and classes are described in the sections that
follow:
• VISLogArgs

• VISLogArgsType, VISLogInteger, VISLogString, VISLogBoolean

• VISLogApplicationFields

• VISLogger

• VISLoggerForwarder

• VISLoggerManager

• VISLogMessage

• VISLoggerStaticInfo

Include file
To use any of the VisiBroker Logging features described in this chapter, the
application should include the file vlogger.h, which is one of the include
files supplied with VisiBroker.

238 VisiBroker-RT for C++ Programmer’s Reference

VISLogArgs

class VISLogArgs;

class VISLogArgsType;
class VISLogInteger : public VISLogArgsType;
class VISLogString : public VISLoogArgsType

The VISLogArgs class is used to pass a set of arguments as part of a
message logged through the VisiBroker Logging mechanism. The log
method of the VISLogger class takes a pointer to a VISLogArgs object as a
parameter (which may be null.) The same pointer value will be passed to
each VISLoggerForwarder that that message is forwarded to - either as a
field of the VISLogMessage structure given as a parameter of the
forward_message method or as a parameter to the handle_memory_failure
method.

Note that the VISLogger that the pointer to a VISLogArgs object is passed
to takes ownership of that VISLogArgs instance, and destroys it after it has
been used by all the VISLoggerForwarder instances associated with that
VISLogger.

VISLogArgs Methods

VISLogArgs(VISLogArgsType *param1,
VISLogArgsType *param2 = 0,
VISLogArgsType *param3 = 0,
VISLogArgsType *param4 = 0,
VISLogArgsType *param5 = 0,
VISLogArgsType *param6 = 0,
VISLogArgsType *param7 = 0,
VISLogArgsType *param8 = 0,
VISLogArgsType *param9 = 0,
VISLogArgsType *param10 = 0);

The VISLogArgs constructor is used to create a new VISLogArgs instance,
that may contain between one and ten arguments. Each argument is passed
in as a parameter to the constryctor, and may be of any type derived from
the VISLogArgsType base class. Integer, String and Boolean argument
types are provided. See the sub-sections below.

Note that the VISLogArgs object takes ownership of the arguments that are
passed in to its constructor. It, and the arguments, are destroyed by the
VISLogger that it is passed into, after it has been used by all the
VISLoggerForwarders associated with that VISLogger.

VISLogArgsType

class VISLogArgsType;

enum Type { INTEGER, STRING, BOOLEAN };

The VISLogArgsType class is the base class for the different argument types
that may be stored in a VISLogArgs object.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to associate this

POA with.

VisiBroker-RT for C++ Programmer’s Reference 239

VISLogArgsType Methods

VISLogArgsType(Type type);

The VISLogArgsType constructor is called as a base class initializer by the
constructor of each of the particular Log Argument types : VISLogInteger,
VISLogString and VISLogBoolean. The type parameter is set to the
appropriate value of the VISLogArgsType::Type enumeration.

Type data_type();

Returns the particular type of this Log Argument, as a value of the
VISLogArgsType::Type enumeration.

VISLogInteger

class VISLogInteger : public VISLogArgsType;

The VISLogInteger class is use to store an integer value as part of a
VISLogArgs object, that canbe used as part of a message logged via a
VISLogger.

VISLogInteger Methods

VISLogInteger(CORBA::Long integer);

The VISLogInteger constructor takes an integer value as a parameter. This
is the value that the VISLogInteger instance stores.

CORBA::Long integer_value();

Returns the integer value stored in the VISLogInteger instance.

VISLogString

class VISLogString : public VISLogArgsType;

The VISLogString class is use to store a string value as part of a VISLogArgs
object, that can be used as part of a message logged via a VISLogger.

VISLogString Methods

VISLogString(const char * string, int destroy_flag = 0
);

The VISLogString constructor takes a string value as a parameter. This is
the value that the VISLogString instance stores. The destroy flag
determines whether the VISLogString copies the passed in string (default)

Parameter Description
type Type of the particular Log Argument

Parameter Description
integer Integer value to store in the VISLogInteger instance

240 VisiBroker-RT for C++ Programmer’s Reference

or takes ownership of the passed in copy and destroys it after it is no longer
needed for logging.

const char* string_value();

Returns a pointer to the string value stored in the VISLogString instance.

VISLogBoolean

class VISLogBoolean : public VISLogArgsType;

The VISLogBoolean class is use to store a boolean value as part of a
VISLogArgs object, that canbe used as part of a message logged via a
VISLogger.

VISLogBoolean Methods

VISLogBoolean(const CORBA::Boolean boolean);

The VISLogBoolean constructor takes a boolean value as a parameter. This
is the value that the VISLogBoolean instance stores.

CORBA::Boolean boolean_value();

Returns the boolean value stored in the VISLogBoolean instance.

VISLogApplicationFields

class VISLogApplicationFields;

The VISLogApplicationFields class is a base class provided to allow an
application to pass any additional information it wants as part of a logged
message.

The log method of the VISLogger class takes a pointer to a
VISLogApplicationFields object as a parameter (which may be null.) The
same pointer value will be passed to each VISLoggerForwarder that that
message is forwarded to - either as a field of the VISLogMessage structure
given as a parameter of the forward_message method or as a parameter to
the handle_memory_failure method.

To pass additional information with a log message, an application derives a
class from the VISLogApplicationFields class, and passes a pointer to an
instance of this derived class as a parameter when it logs messages.

Note that the VISLogger that the pointer to a VISLogApplicationFields object
is passed to takes ownership of that VISLogApplicationFields instance, and

Parameter Description
string String value to store in the VISLogInteger instance.
destroy_flag Flag indicating whether the VISLogString copies the

passed in string (default) or takes ownership of the
passed in copy and destroys it is no longer needed for
logging.

Parameter Description
boolean Boolean value to store in the VISLogBoolean instance.

VisiBroker-RT for C++ Programmer’s Reference 241

destroys it after it has been used by all the VISLoggerForwarder instances
associated with that VISLogger.

VISLogApplicationFields Methods

VISLogApplicationFields(CORBA::Long type_id);

The VISLogApplicationFields constructor is called as a base class initializer
by the constructor of a particular application-defined application fields class.
The type id is an application-defined integer value, that can be used to
distinguish one application fields class instance from another.

CORBA::Long type_id();

Returns the application-assigned integer value associated with a particular
derived application fields class type.

VISLogger

class VISLogger : public VISThread;

VISLogger class instances represent individual VisiBroker Logger instances.
A new VISLogger instance can be explicitly created by the application by
calling the get_logger method of the VISLoggerManager class. A Default
Logger, with the name ’DefaultLogger’ is automatically created by the ORB
and used to log ORB events.

VISLogger Methods

void log(const char *source_name,
VISLogLevellevel,
const char *message_key,
VISLogArgs *message_args,
const char *source_thread_identifier,
const char *location_code,
VISLogApplicationFields * application_fields);

Log a message via this VisiBroker Logger instance. The caller continues to
own the source_name, message_key, source_thread_identifier and
location_code strings, and the Logger makes its own copies of them. But
the Logger takes ownership of the message_args and application_fields
objects, if either or both is supplied.

Parameter Description
type_id Application-assigned integer value, that can be used to

distinguish instances of a particular type of derived
application fields class.

Parameter Description
source_name Application or application component that is logging the

message.
level Log Level of the message. Messages logged by the ORB

use this field to indicate one of four levels.
message_key What kind of message this is. The ORB uses a fixed set

of message keys, so that there is a well known set of
message types.

242 VisiBroker-RT for C++ Programmer’s Reference

VISLoggerStaticInfo& static_info();

Return a pointer to the VISLoggerStatic information for this VISLogger
instance.

void static_info(VISLoggerStaticInfo& static_info);

Set the VISLoggerStatic information for this VISLogger instance.

void add_forwarder(VISLoggerForwarder_ptr forwarder);

Register an application-defined VISLoggerForwarder with this VISLogger
instance. The VISLoggerForwarder will be added to the list of already
installed Forwarders that are associated with this VISLogger instance.

void remove_forwarder(VISLoggerForwarder_ptr forwarder
);

Unregister an application-defined VISLoggerForwarder instance previously
registered with this VISLogger instance.

void remove_default_forwarder();

Stop the Default Forwarder from being executed for this VISLogger.

void forwarder_priority(CORBA::Short priority);

Set the Real-Time CORBA Priority that the Forwarder thread associated with
this VISLogger will run at. Ignored if set after forwarding is enabled (which
happens automatically at the time of ORB initialization in the case of the
Default Logger.)

message_args VISLogArgs pointer. May be null. The Logger takes
ownership of the object.

source_thread_
identifier

Thread that logged this message. If this field is left null,
the ORB will provide a default value.

location_code Location in application code that is logging this
message on this occasion. For ORB log messages, this
is the source code file name and line number of the
calling line of ORB code (produced using the ANSI C
FILE and LINE macros.)

application_fields VISLogApplicationFields pointer. May be null. The
Logger takes ownership of the object.

Parameter Description
static_info VISLoggerStatic information to apply to the VISLogger.

Parameter Description
forwarder Pointer to the VISLoggerForwarder instance to register

with this VISLogger.

Parameter Description
forwarder Pointer to the VISLoggerForwarder instance to

unregister.

Parameter Description
priority Real-Time CORBA Priority value to run the Forwarder

thread associated with this Logger at.

Parameter Description

VisiBroker-RT for C++ Programmer’s Reference 243

CORBA::Short forwarder_priority();

Get the Real-Time CORBA Priority that the Forwarder thread associated with
this Logger is/will be running at.

void enable_forwarding();

Enable the forwarding of logged messages to all the Forwarders currently
registered with this Logger. At this time the Forwarder thread for this
Logger is created. Occurs automatically during ORB_init for the Default
Logger, but may still be forced to occur earlier by calling this method.

VISLoggerForwarder

class VISLoggerForwarder;

This class is used as a base class for Logger Forwarder implementations
that an application wished to create. The application inherits from this class,
overrides the implementation of the methods described below, and registers
an instance of the derived class with a VISLogger in order to control how
that VISLogger forward logged messages.

VISLoggerForwarder Methods

virtual void forward_message(VISLogMessage * message
);

Forward the message that is passed as a VISLogMessage parameter. Note
that the VISLogger keeps ownership of the VISLogMessage and all its
members, so that the Forwarder must copy any data that it wishes to retain
or pass to a function or method that wil retain it.

virtual void handle_memory_failure(
CORBA::ULongLongmessage_identifier, CORBA::ULongLong
message_creation_time, VISLogLevellevel,
const char *source_host,
const char *source_name,
const char *location_code,
CORBA::ULongsource_process_identifier,
const char *source_thread_identifier,
VISLogApplicationFields * application_fields,
const char *message_key,
VISLogArgs *message_args);

Called when a memory allocation failure occurs at any point in the queuing
of a logged message. In this case the individual pieces of input information
used to assemble a VISLogMessage structure are passed as parameters.
This method is called in the context of the thread that was logging the
message (from inside the call to VISLogger::log.) The parameters are
owned by the caller, and the implementation of the method probably should
not attempt to copy them, given that this method is only called when a

Parameter Description
message Pointer to a VISLogMessage structure that stores the

information for a logged message.

244 VisiBroker-RT for C++ Programmer’s Reference

memory allocation failure has occurred. Some of the parameters may be
null pointers, depending on when the memory allocation failure occurred.

VISLoggerManager

class VISLoggerManager;

The VISLoggerManager class has methods to allow the management of
VISLogger instances (creation/destruction) and to control the level of
logging output created by different components of VisiBroker.

VISLoggerManager Methods

static VISLoggerManager_ptr instance();

Return a pointer to the singleton VISLoggerManager instance, which is
created upon first use (the first time this method is called.)

VISLogger_ptr get_logger(const char * logger_name,
CORBA::Boolean create_flag = 1);

Return a pointer to a Logger with the specified name. If the Logger does not
already exist, and the create_flag is true (default behavior) then a Logger of
that name is created.

Parameter Description
message_identifer Message sequence number, stating at one and

incrementing for each message logged to that Logger.
message_creation_time Timestamp, taken from the system clock at the time the

message was logged (rather than forwarded.) Held in the
TimeBase::TimeT format: one unit is 100 nanoseconds or
one tenth of a microsecond.

level Log Level of the message. Messages logged by the ORB
use this field to indicate one of four levels.

source_host From VISStaticInfo for that Logger.
source_name Application or application component that is logging the

message.
location_code Location in application code that is logging this message

on this occasion. For ORB log messages, this is the source
code file name and line number of the calling line of ORB
code (produced using the ANSI C_FILE and _LINE
macros.)

source_process_identi
fier

From VISStaticInfo for that Logger.

source_thread_identif
ier

Thread Id of thread that message is logged from

application_fields VISLogApplicationFields pointer. May be null. The Logger
takes ownership of the object.

message_key Message key parameter passed in to log call.
message_args VISLogArgs parameter passed in to log call.

Parameter Description
logger_name Name of the Logger to look up/create.
create_flag Choose whether a Logger of that name will be created if

it doesn’t currently exist.

VisiBroker-RT for C++ Programmer’s Reference 245

void destroy_logger(const char * logger_name);

Destroy the specified Logger. Blocks until all the messages currently queued
for forwarding have been forwarded.

void ORB_log_level(VISLogLevel level);

Set the maximum log level that is logged from the main, ORB component of
VisiBroker.

VISLogLevel ORB_log_level();

Get the maximum log level that is logged from the main, ORB component of
VisiBroker.

void POA_log_level(VISLogLevel level);

Set the maximum log level that is logged from the POA component of
VisiBroker.

VISLogLevel POA_log_level();

Get the maximum log level that is logged from the POA component of
VisiBroker.

void OSAgent_log_level(VISLogLevel level);

Set the maximum log level that is logged from the OSAgent component of
VisiBroker.

VISLogLevel OSAgent_log_level();

Get the maximum log level that is logged from the OSAgent component of
VisiBroker.

void LocSvc_log_level(VISLogLevel level);

Set the maximum log level that is logged from the Location Service
component of VisiBroker.

Parameter Description
logger_name Name of Logger to destroy.

Parameter Description
level The maximum log level that is to be logged from the

main, ORB component of VisiBroker.

Parameter Description
level The maximum log level that is to be logged from the

POA component of VisiBroker.

Parameter Description
level The maximum log level that is to be logged from the

OSAgent component of VisiBroker.

Parameter Description
level The maximum log level that is to be logged from the

Location Service component of VisiBroker.

246 VisiBroker-RT for C++ Programmer’s Reference

VISLogLevel LocSvc_log_level();

Get the maximum log level that is logged from the Location Service
component of VisiBroker.

void CosName_log_level(VISLogLevel level);

Set the maximum log level that is logged from the COS Naming Service
component of VisiBroker.

VISLogLevel CosName_log_level();

Set the maximum log level that is logged from the COS Naming Service
component of VisiBroker.

void CosEvent_log_level(VISLogLevel level);

Set the maximum log level that is logged from the COS Event Service
component of VisiBroker.

VISLogLevel CosEvent_log_level();

Get the maximum log level that is logged from the COS Event Service
component of VisiBroker.

void default_forwarder_thread_priority(CORBA::Short
priority);

Set the default Real-Time CORBA Priority that the Forwarder thread of a
Logger will run at if it is not explicitly set on the Logger instance before
forwarding is enabled.

CORBA::Short default_forwarder_thread_priority();

Get the default Real-Time CORBA Priority that the Forwarder thread of a
Logger will run at if it is not explicitly set on the Logger instance before
forwarding is enabled.

VISLogMessage

struct VISLogMessage {
CORBA::ULongLongmessage_identifier;
CORBA::ULongLongmessage_creation_time;
VISLogLevellevel;
const char *source_host;
const char *source_name;

Parameter Description
level The maximum log level that is to be logged from the

Naming Service component of VisiBroker.

Parameter Description
level The maximum log level that is to be logged from the

Event Service component of VisiBroker.

Parameter Description
priority Real-Time CORBA Priority to use as default for the

Forwarder thread priority, if not explicitly configured for
a Logger instance.

VisiBroker-RT for C++ Programmer’s Reference 247

onst char *location_code;
CORBA::ULongsource_process_identifier;
const char *source_thread_identifier;
VISLogApplicationFields * application_fields;
const char *message_key;
VISLogArgs *message_args;

VISLogMessage() {}
VISLogMessage();
};

A data structure that is assembled by the VISLogger when a message is
logged to it, to store all the information associated with that message. When
the message is forwarded, a pointer to the VISLogMessage instance created
for a message is passed in turn to each of the Forwarders associated with
that Logger. The fields have the following meaning.

VISLoggerStaticInfo

struct VISLoggerStaticInfo {
const char * source_host;
CORBA::ULong source_process_identifier;

VISLoggerStaticInfo::VISLoggerStaticInfo();
~VISLoggerStaticInfo();
void operator=(const struct VISLoggerStaticInfo&
info);
};

Parameter Description
message_identifer Message sequence number, stating at one and

incrementing for each message logged to that Logger.
message_creation_time Timestamp, taken from the system clock at the time the

message was logged (rather than forwarded.) Held in the
TimeBase::TimeT format: one unit is 100 nanoseconds or
one tenth of a microsecond.

level Log Level of the message. Messages logged by the ORB
use this field to indicate one of four levels.

source_host From VISStaticInfo for that Logger.
source_name Application or application component that is logging the

message.
location_code Location in application code that is logging this message

on this occasion. For ORB log messages, this is the source
code file name and line number of the calling line of ORB
code (produced using the ANSI C FILE and LINE
macros.

source_process_
identifier

From VISStaticInfo for that Logger.

source_thread_
identifier

Thread Id of thread that message is logged from.

application_fields VISLogApplicationFields pointer. May be null. The Logger
takes ownership of the object.

message_key Message key parameter passed in to log call.
message_args VISLogArgs parameter passed in to log call.

248 VisiBroker-RT for C++ Programmer’s Reference

A data structure that holds information that is common to all messages
logged by a Logger. May be read, modified and set for each Logger
instance. The members have the following significance:

Parameter Description
source_host Defaults to the hostname or dot notation IP address for

the host the Logger is running on. The application may
assign any string value.

source_process_
identifier

Defaults to the Process Id for the process that the
Logger is running in (if running on an OS that uses the
process model, otherwise a null string.) The application
may assign any string value.

VisiBroker-RT for C++ Programmer’s Reference 249

Quality of Service Interfaces
and Classes
This chapter describes the VisiBroker-RT for C++ implementation of the
Quality of Service APIs. See “PortableServer::POA” for information about
creating policies.

CORBA::PolicyManager

class CORBA::PolicyManager

This class is used to set and access policy overrides at the ORB level.

IDL definition

module CORBA {
interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);
void set_policy_overrides(in PolicyList policies,

in SetOverrideType set_add)
raises (InvalidPolicies);

};
};

Methods

PolicyList get_policy_overrides (PolicyTypeSeq ts);

This method returns a policy list containing the policies of the requested
policy types. If the specified sequence is empty (that is, if the length of the
list is zero), all Policies at this scope are returned. If none of the requested
policy types is set at the target PolicyManager, an empty sequence is
returned.

void set_policy_overrides (PolicyList policies,
CORBA::SetOverrideType set_add)

This method updates the current set of policies with the requested list of
policy overrides. Invoking set_policy_overrides with an empty sequence of
policies and a mode of SET_OVERRIDE removes all overrides from a
PolicyManager. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempt
to override any other policy will result in the raising of the
CORBA::NO_PERMISSION exception. If the request would put the set of
overriding policies for the target PolicyManager in an inconsistent state, no
policies are changed or added, and the exception InvalidPolicies is raised.
There is no evaluation of compatibility with policies set within other
PolicyManagers.

Note

The set_policy_overrides() method throws an exception in Messaging, but
doesn’t in CORBA 2.3. The PolicyManager::set_policy_overrides throws
InvalidPolicies.

250 VisiBroker-RT for C++ Programmer’s Reference

CORBA::PolicyCurrent

class CORBA::PolicyCurrent

This class provides access to policies overridden at the thread level and is
defined with operations for querying and applying quality of service values
to a thread. Policies defined at the thread level override any system defaults
or values set at the ORB level but not those at the Object level. The
instance belonging to the current thread is accessible by using
resolve_initial_reference(“PolicyCurrent”) and narrowing down to
PolicyCurrent.

IDL definition

interface PolicyCurrent : PolicyManager, Current {
};

CORBA::Object

class CORBA::Object

The Visibroker implementation of the Quality of Service API allows policies
to be assigned to objects, threads, and ORBs. Policies assigned to Objects
override all other policies.

IDL definition

#pragma prefix "omg.org"
module CORBA {
interface Object {

Policy get_client_policy(in PolicyType type);
Policy get_policy(in PolicyType type);
PolicyList get_policy_overrides(in PolicyTypeSeq types);
Object set_policy_overrides(in PolicyList policies,in

SetOverrideType set_add)
raises (InvalidPolicies);

boolean validate_connection(out PolicyList
inconsistent_policies);

};
};

Methods

CORBA::Policy_ptr get_client_policy(CORBA::PolicyType
type);

Returns the effective overriding Policy for the object reference. The effective
override is obtained by first checking for an override of the given PolicyType
at the Object scope, then at the Current scope, and finally at the ORB

Parameter Description
policies A sequence of references to Policy objects.
set_add Indicates whether these policies should be added

(ADD_OVERRIDE) to any other overrides that already
exist in the PolicyManager, or added to a clean
PolicyManager free of any other overrides
(SET_OVERRIDE).

VisiBroker-RT for C++ Programmer’s Reference 251

scope. If no override is present for the requested PolicyType, the system-
dependent default value for that PolicyType is used. Portable applications
are expected to set the desired “defaults” at the ORB scope since default
Policy values are not specified.

CORBA::Policy_ptr get_policy(CORBA::PolicyType type);

Returns the effective Policy for the object reference. The effective Policy is
the one that would be used if a request were made. This Policy is
determined first by obtaining the effective override for the PolicyType as
returned by get_client_policy.

The effective override is then compared with the Policy as specified in the
IOR. The effective Policy is the intersection of the values allowed by the
effective override and the IOR-specified Policy. If the intersection is empty,
the system exception INV_POLICY is raised. Otherwise, a Policy with a value
legally within the intersection is returned as the effective Policy. The
absence of a Policy value in the IOR implies that any legal value may be
used. Invoking non_existent or validate_connection on an object reference
prior to get_policy ensures the accuracy of the returned effective Policy. If
get_policy is invoked prior to the object reference being bound, the returned
effective Policy is implementation dependent. In that situation, a compliant
implementation may do any of the following: raise the exception
CORBA::BAD_INV_ORDER, return some value for that PolicyType which
may be subject to change once a binding is performed, or attempt a binding
and then return the effective Policy. Note that if the RebindPolicy has a
value of TRANSPARENT, the effective Policy may change from invocation to
invocation due to transparent rebinding.

Note

In the Visibroker implementation, this method gets the Policy assigned to an
Object, thread or ORB.

CORBA::Object set_policy_overrides(const PolicyList& _policies,
CORBA::SetOverrideType _set_add);

This method works as does the PolicyManager method of the same name.
However, it updates the current set of policies of an Object, thread or ORB
with the requested list of Policy overrides. In addition, this method returns a
CORBA::Object whereas other methods of the same name return void.

In CORBA 2.3, CORBA::Object::set_policy_overrides does not throw
exceptions, but it does for Messaging.

CORBA::Boolean validate_connection(PolicyList
inconsistent_policies);

Returns the value TRUE if the current effective policies for the Object will
allow an invocation to be made. If the object reference is not yet bound, a
binding will occur as part of this operation. If the object reference is already
bound, but current policy overrides have changed or for any other reason
the binding is no longer valid, a rebind will be attempted regardless of the
setting of any RebindPolicy override. The validate_connection operation is
the only way to force such a rebind when implicit rebinds are disallowed by
the current effective RebindPolicy. The attempt to bind or rebind may
involve processing GIOP LocateRequests by the ORB. Returns the value
FALSE if the current effective policies would cause an invocation to raise the
system exception INV_POLICY. If the current effective policies are
incompatible, the out parameter inconsistent_policies contains those
policies causing the incompatibility. This returned list of policies is not

252 VisiBroker-RT for C++ Programmer’s Reference

guaranteed to be exhaustive. If the binding fails due to some reason
unrelated to policy overrides, the appropriate system exception is raised.

Messaging::RebindPolicy

class Messaging::RebindPolicy

The Visibroker implementation of RebindPolicy is a complete
implementation of RebindPolicy as defined in the orbos/98-05-05 Messaging
Specification with enhancements to support failover.

The RebindPolicy of an ORB determines how it handles GIOP location-
forward messages and object failures. The ORB handles fail-over/rebind by
looking at the effective policy at the CORBA::Object instance.

The OMG implementation, derived from CORBA::Policy, determines whether
the ORB may transparently rebind once it is successfully bound to a target
server. The extended implementation determines whether the ORB may
transparently failover once it is successfully bound to a target Object,
thread, or ORB.

IDL definition

#pragma prefix "omg.org"

module Messaging {
typedef short RebindMode;
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
interface RebindPolicy CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

}

Policy values

Note

Policies are enforced only after a successful bind.

The OMG Policy values that can be set as the Rebind Policy are:

Policy value Description
TRANSPARENT This policy allows the ORB to silently handle object-

forwarding and necessary reconnection when making a
remote request. This is the least restrictive OMG policy
value.

NO_REBIND This policy allows the ORB to silently handle reopening
of closed connections while making a remote request,
but prevents any transparent object-forwarding that
would cause a change in the client-side effective QoS
policies.

NO_RECONNECT This policy prevents the ORB from silently handling
object-forwards or the reopening of closed connections.
This is the most restrictive OMG policy value.

VisiBroker-RT for C++ Programmer’s Reference 253

The VisiBroker-specific values that can be set as the Rebind Policy are:

Messaging::RelativeRequestTimeoutPolicy

class Messaging::RelativeRequestTimeoutPolicy

The Visibroker implementation of RelativeRequestTimeoutPolicy is a
complete implementation of RelativeRequestTimeoutPolicy as defined in the
orbos/98-05-05 Messaging Specification.

RelativeRequestTimeoutPolicy is used to indicate the relative amount of
time for which a Request may be delivered. After this amount of time the
Request is cancelled. This policy is applied to both synchronous and
asynchronous invocations.

When instances of RelativeRequestTimeoutPolicy are created, a value of
type TimeBase::TimeT is passed to CORBA::ORB::create_policy. This
policy is only applicable as a client-side override.

IDL definition

#pragma prefix "omg.org"

module Messaging {
const CORBA::PolicyType RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;
interface RelativeRequestTimeoutPolicy CORBA::Policy {
readonly attribute TImeBase::TimeT relative_expiry;
};

}

Messaging::RelativeRoundtripTimeoutPolicy

class Messaging::RelativeRoundtripTimeoutPolicy

The Visibroker implementation of RelativeRoundtripTimeoutPolicy is a
complete implementation of RelativeRoundtripTimeoutPolicy as defined in
the orbos/98-05-05 Messaging Specification.

RelativeRoundtripTimeoutPolicy is used to indicate the relative amount of
time for which a Request or its corresponding Reply may be delivered. After
this amount of time the Request is cancelled (if a response has not yet been
received from the target) or the Reply is discarded (if the Request had

Policy value Description
VB_TRANSPARENT This policy extends TRANSPARENT behavior to failover

conditions in the object, thread and ORB. This is the
default policy.

If this policy is set, if a remote invocation fails because
the server object goes down, then the ORB tries to
reconnect to another server using the osagent. The ORB
masks the communication failure and does not throw an
exception to the client.

VB_NOTIFY_REBIND VB_NOTIFY_REBIND behaves as does
VB_TRANSPARENT but throws an exception when the
communication failure is detected. It will try to
transparently reconnect to another object if the
invocation is re-attempted.

VB_NO_REBIND VB_NO_REBIND does no failover. It only allows the
client ORB to reopen a closed GIOP re-connection to the
same server; it does not allow object forwarding of any
kind.

254 VisiBroker-RT for C++ Programmer’s Reference

already been delivered and a Reply returned from the target). This policy is
applied to both synchronous and asynchronous invocations.

When instances of RelativeRoundtripTimeoutPolicy are created, a value
of type TimeBase::TimeT is passed to CORBA::ORB::create_policy. This
policy is only applicable as a client-side override.

IDL definition

#pragma prefix "omg.org"

module Messaging {
const CORBA::PolicyType RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
interface RelativeRoundtripTimeoutPolicy CORBA::Policy {

readonly attribute TImeBase::TimeT relative_expiry;
};

}

QoSExt::DeferBind Policy

class QoSExt::DeferRebindPolicy

By default, the ORB connects to the (remote) object when it receives a
bind() or a string_to_object call.

If set to TRUE, this policy changes this behavior; it causes the ORB to delay
contacting the Object until the first invocation.

IDL definition

#pragma prefix "highlander.com"
module QoSExt {

interface DeferBindPolicy :CORBA::Policy {
 readonly attribute boolean value;

};
};

QosExt::RelativeConnectionTimeoutPolicy

class Messaging::RelativeConnectionTimeoutPolicy

RelativeConnectionTimeoutPolicy is used to indicate the relative amount of
time after which an attempt to connect to the server ORB using one of the
available communication endpoints is aborted. After this amount of time the
connection attempt is aborted. This policy is applied to both synchronous
and asynchronous invocations.

When instances of RelativeConnectionTimeoutPolicy are created, a
value of type TimeBase::TimeT is passed to
CORBA::ORB::create_policy. This policy is only applicable as a client-side
override.

IDL definition

module QoSExt {
interface RelativeConnectionTimeoutPolicy :CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};
};

}

VisiBroker-RT for C++ Programmer’s Reference 255

QoSExt::SmartBind Policy

class QoSExt::SmartBindPolicy

SmartBindPolicy is a local object (i.e. locality constrained) derived from
CORBA::Policy. It is used to control the VisiBroker SmartBinding
optimization. The currently supported values are:

• QosExt::SMARTBIND_OFF

When SmartBindPolicy is set to QosExt::SMARTBIND_OFF, communications
between the VisiBroker client and server will use the local IP LOOPBACK
interface, thereby ignoring any optimization. This option existed with
prior versions of VisiBroker-RT for C++ as a bind option that could be
specified as a parameter to the _ bind method.

• QosExt::SMARTBIND_POA_TRANSPARENT

When SmartBindPolicy is set to QosExt::SMARTBIND_POA_TRANSPARENT, all
co-located invocations (i.e. between VisiBroker clients and servants in
the same address space) are optimized. Using this policy value all POA
policies and states applicable to that CORBA Server are honored.

• QosExt::SMARTBIND_CACHED

When SmartBindPolicy is set to QosExt::SMARTBIND_CACHED, all co-located
invocations (i.e. between VisiBroker clients and servants in the same
address space) are optimized. Using this policy value the servant pointer
is cached during the initial invocation to the CORBA object. Subsequent
requests to this server will use this cached pointer, thereby ignoring all
POA policies and POA states. This policy value provides the highest level
of optimization.

This cached pointer to the servant can be updated by calling _bind. This
may be useful in cases where the servant goes away and the client needs
to update its cached pointer to a new instance of the servant. In that
case, the client application can catch the generated CORBA exception and
call _bind again to update the cached pointer.

If the POA that the servant is activated with was created with a value
other than USE_ACTIVE_OBJECT_MAP_ONLY for the
RequestProcessingPolicy, the SMARTBIND_CACHE behavior will revert to
QosExt::SMARTBIND_POA_TRANSPARENT.

The default value for this policy is QosExt::SMARTBIND_CACHED. This
policy applies to both synchronous and asynchronous invocations.

This policy is only applicable as a client-side override.

IDL definition

module QoSExt {
...
const CORBA::PolicyType SMART_BIND_POLICY_TYPE = 0x48454900;
/* This policy is an extension to the bind_options for the policy
framework. It allows to switch off smart binding on a per client
basis. */
typedef unsigned short SmartBindPolicyValue;
const SmartBindPolicyValue SMARTBIND_OFF = 0;
const SmartBindPolicyValue SMARTBIND_FULLY_TRANSPARENT = 1;
const SmartBindPolicyValue SMARTBIND_POA_TRANSPARENT = 2;
const SmartBindPolicyValue SMARTBIND_CACHED = 3;

interface SmartBindPolicy : CORBA::Policy {
/**

Returns the current setting of the SmartBindPolicy @returns
the setting

256 VisiBroker-RT for C++ Programmer’s Reference

**/
readonly attribute SmartBindPolicyValue value;
};
};

VisiBroker-RT for C++ Programmer’s Reference 257

IOP and IIOP Interfaces
and Classes
This chapter describes the VisiBroker implementation of the key General
Inter-ORB Protocol interfaces and other structures defined by the CORBA
specification. For a complete description of these interfaces, refer to
Chapter 15 of the OMG CORBA/IIOP Specification (Version2.3).

GIOP::MessageHeader

struct MessageHeader

This structure is used to represent information about a GIOP message.

MessageHeader members

CORBA::Char magic[4];

This string should always contain “GIOP”.

Version GIOP_version;

Indicates the version of the protocol being used. This structure contains a
major and minor version number, as shown. The major version should be
set to 1 and the minor version should be set to 2, unless it is an older
version, e.g., VisiBroker 3.x, in which case the minor version should be set
to 0.

struct Version {
CORBA::Octet major;
CORBA::Octet minor;

};

CORBA::Boolean byte_order;

Set to TRUE to indicate that little-endian byte ordering is used in the
message. If set to FALSE, big-endian byte ordering is used in the message.

CORBA::Octet message_type;

Indicates the type of message that follows the header. This should be one of
the following values.

enum MsgType {
Request,
Reply,
CancelRequest,
LocateRequest,
LocateReply,
CloseConnection,
MessageError,
Fragment

};

CORBA::ULong message_size;

Indicates the length of the message that follows this header.

258 VisiBroker-RT for C++ Programmer’s Reference

GIOP::CancelRequestHeader

struct CancelRequestHeader

This structure is used to represent information about a cancel request
message header.

CancelRequestHeader members

CORBA::ULong request_id;

This data member represents the request identifier that is being cancelled.

GIOP::LocateReplyHeader

struct LocateReplyHeader

This structure is used to represent a message that is sent in reply to a
locate request message. Additional data follows this header if the
locate_status is set to OBJECT_FORWARD.

LocateReplyHeader members

CORBA::ULong request_id;

The request identifier of the original request.

LocateStatusType locate_status;

GIOP::LocateRequestHeader

structure LocateRequestHeader

This structure represents a message containing a request to locate an
object.

LocateRequestHeader members

CORBA::ULong request_id;

Represents the request identifier for this message and is used to distinguish
between multiple outstanding messages.

GIOP::TargetAddress target;

Represents the object to be located. The target is a union of three different
things: object key, profile, IOR.

VisiBroker-RT for C++ Programmer’s Reference 259

GIOP::ReplyHeader

struct ReplyHeader {};

This structure represents the reply header of a reply message that is sent to
a client in response to a request message.

Include file
The giop_c.hh file should be included when you use this structure. This file
is already included in corba.h in the installation/include directory.

ReplyHeader members

CORBA::ULong request_id;

Should be set to the same request_id as the request message for which
this reply is associated.

ReplyStatusType reply_status;

Indicates the status of the reply and should be set to one of the following
enum values:

• NO_EXCEPTION
• USER_EXCEPTION
• SYSTEM_EXCEPTION
• LOCATION_FORWARD
• LOCATION_FORWARD_PERM
• NEEDS_ADDRESSING_MODE

IOP::ServiceContextList service_info;

A list of service context information that may be passed from the server to
the client.

GIOP::RequestHeader

struct RequestHeader {};

This structure represents the request header of a request message that is
sent to an object implementation.

Include file
The giop_c.hh file should be included when you use this structure.

RequestHeader members

CORBA::ULong request_id;

A unique identifier used to associate a reply message with a particular
request message.

260 VisiBroker-RT for C++ Programmer’s Reference

CORBA::Boolean response_expected;

Set to FALSE if the request is a oneway operation for which a reply is not
expected. Set to TRUE for operation requests and other requests that
expect a reply.

GIOP::TargetAddress _target;

Represents the object that is the target of the request. The target is a union
of the following three things: object key, profile, and IOR. Object keys are
stored in a vendor-specific format and are generated when an IOR is
created.

CORBA::String_var oper;

Identifies the operation being requested on the target object. This member
is the same as the operator member, except that it is a managed type.

const char *operation;

Identifies the operation being requested on the target object. This member
is the same as the oper member, except that it is not a managed type.

IOP::ServiceContextList service_context;

A list of service context information that may be passed from the client to
the server.

IIOP::ProfileBody

struct ProfileBody;

This structure contains information about the protocol supported by an
object.

module IIOP {
...

struct ProfileBody {
Version iiop_version;
string host;
unsigned short port;
sequence<octet> object_key;
sequence<IOP::taggedCoomponent> components;

}
...

ProfileBody members

Version iiop_version;

Represents the version of IIOP supported.

CORBA::String_var host;

Represents the name of the host where the server hosting the object is
running.

CORBA::UShort port;

Indicates the port number to use for establishing a connection to the server
hosting the object.

VisiBroker-RT for C++ Programmer’s Reference 261

CORBA::OctetSequence object_key;

Object keys are stored in a vendor-specific format and are generated when
an IOR is created.

IIOP::MultiComponentProfile components;

A sequence of TaggedComponents which contain which contain information
about the protocols that are supported.

struct IOR {}

This structure represents an Interoperable Object Reference and is used to
provide important information about object references. Your client
application can create a stringified IOR by invoking the
ORB::object_to_string method described in “char
*object_to_string(CORBA::Object_ptr) = 0;” on page 5-20.

Include file
The giop_c.hh file should be included when you use this structure.

IOR members

CORBA::String_var type_id;

This data member describes the type of object reference that is represented
by this IOR.

TaggedProfileSequence profiles;

This data member represents a sequence of one or more TaggedProfile
structures, which contain information about the protocols that are
supported.

static CORBA::Boolean is_nil(IOP::IOR *i);

This method returns TRUE if the specified pointer is NULL.

IOP::TaggedProfile

struct TaggedProfile

This structure represents a particular protocol that is supported by an
Interoperable Object Reference (IOR).

TaggedProfile members

ProfileID tag;

This data member represents the contents of the profile data and should be
one of the following values.

Value Description
TAG_INTERNET_IOP Indicates the protocol is standard IIOP.
TAG_MUTIPLE_COMPONENTS Indicates the profile data contains a list of ORB services

available using the protocol.

262 VisiBroker-RT for C++ Programmer’s Reference

CORBA_OctetSequence profile_data;

This data member encapsulates all the protocol information needed to
invoke an operation on an IOR.

TAG_VSGN_LOCATOR Indicates that the IOR is an interim, pseudo-object that
is used until the real IOR is received by the osagent.

TAG_LOCAL_IPC_IOP Indicates the protocol is IOP over a local IPC
mechanism.

Value Description

VisiBroker-RT for C++ Programmer’s Reference 263

Marshal Buffer Interfaces
and Classes
This chapter describes the buffer class used for marshalling data to a buffer
when creating an operation request or a reply message. It also describes the
buffer class used for extracting data from a received operation request or
reply message.

CORBA::MarshalInBuffer

class CORBA::MarshalInBuffer : public VISistream

This class represents a stream buffer that allows IDL types to be read from
a buffer and may be used by interceptor methods that your implement. See
“Portable Interceptor Interfaces and Classes for C++” for more information on the
interceptor interfaces.

The CORBA::MarshalInBuffer class is used on the client side to extract the
data associated with a reply message. It is used on the server side to
extract the data associated with an operation request. This class provides a
wide range of methods for retrieving various types of data from the buffer.

This class provides several static methods for testing and manipulating
CORBA::MarshalInBuffer pointers.

A CORBA::MarshalInBuffer_var class is also offered, which provides a
wrapper that automatically manages the contained object.

Include file
The mbuf.h file should be included when you use this class. This file gets
included in corba.h. So, you don’t have to separately include mbuf.h.

CORBA::MarshalInBuffer constructor/
destructor

CORBA::MarshalInBuffer(char *read_buffer, CORBA::ULong
length, CORBA::Boolean release_flag=0, CORBA::Boolean
byte_order = CORBA::ByteOrder);

This is the default constructor.

Parameter Description
read_buffer The buffer where the marshalled data will actually be

stored.
length The maximum number of bytes that may be stored in

read_buffer.
release_flag If set to TRUE, the memory associated with read_buffer

will be freed when this object is destroyed. The default
value is FALSE.

byte_order Set this to TRUE to indicate that little-endian byte
ordering is being used. Set to FALSE to indicate that big-
endian byte ordering is being used.

264 VisiBroker-RT for C++ Programmer’s Reference

virtual ~CORBA::MarshalInBuffer();

This is the default destructor. The buffer memory associated with this object
will be released if the release_flag is set to TRUE. The release_flag may
be set when the object is created or by invoking the release_flag method,
described in “void release_flag(CORBA::Boolean val);”.

CORBA::MarshalInBuffer methods

char *buffer() const;

Returns a pointer to the buffer associated with this object.

void byte_order(CORBA::Boolean val) const;

Sets the byte ordering for this message buffer.

CORBA::Boolean byte_order() const;

Returns TRUE if the buffer is using little-endian byte ordering. FALSE is
returned if big-endian byte ordering is being used.

CORBA::ULong curoff() const;

Returns the current offset within the buffer associated with this object.

virtual VISistream& get(char& data); virtual
VISistream& get(unsigned char& data);

These methods allow you to retrieve a single character from the buffer at
the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just retrieved.

virtual VISistream& get(<data_type> data, unsigned
size);

These methods allow you to retrieve a sequence of data from the buffer at
the current location. There is a separate method for each of the listed target
data types.

Parameter Description
val Set this to TRUE to indicate that little-endian byte

ordering is being used. Set to FALSE to indicate that big-
endian byte ordering is being used.

Parameter Description
data The location where the retrieved char or unsigned char

is to be stored.

VisiBroker-RT for C++ Programmer’s Reference 265

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just retrieved.

virtual VISistream& getCString(char* data, unsigned
maxlen);

This method allows you to retrieve a character string from the buffer at the
current location. It returns a pointer to the location within the buffer
immediately following the end of the data that was just retrieved.

virtual const CORBA::WChar *getWString(CORBA::ULong&
len);

This method returns a pointer to a location within the buffer containing a
widecharacter string. Wide characters in VisiBroker are two bytes wide.

virtual int is_available(unsigned long size);

Returns 1 if the specified size is less than or equal to the size of the buffer
associated with this object.

virtual CORBA::ULong length() const;

Returns the total number of bytes in this object’s buffer.

virtual void new_encapsulation() const;

Resets the starting offset within the buffer to 0.

Parameter Description
data The location where the retrieved data is to be stored.

The supported target data types are:

char*
unsigned char*
short*
unsigned short*
int*
unsigned int*
long*
unsigned long*
float*
double*
long double*
VISLongLong*
VISULongLong*
wchar_t*

size The number of the specified data types to be retrieved.

Parameter Description
data The location where the retrieved character string is to

be stored.
maxlen The maximum number of characters to be retrieved.

Parameter Description
len The offset of the desired data within the buffer.

Parameter Description
size Number of bytes that need to fit within this buffer.

266 VisiBroker-RT for C++ Programmer’s Reference

void release_flag(CORBA::Boolean val);

Enables or disables the automatic freeing of buffer memory when this
object is destroyed.

CORBA::Boolean release_flag() const;

Returns TRUE if the automatic freeing of this object’s buffer memory is
enabled, otherwise FALSE is returned.

void reset();

Resets the starting offset, current offset and seek position to zero.

void rewind();

Resets the seek position to 0.

CORBA::ULong seekpos(CORBA::ULong pos);

Sets the current offset to the value contained in pos. If pos specifies an
offset that is greater than the size of the buffer, a CORBA::BAD_PARAM
exception is raised.

static CORBA::MarshalInBuffer
*_duplicate(CORBA::MarshalInBuffer_ptr ptr);

Returns a duplicate pointer to this object pointed to by ptr and increments
this object’s reference count.

static CORBA::MarshalInBuffer *_nil();

Returns a NULL pointer of type CORBA::MarshalInBuffer.

static void _release(CORBA::MarshalInBuffer_ptr ptr);

Reduces the reference count of the object pointed to by ptr. If the
reference count is then 0, the object is destroyed. If the object’s
release_flag was set to true when it was constructed, the buffer
associated with the object will freed.

CORBA::MarshalInBuffer operators

virtual VISistream& operator>>(<data_type> data);

This stream operator allows you to add data of the specified source
data_type to the buffer at the current location.

Parameter Description
val If val is set to TRUE, the buffer memory for this object

will be freed when this object is destroyed. If val is set
to FALSE, the buffer will not be freed when this object is
destroyed

VisiBroker-RT for C++ Programmer’s Reference 267

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just written.

CORBA::MarshalOutBuffer

class CORBA::MarshalOutBuffer : public VISostream

This class represents a stream buffer that allows IDL types to be written to
a buffer and may be used by interceptor methods that you implement. See
“Portable Interceptor Interfaces and Classes for C++” for more information on the
interceptor interfaces.

The CORBA::MarshalOutBuffer class is used on the client side to marshal
the data associated with an operation request. It is used on the server side
to marshal the data associated with a reply message. This class provides a
wide range of methods for adding various types of data to the buffer or for
retrieving what was written from the buffer.

This class provides several static methods for testing and manipulating
CORBA::MarshalOutBuffer pointers.

A CORBA::MarshalOutBuffer_var class is also offered, which provides a
wrapper that automatically manages the contained object.

Include file
The mbuf.h file should be included when you use this class. This file gets
included in corba.h. So, you don’t have to separately include mbuf.h.

Parameter Description
data The data to be written to the buffer.

The supported source data types are:

char*&
char&
unsigned char&
short&
unsigned short&
int&
unsigned int&
long&
unsigned long&
float&
double&
long double&
wchar_t*&
wchar_t&

268 VisiBroker-RT for C++ Programmer’s Reference

CORBA::MarshalOutBuffer constructors

CORBA::MarshalOutBuffer(CORBA::ULong initial_size =
255,CORBA::Boolean release_flag = 0);

Creates a marshalOutBuffer of size initial-size. The MarshalOutBuffers
are capable of resizing themselves during a put operation. The size doubles
ensuring each resize operation.

CORBA::MarshalOutBuffer(char *read_buffer, CORBA::ULong
len, CORBA::Boolean release_flag=0);

Creates an object with the specified buffer, buffer length and release flag
value.

CORBA::MarshalOutBuffer destructor

virtual ~CORBA::MarshalOutBuffer();

This is the default destructor. The buffer memory associated with this object
will be released if the release_flag is set to TRUE. The release_flag may
be set when the object is created or by invoking the release_flag method,
described on “CORBA::Boolean release_flag() const;”.

CORBA::MarshalOutBuffer methods

char *buffer() const;

Returns a pointer to the buffer associated with this object.

CORBA::ULong curoff() const;

Returns the current offset within the buffer associated with this object.

virtual CORBA::ULong length() const;

Returns the total number of bytes in this object’s buffer.

virtual void new_encapsulation() const;

Resets the starting offset within the buffer to 0.

Parameter Description
initial_size The initial size of the buffer associated with this object.

The default size is 255 bytes.
release_flag If set to TRUE, the memory associated with

read_buffer will be freed when this object is destroyed.
The default value is FALSE.

Parameter Description
read_buffer The buffer where the marshalled data will actually be

stored.
length The maximum number of bytes that may be stored in

read_buffer.
release_flag If set to TRUE, the memory associated with

read_buffer will be freed when this object is destroyed.
The default value is FALSE.

VisiBroker-RT for C++ Programmer’s Reference 269

virtual VISostream& put(char data);

Adds a single character to the buffer at the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just added.

virtual VISostream& put(const <data_type> data,
unsigned size);

These methods allow you to store a sequence of data in the buffer at the
current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just added.

virtual VISostream& putCString(const char* data);

This methods allows you to store a character string into the buffer at the
current location. It returns a pointer to the location within the buffer
immediately following the end of the data that was just added.

void release_flag(CORBA::Boolean val);

Enables or disables the automatic freeing of buffer memory when this
object is destroyed.

CORBA::Boolean release_flag() const;

Returns TRUE if the automatic freeing of this object’s buffer memory is
enabled, otherwise FALSE is returned.

Parameter Description
data The char to be stored.

Parameter Description
data The data to be stored. The supported source data types

are:

char*
unsigned char*
short*
unsigned short*
int*
unsigned int*
long*
unsigned long*
float*
double*
long double*
VISLongLong*
VISULongLong*
wchar_t*

size The number of the specified data types to be stored.

Parameter Description
data The character string to be stored.

Parameter Description
val If val is set to TRUE, the buffer memory for this object

will be freed when this object is destroyed. If val is set
to FALSE, the buffer will not be freed when this object is
destroyed.

270 VisiBroker-RT for C++ Programmer’s Reference

void reset();

Resets the starting offset, current offset and seek position to zero.

void rewind();

Resets the seek position to 0.

CORBA::ULong seekpos(CORBA::ULong pos);

Sets the current offset to the value contained in pos. If pos specifies an
offset that is greater than the size of the buffer, a CORBA::BAD_PARAM
exception is raised.

static CORBA::MarshalOutBuffer
*_duplicate(CORBA::MarshalOutBuffer_ptr ptr);

Returns a duplicate pointer to this object pointed to by ptr and increments
this object’s reference count.

static CORBA::MarshalOutBuffer *_nil();

Returns a NULL pointer of type CORBA::MarshalOutBuffer.

static void _release(CORBA::MarshalOutBuffer_ptr ptr);

Reduces the reference count of the object pointed to by ptr. If the
reference count is then 0, the object is destroyed. If the object’s
release_flag was set to true when it was constructed, the buffer
associated with the object will be freed.

CORBA::MarshalOutBuffer operators

virtual VISostream& operator<<(<data_type> data);

This stream operator allows you to add data of the specified data_type to
the buffer at the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just written.

Parameter Description
data The data to be obtained to the buffer. The supported

data types are:

const char*
char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
float
double
long double
VISLongLong
VISULongLong
wchar_t*
wchar_t

VisiBroker-RT for C++ Programmer’s Reference 271

272 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 273

Location Service Interfaces
and Classes
This chapter describes the interfaces you can use to locate object instances
on a network of Smart Agents. For more information on the Location Service,
see Chapter 14, “Using the Location Service” in the VisiBroker-RT for C++
Programmer’s Guide.

Note

The libraries libagentsupport.o and liblocsupport.o are required when
building a VisiBroker-RT 6.0 application to support use of the VisiBroker
Location Service. For a description of all the libraries provided by the
VisiBroker-RT for C++ product please refer to “Step 5: Selecting VisiBroker
Libraries” in the VisiBroker-RT for C++ Programmer’s Guide.

Agent

class Agent : public CORBA::Object

This class provides methods that enable you to locate all instances of a
particular object on a network of Smart Agents. The methods offered by this
class are divided into two categories; those that query a Smart Agent for
data about objects and those that deal with triggers.

Your client application can obtain object information based on an interface
repository ID alone or in combination with an instance name.

Triggers allow your client application to be notified of changes in the
availability of one or more object instances.

Command-line options for applications using the Location Service are
described in “Location service options” on page A-6.

interface Agent {
HostnameSeq all_agent_locations()

raises (Fail);
RepositoryIdSeq all_repository_ids()

raises (Fail);
ObjSeqSeq all_available()

raises (Fail);
ObjSeq all_instances (in string repository_id)

raises (Fail);
ObjSeq all_replica (in string repository_id, in string

instance_name)
raises (Fail);

DescSeqSeq all_available_descs()
raises (Fail);

DescSeq all_instances_descs (in string repository_id)
raises (Fail);

DescSeq all_replica_descs (in string repository_id,
in string instance_name)
raises (Fail);

void reg_trigger(in TriggerDesc desc, in TriggerHandler
handler)

raises (Fail);
void unreg_trigger(in TriggerDesc desc, in TriggerHandler

handler)
raises (Fail);

attribute boolean willRefreshOADs;
};

274 VisiBroker-RT for C++ Programmer’s Reference

Include file
You should include the locate_c.hh file when you use this class.

Agent methods

ObjLocation::HostnameSeq_ptr all_agent_locations();

Returns a sequence of host names representing the hosts on which osagent
processes are currently executing.

See also “<type>Seq”.

This method throws the following exceptions:

ObjLocation::ObjSeq_ptr all_available();

Returns a sequence of object references for all objects currently registered
with some Smart Agent on the network.

See also “<type>Seq”.

This method throws the following exceptions:

ObjLocation::DescSeqSeq_ptr all_available_desc();

Returns descriptions for all objects currently registered with a Smart Agent
on the network. The description information returned is organized by
repository id.

See also “<type>SeqSeq”.

This method throws the following exceptions:

Exception Description
Fail The FailReason values that may be presented include:

NO_AGENT_AVAILABLE
NO_SUCH_TRIGGER
AGENT_ERROR

See “Fail” on page 19-7 for a discussion of the Fail
class.

Exception Description
Fail The FailReason values that may be presented include:

NO_AGENT_AVAILABLE
NO_SUCH_TRIGGER
AGENT_ERROR

See “Fail” for a discussion of the Fail class.

Exception Description
Fail The FailReason values that may be presented include:

NO_AGENT_AVAILABLE
NO_SUCH_TRIGGER
AGENT_ERROR

See “Fail” on page 19-7 for a discussion of the Fail
class.

VisiBroker-RT for C++ Programmer’s Reference 275

ObjLocation::ObjSeq_ptr all_instances(const char
*repository_id);

Returns a sequence of object references to all instances with the specified
repository_id.

See also “<type>Seq”.

This method throws the following exceptions:

ObjLocation::DescSeq_ptr all_instances_descs(const char
*repository_id);

Returns description information for all object instances with the specified
repository_id.

See also “<type>Seq”.

This method throws the following exceptions:

ObjLocation::ObjSeq_ptr all_replica(const char
*repository_id, const char *instance_name);

Returns a sequence of object references for objects with the specified
repository_id and instance_name.

See also “<type>Seq”.

This method throws the following exceptions:

Parameter Description
repository_id The repository ID of the object references to be

retrieved.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented.

See “Fail” for a discussion of the Fail class.

Parameter Description
repository_id The repository ID of the object descriptions to be

retrieved.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented.

See “Fail” for a discussion of the Fail class.

Parameter Description
repository_id The repository ID of the object references to be

retrieved.
instance_name The instance name of the object references to be

returned.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented.

See “Fail” for a discussion of the Fail class.

276 VisiBroker-RT for C++ Programmer’s Reference

ObjLocation::DescSeq_ptr all_replica_descs(const char
*repository_id, const char *instance_name);

Returns a sequence of description information for all object instances with
the specified repository_id and instance_name.

See also “<type>Seq”.

This method throws the following exceptions:

void reg_trigger(const ObjLocation::TriggerDesc& desc,
ObjLocation::TriggerHandler_ptr hdlr);

Registers the trigger handler hdlr for object instances that match the
description information specified in desc.

Note

A TriggerHandler will be invoked every time an object that satisfies the
trigger’s description becomes available. If you are only interested in
learning when the first instance of the object becomes available, you should
use the unreg_trigger method to remove the trigger after the first
notification is received.

This method throws the following exceptions:

Parameter Description
repository_id The repository ID of the object descriptions to be

retrieved.
instance_name The instance name of the object descriptions to be

retrieved.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented.

See “Fail” for a discussion of the Fail class.

Parameter Description
desc The object instance description information, which can

contain combinations of the following information:

repository ID
instance name
hostname

You can provide more or less information to narrow or
widen the object instances to be monitored.

hdlr The trigger handler object being registered.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented.

See “Fail” for a discussion of the Fail class.

VisiBroker-RT for C++ Programmer’s Reference 277

void unreg_trigger(const ObjLocation::TriggerDesc&
desc, ObjLocation::TriggerHandler_ptr hdlr);

Unregisters the trigger handler hdlr for object instances that match the
description information specified in desc.

This method throws the following exceptions:

CORBA::Boolean willRefreshOADs();

Returns TRUE if the set of Object Activation Daemon is updated each time a
method offered by this class is invoked, otherwise FALSE is returned. If the
cache is not refreshed on each invocation, the following conditions may
occur:

• All objects will still be reported, but their descriptor’s activable flag may
be incorrect.

• Any attempt to verify the existence of an object registered with an OAD
that has been started since the last refresh of the OAD cache will cause
those objects to be activated by the OAD.

void willRefreshOADs(CORBA::Boolean val);

This class maintains a set of Object Activation Daemons. This method
enables or disables the automatic refreshing of the OADs contained in this
set.

Desc

struct Desc;

This structure contains information you use to describe the characteristics
of an object. You pass this structure as an argument to several of the
Location Service methods described in the chapter. The Desc structure, or a
sequence of them, is returned by some of the Location Service methods.

See also “<type>Seq”.
module ObjLocation {

struct Desc {
Object ref;
IIOP::ProfileBody iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;

};
...

Parameter Description
desc The object description information.
hdlr The trigger handler object being unregistered.

Exception Description
Fail The only FailReason value possible is NO_SUCH_TRIGGER.

See “Fail” for a discussion of the Fail class.

Parameter Description
val If TRUE, the OAD set will be refreshed whenever a

method offered by this class is invoked.

278 VisiBroker-RT for C++ Programmer’s Reference

Desc members

Object ref;

A reference to the object being described.

IIOP::ProfileBody iiop_locator;

Represents profile data for the object, described in “IIOP::ProfileBody”.

CORBA::String_var repository_id;

The object’s repository identifier.

Fail

CORBA::String_var instance_name;

The object’s instance name.

CORBA::Boolean activable;

Set to TRUE to indicate that this object is registered with the Object
Activation Daemon. It is set to FALSE to indicate that the object was started
manually and is registered with the osagent.

CORBA::String_var agent_hostname;

The name of the host running the Smart Agent with which this object is
registered.

class Fail : public CORBA::UserException

This exception class may be thrown by the Agent class to indicate various
errors. The data member FailReason is used to indicate the nature of the
failure.

Fail members

FailReason reason;

Set to one of the following values to indicate the nature of the failure:
enum FailReason {

NO_AGENT_AVAILABLE,
INVALID_REPOSITORY_ID,
INVALID_OBJECT_NAME,
NO_SUCH_TRIGGER,
AGENT_ERROR

};

TriggerDesc

struct TriggerDesc;

This structure contains information you use to describe the characteristics
of one or more objects for which you wish to register a TriggerHandler,

VisiBroker-RT for C++ Programmer’s Reference 279

described in “TriggerHandler”. The host_name and instance_name members
may be set to NULL to monitor the widest possible set of objects. The more
information that is specified, the smaller the set of objects will be.

module ObjLocation {
...

struct TriggerDesc {
string repository_id;
string instance_name;
string host_name;

}; ...

TriggerDesc members

CORBA::String_var repository_id;

Represents the repository identifiers of the objects to be monitored by the
TriggerHandler. May be set to NULL to include all possible repository
identifiers.

CORBA::String_var instance_name;

Represents the instance name of the object to be monitored by the
TriggerHandler. May be set to NULL to include all possible instance names.

CORBA::String_var host_name;

Represents the host name where the object or objects to be monitored by
the TriggerHandler are located. May be set to NULL to include all hosts in
the network.

TriggerHandler
You use this base class to derive your own callback object to be invoked
every time an object becomes available or unavailable. You specify the
criteria for the object or objects in which you are interested. You register
your TriggerHandler object using the Agent::reg_trigger method,
described in “void reg_trigger(const ObjLocation::TriggerDesc& desc,
ObjLocation::TriggerHandler_ptr hdlr);”.

You must provide implementations for the impl_is_ready and
impl_is_down methods.

interface TriggerHandler {
void impl_is_ready(in Desc desc);
void impl_is_down(in Desc desc);

};

Include file
You should include the locate_c.hh file when you use this class.

280 VisiBroker-RT for C++ Programmer’s Reference

TriggerHandler methods

virtual void impl_is_ready(const Desc& desc);

This method is invoked by the Location Service when an object instance
matching the criteria specified in desc becomes accessible.

virtual void impl_is_down(const Desc& desc);

This method is invoked by the Location Service when an object instance
matching the criteria specified in desc is no longer accessible.

<type>Seq
This is a generalized class description for the following sequence classes
used by the Location Service:

Each class represents a particular sequence of <type>. The Location Service
returns lists of information to your client application in the form of
sequences which are mapped to one of these classes.

Each class offers operators for indexing items in the sequence just as you
would a C++ array. The also offer methods for obtaining the length of the
array, and for setting the array length.

Example 61 shows the correct way to index a HostnameSeq returned from
the Agent::all_agent_locations method.

Example 61 Indexing a HostnameSeq_var class
...
ObjLocation::HostnameSeq_var hostnames(myAgent->

all_agent_locations());

for (CORBA::ULong i=0; i < hostnames->length(); i++) {
cout << "Agent host #" << i+1 << ": " << hostnames[i] << endl;

}
...

See also “<type>SeqSeq”.

<type>Seq methods

<type>& operator[](CORBA::ULong index) const;

Returns a reference to the element in the sequence identified by index.

Parameter Description
desc The object description information.

Parameter Description
desc The object description information.

Class Description
DescSeq A sequence of Desc structures.
HostnameSeq A sequence of host names.
ObjSeq A sequence of object references.
RepositoryIdSeq A sequence of repository identifiers.

VisiBroker-RT for C++ Programmer’s Reference 281

Caution

You must use a CORBA::ULong type for the index. Using an int type may
lead to unpredictable results.

This method throws the following exceptions:

CORBA::ULong length() const;

Returns the number of elements in the sequence.

void length(CORBA::ULong len);

Sets the maximum length of the sequence to the value contained in len.

<type>SeqSeq
This is a generalized class description for the following classes used by the
Location Service:

Each class represents a particular sequence of <type>Seq. Some Location
Service methods return lists of information to your client application in the
form of sequences of sequences which are mapped to one of these classes.

Each class offers operators for indexing items in the sequence just as you
would a C++ array. The class also offer methods for obtaining the length of
the array, and for setting the array length.

See also “<type>Seq”.

<type>SeqSeq methods

<type>Seq& operator[](CORBA::ULong index) const;

Returns a reference to the element in the sequence identified by index. The
reference is to a one dimensional sequence, described in “<type>Seq”.

Parameter Description
index The index of the element to be returned. This index is

zero-based.

Exception Description
CORBA::BAD_PARAM The index specified is less than zero or greater than the

size of the sequence.

Parameter Description
len The new length for the sequence.

Class Description
DescSeqSeq A sequence of DescSeq objects.
ObjSeqSeq A sequence of ObjSeq objects.

282 VisiBroker-RT for C++ Programmer’s Reference

Caution

You must use a CORBA::ULong type for the index. Using an int type may
lead to unpredictable results.

This method throws the following exceptions:

CORBA::ULong length() const;

Returns the number of elements in the sequence.

void length(CORBA::ULong len);

Sets the maximum length of the sequence to the value contained in len.

Parameter Description
index The index of the element to be returned. This index is

zero-based

Exception Description
CORBA::BAD_PARAM The index specified is less than zero or greater than the

size of the sequence.

Parameter Description
len The new length for the sequence.

VisiBroker-RT for C++ Programmer’s Reference 283

Initialization Interfaces and
Classes
This chapter describes the interfaces and classes that are provided for
statically initializing ORB services, such as interceptors, fatal handlers, and
new handlers.

VISInit

class VISInit

This abstract base class provides for the static initialization of service classes
before and after the ORB and has been initialized. By deriving your service
class from VISInit and declaring it statically, you ensure that your service
class instance will be properly initialized.

The ORB will invoke the VISInit::ORB_init and VISInit::ORB_initialized
whenever the application calls the CORBA::ORB_init method. By providing
your own implementations of these methods, you may add any needed
initialization that must be performed for your service.

In typical C++ fashion, you can provide your own new_handler() function
using the set_new_handler() method. If you have installed a
new_handler() function, then VISInit::ORB_init does not install its own;
however, if no new_handler() function is installed, VISInit::ORB_init
installs the ORB specific new_handler() function.

Include file
The vinit.h file should be included when you use this class.

VISInit constructors/destructors

VISInit();

This is the default constructor.

VISInit(CORBA::Long init_priority);

This constructor creates a VISInit-derived object with the specified priority,
which determines when it will be initialized relative to other VISInit-derived
objects.

Internal VisiBroker-RT for C++ classes which need to be initialized before
user-defined classes have a negative priority value. The lowest priority
value currently used by VisiBroker internal classes is –10.

Note

You should set a priority value less than –10 and no lower than -50 if your
class must be initialized before the VisiBroker-RT for C++ internal classes.
Setting a priority of less than -50 can produce undefined behavior.

284 VisiBroker-RT for C++ Programmer’s Reference

If no priority value is specified, the default value is 0, which means that the
class will be initialized after all of the internal VisiBroker-RT for C++ classes.

virtual ~VISInit();

This is the default destructor.

VISInit methods

virtual void ORB_init(int& argc, char * const *argv,
CORBA::ORB_ptr orb);

This method will be called during ORB initialization after the command line
arguments have been parsed.

virtual void ORB_initialized(CORBA::ORB_ptr orb);

This method will be called after the ORB is initialized.

Since the BOA has been replaced by the POA this method is being
deprecated in VisiBroker 4.0. It is supported only for backwards
compatibility.

virtual void BOA_init(int& argc, char * const *argv,
CORBA::BOA_ptr boa);

This method will be called when the BOA is initialized. Your implementation
should provide for the initialization of the server-side interceptor factory
that you wish to use.

VISUtil

virtual void ORB_shutdown()

This method will be called when the ORB is shutdown.

Parameter Description
init_priority The initialization priority for this object. A negative

priority value will cause this class to be initialized
earlier. A positive priority value will cause this class to
be initialized later.

Parameter Description
argc The count of arguments.
argv An array of argument pointers.
orb The ORB being initialized.

Parameter Description
orb The ORB being initialized.

Parameter Description
argc The count of arguments.
argv An array of argument pointers.
boa The BOA being initialized.

VisiBroker-RT for C++ Programmer’s Reference 285

class VISUtil

This base class provides several general purpose services that application
programmers may find useful.

Include file
The vutil.h file should be included when you use this class.

VISUtil methods

static void set_user_fatal(void
(*new_user_fatal(void));

This method can be called at any time to install a user defined fatal error
handler. The user defined fatal error handler will be called when the ORB’s
vis_fatal() method is invoked.

Parameter Description
*new_user_fatal(void) A pointer to the user defined fatal error handler

method.

286 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 287

Appendix: Using Command-
Line Options
This appendix describes the options that may be set for the Basic Object
Adaptor, the Object Request Broker, and the Location Service.

BOA_init() method
(deprecated since VisiBrokerRT 4.0)

The BOA_init() method is used by your object implementation to set such
options as the desired thread policy or the TCP/IP port number to be used.
ese parameters are passed as arguments to the task calling BOA_init()
when it is started.

Tornado

-> start_corba "-OAipAddr 199.99.129.33 -OAport 19000"

Example 62 shows the definition of the BOA_init() method and the
arguments it accepts. Like the ORB_init() method, the argc and argv
parameters passed to BOA_init() are the same arguments that were
passed to your object implementation’s main routine. The BOA_init()
method will ignore any arguments it does not recognize.

Example 62 BOA_init() method
class CORBA {

...
static BOA_ptr BOA_init(int& argc, char *const *argv,

const char *boa_identifier = “VIS_BOA”);
...

};

After this method has been invoked, all the recognized BOA arguments will
be stripped from the original parameter list so that they will not interfere
with any other argument processing that your object implementation
requires.

BOA options
The following table ummarizes the BOA_init() options.

Table 11 BOA_init() options used by object implementations

Type/Value pair Purpose
-OAagent <0 | 1> If set to 0, this option specifies that new instances of

objects being registered will not be exported through
the Smart Agent. Client attempts to locate these
instances with _bind() will fail. The default value
is 1.

-OAconnectionMax <#> Specifies the maximum number of connections
allowed when -OAid TSession is selected.

-OAconnectionMaxIdle <#> Specifies the time (in seconds) which a connection
can idle without any traffic. Connections that idle
beyond this time can be shutdown by VisiBroker. By
default, this is set to 0 seconds which means that
connections will never automatically timeout. This
option should be set for Internet applications.

288 VisiBroker-RT for C++ Programmer’s Reference

-OAgarbageCollectTimer
<#>

Specifies the time (in seconds) that the adapter waits
before checking for idle connections and threads to be
cleaned up. The default period is 30 seconds. The
adapter checks for threads that have been idle for
longer than the time specified by -OAthreadMaxIdle
and for connections that have been idle for longer
than the time specified by -OAconnectionMaxIdle.

-OAid <TPool | TSession> Specifies the thread policy for multithreaded servers
to be used by the BOA. The default is TPool, except
for backward compatibility where TSession is the
default.

If you specify a value other than TPool or TSession,
a nil BOA_ptr will be returned by the BOA_init
method.

-OAipAddr <hostname |
ip_address>

Specifies the hostname or IP address to be used for
the BOA. Use this option if your machine has multiple
network interfaces and the BOA is associated with just
one address. If no option is specified, the host’s
default address is used.

-OAlocalIPC <0 | 1> When a client and an object implementation reside on
the same host and this is set to 1, a local inter-
process communication method will be used instead
of a socket connection. On Windows platforms, shared
memory will be used. On UNIX platforms, the UNIX
Domain Protocol will be used. If set to 0, a socket
connection will be used. The default is 1.

-OAport <port_number> Specifies the port number to be used by the BOA
when listening for new connections.

-OArcvbufsize
<buffer_size>

Specifies the size of the buffer (in bytes) used to
receive messages. If not specified, a default value
(dependent upon your operating system) will be used.
This argument can be used to significantly impact
performance or benchmark results.

Windows
-OAsendbufsize
<buffer_size>

Specifies the size of the buffer (in bytes) used to send
messages. If not specified, a default value (dependent
upon your operating system) will be used. This
argument can be used to significantly impact
performance or benchmark results.

-OAshmsize <size> Specifies the size of the send and receive segments
(in bytes) in shared memory. If your client program
and object implementation communicate via shared
memory, you may use this option to enhance
performance. This option is only supported on
Windows platforms.

-OAtcpNoDelay <0 | 1> When set to 1, it sets all sockets to immediately send
requests. The default value of 0 allows sockets to
send requests in batches as buffers fill. This argument
can be used to significantly impact performance or
benchmark results.

-OAthreadMax <#> Specifies the maximum number of threads allowed
when-OAid TPool is selected.

-OAthreadMaxIdle <#> Specifies the time (in seconds) which a thread can
exist without servicing any requests. Threads that idle
beyond the time specified can be returned to the
system. By default, this is set to 300 seconds.

-OAthreadStackSize
<stack_size>

Specifies the maximum thread stack size (in bytes)
allowed when -OAid TPool or -OAid TSession is
selected

Type/Value pair Purpose

VisiBroker-RT for C++ Programmer’s Reference 289

ORB_init() method
The ORB_init() method is used by applications to set such options as the IP
address and port number of the Smart Agent to be used. These parameters
may be passed as arguments when ORB_init() is called.

Example 63 Specifying the Server Manager Name when starting up a VisiBroker
Application

...
char *argv[] = {"DO_CORBA","-
Dvbroker.orb.enableserverManager","true","-
Dvbroker.serverManager.name","MyServerManager"};
/*________________________*/
/* Call ORB_init*/
/*________________________*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

...

Example 64 shows the definition of the ORB_init() method and the
arguments it accepts. Like the BOA_init() method, the argc and argv
parameters passed to ORB_init() are the same arguments that were
passed to your client program’s main routine. The ORB_init() method will
ignore any arguments it does not recognize.

Example 64 ORB_init() method definition
class CORBA {

...
static ORB_ptr ORB_init(int& argc, char *const *argv,

const char *orb_id = (char *)NULL);
...

};

After this method has been invoked, all the recognized ORB arguments will
be stripped from the original parameter list so that they will not interfere
with any other argument processing that your client program requires.

ORB options
All but one of the ORB options take the form of type-value pairs. Table 12
summarizes the ORB_init() options.

Table 12 ORB_init() options

Type/Value pair Purpose
-ORBagent <0 | 1> If set to 0, this option specifies that no Smart Agent

will be contacted to locate servers, and VisiBroker
proprietary _bind() will not work. The default value
is 1.

-ORBagentAddr
<hostname | ip_address>

Specifies the hostname or IP address of the host
running the Smart Agent this client should use. If a
Smart Agent is not found at the specified address or if
this option is not specified, broadcast messages will
be used to locate a Smart Agent.

-ORBagentPort
<port_number>

Specifies the port number of the Smart Agent. This
option can be useful if multiple ORB domains are
required, as described in the VisiBroker-RT for C++
Programmer’s Guide, Chapter 13, “Using the Smart
Agent.” If not specified, a default port number of
14000 will be used.

290 VisiBroker-RT for C++ Programmer’s Reference

-ORBbackCompat <0 | 1> If set to 1, this option specifies that backward
compatibility with VisiBroker 2.0 should be provided.
The default is 0.

-ORBbackdii <0 | 1> If set to 1, this option specifies that support for the
1.0 IDL-to-C++ mapping should be provided. If set to
0 or not specified at all, the new 1.1 mapping will be
used. The default setting is 0.

If -ORBbackCompat is set to 1, this option will
automatically be set to 1.

-ORBconnectionMax <#> Specifies the maximum number of outgoing
connections that are allowed. If you do not specify
this option, the default is to allow an unlimited
number of connections.

-ORBconnectionMaxIdle
<#>

This specifies the number of seconds that an outgoing
connection can idle before it is shutdown by
VisiBroker. By default, this is set to 0, which means
that connections will never timeout. This option should
be set for Internet applications.

-ORBir_name <ir_name> Specifies the name of the Interface Repository to be
accessed when the Object::get_interface()
method is invoked on object implementations.

-ORBir_ior <ior_string> Specifies the IOR of the Interface Repository to be
accessed when the Object::get_interface()
method is invoked on object implementations.

-ORBnullString <0 | 1> If set to 1, this option specifies that the ORB will allow
C++ NULL strings to be streamed. The NULL strings
will be marshalled as strings of length 0—as opposed
to the empty string (“”) which is marshalled as a
string of length 1, with the sole character of “\0”.

If set to 0, attempts to marshal out a NULL string will
throw CORBA::BAD_PARAM. Attempts to marshal in a
NULL string will throw CORBA::MARSHAL.

The default setting is 0. If -ORBbackCompat is set to
1, this option will automatically be set to 1.

-ORBPropTable
<table_name>

Specifies the name of a VisiBroker Property Table
containing VisiBroker properties and their assigned
values.

-ORBrcvbufsize
<buffer_size>

Specifies the size of the TCP buffer (in bytes) used to
receive responses. If not specified, a default buffer
size will be used. This argument can be used to
significantly impact performance or benchmark
results.

-ORBsecuresetattr <0 | 1> If set to 0, a client can use the ORB management
interface to set the server’s attributes. By default, this
value is set to 1 and a CORBA::NO_PERMISSION
exception is thrown if a user attempts to set a server’s
attribute with the ORB management interface.

-ORBsecureShutdown
<0 | 1>

If set to 0, a user can use the shutdown command
from the ORB management interface to shutdown the
server. By default, this value is set to 1, and a
CORBA::NO_PERMISSION exception is thrown if a
user attempts to use the shutdown command.

-ORBsendBind <0 | 1> If set to 1, this option provides backward compatibility
between the bind call and VisiBroker-RT for C++ 2.x.
If you do not specify, the default value is 0.

Type/Value pair Purpose

VisiBroker-RT for C++ Programmer’s Reference 291

Location service options
These command-line options can be used by your client program to control
various Location Service features. When your client application invokes the
ORB_init method, the Location Services will be initialized and will receive
any command-line arguments you have specified. Command-line options
for the Location Service will be processed and stripped from the argument
list. All unrecognized options will be ignored.

As with the command line options for the BOA and ORB, the Location
Service options take the form of type-value pairs.

Tornado
prompt> start_corba "-LOCdebug 1 -LOCtimeout 10 -LOCverify 0"

The table below summarizes the Location Service command-line options.

Table 13 Location Service command-line options

-ORBsendbufsize
<buffer_size>

Specifies the size of the TCP buffer (in bytes) used
tosend client requests. If not specified, a default
buffer size will be used. This argument can be used to
significantly impact performance or benchmark
results.

-ORBtcpNoDelay <0 | 1> When set to 1, it sets all sockets to immediately send
requests. The default value of 0 allows sockets to
send requests in batches as buffers fill. This argument
can be used to significantly impact performance or
benchmark results.

Type/Value pair Purpose

Type/Value Pair Purpose
-LOCdebug <0 | 1> If set to one, enables the using the Location Service

debugging output, described in Chapter 18, “Marshal
buffer interfaces and classes.” If this option is not
specified, debugging output is disabled.

-LOCtimeout <seconds> Indicates the number of seconds to wait for a response
from a server when verifying the existence of an
object. This option is only used when -LOCverify has
been set to one. The default value is one second.

-LOCverify <0 | 1> If set to 1, the Location Service will verify the
existence of an object before returning an object
reference to the client application. If set to 0, the
Location Service will offer faster performance, but it
may not return the most current information. The
default value for this option is 0.

292 VisiBroker-RT for C++ Programmer’s Reference

VisiBroker-RT for C++ Programmer’s Reference 293

Appendix: Using VisiBroker
Properties
This appendix describes the properties that can be set in VisiBroker-RT for
C++.

OSAgent (Smart Agent) properties
The following table lists the VisiBroker-RT for C++ OSAgent properties.

Property Default Description
vbroker.agent.addr null The IP address or host name of the host

running the OSAgent. The default null value
instructs VisiBroker applications to use the
value from the OSAGENT_ADDR
environment variable.

If this OSAGENT_ADDR variable is not set,
then it is assumed that OSAgent is running
on the local host.

vbroker.agent.
addrFile

null Specifies a file that stores the IP
address(es) or host name(s) where
OSAgent maybe found.

vbroker.agent.debug false When set to true, the system displays
debugging information about VisiBroker
applications communicating with the
OSAgent.

vbroker.agent.
localFile

null Specifies which network interface to use on
multi-home machines. This used to be the
OSAGENT_LOCAL_FILE environment
variable.

vbroker.agent.
enableLocator

true When set to false, this property does not
allow VisiBroker applications to
communicate with OSAgent.

vbroker.agent.
clientHandlerPort

null Specifies the port that the OSAgent uses to
verify the existence of a client—in this case
the server. The default value null means
that the OSAgent picks a random port
number.

vbroker.agent.port 14000 The port number that defines a domain
within your network. All VisiBroker
applications and the OSAgent works
together when they have the same port
number. This property is same as the
OSAGENT_PORT environment variable.

294 VisiBroker-RT for C++ Programmer’s Reference

ORB properties
The following table lists the VisiBroker-RT for C++ ORB properties.

Property Default Description
vbroker.orb.
activateIOR

null Allows the launched server to easily
establish contact with the OAD that
launched it.

vbroker.orb.oadUID 0 Used to ensure that the OAD that launched
the server still exists.

vbroker.orb.
propStorage

null Specifies a property file that contains
property values.

vbroker.orb.
backCompat

false When set to true, the server is operating in
backward compatibility mode.

vbroker.orb.
nullstring

false When set to true, passing a null string
causes a BAD_PARAM exception to be
thrown. Passing zero length strings is
allowed if vbroker.orb.backCompat is true.

vbroker.orb.admDir null Specifies the administration directory at
which various system files are located. This
property can be set using the
VBROKER_ADM environment variable.

vbroker.orb.
isNTService

false When set to true, this property allows OAD
to be running as NT system service, so that
the it will not exit when the current user logs
out.

vbroker.orb.obv.debug false When set to true, this property allows the
ORB’s object by value implementation to
display debugging information.

vbroker.orb.
dynamicLibs

null Lists available services.

vbroker.orb.
enableKeyId

true When set to false, this property disables the
use of key ids in client requests.

vbroker.orb.
enableServerManager

false When set to true, this property enables
Server Manager within a server so that
clients can access to it.

vbroker.orb.realtime.
threadScheduling.enab
le

false Enable the control of VisiBroker-RT 6.0
internal thread priorities (e.g. DSUser,
VisLogger,...)

vbroker.orb.input.max
Buffers

16 Specifies the maximum number of input
buffers retained in a pool.

vbroker.orb.input.buf
fSize

255 Specifies the size of the input buffer.

vbroker.orb.keyIdCach
eMax

16384 Specifies maximum size of the object key id
cache in a server.

vbroker.orb.keyIdCach
eMin

64 Specifies minimum size of the object key id
cache in a server.

vbroker.orb.output.ma
xBuffers

16 Specifies the maximum number of output
buffers retained in a pool.

vbroker.orb.output.bu
ffSize

255 Specifies the size of the output buffer.

vbroker.orb.initRef null Specifies the initial reference.
vbroker.orb.defaultIn
itRef

null Specifies the default initial reference.

vbroker.orb.boa_map.T
Single

boa_s Maps the boa bid policy of single threaded
to boa_s.

vbroker.orb.boa_map.T
Pool

boa_tp Maps the boa bid policy of thread pool to
boa_tp.

vbroker.orb.boa_map.T
Session

boa_ts Maps the boa bid policy of thread session to
boa_ts.

VisiBroker-RT for C++ Programmer’s Reference 295

vbroker.orb.boa_map.
TPool_LIOP

boa_ltp Maps the boa bid policy of local thread pool
to boa_s.

vbroker.orb.
alwaysProxy

false When set to true, specifies that clients must
always connect to the server using the
Gatekeeper.

vbroker.orb.
gatekeeper.ior

null Forces the client application to always
connect to server through the Gatekeeper
whose IOR is provided.

vbroker.locator.ior null Specifies an IOR of the Gatekeeper which
will be used as proxy to OSAgent. If this
property is not set, the Gatekeeper
specified by the vbroker.orb.gatekeeper.ior
property is used for this purpose.

vbroker.orb.
exportFirewallPath

false Forces the server application to include
firewall information as part of any servant's
IOR which this server exposes (use
Firewall::FirewallPolicy in your code
to force it selectively per POA).

vbroker.orb.
proxyPassthru

false Forces PASSTHROUGH firewall mode globally
in the application scope (use
QoSExt::ProxyModePolicy in your code to
force it selectively per object or per orb).

vbroker.orb.bids.
critical

inprocess The critical bid has highest precedence no
matter where it is specified in the bid order.
If there are multiple values for critical bids,
then their relative importance is decided by
the bidOrder property.

vbroker.orb.bidOrder inprocess:
liop:
ssl:
iiop:
proxy:
hiop:
locator

You can specify the relative order of
importance for the various transports.
Transports are given precedence as follows:

1 inprocess

2 liop

3 ssl

4 iiop

5 proxy

6 hiop

7 locator

The transports that appear first have higher
precedence. For example: If an IOR
contains both LIOP and IIOP profiles, the
first chance goes to LIOP. Only if the LIOP
fails is IIOP used. (The critical bid, specified
by the vbroker.orb.bids.critical property,
has highest precedence no matter where it
is specified in the bid order.)

vbroker.orb.
defAddrMode

0 (Key) The default addressing mode that client
VisiBroker ORB uses. If it is set to 0, the
addressing mode is Key, if set to 1, the
addressing mode is Profile, if set to 2, the
addressing mode is IOR.

vbroker.orb.gatekee
per.ior

null Forces the client application to always
connect to server through the Gatekeeper
whose IOR is provided.

vbroker.locator.ior null Specifies an IOR of the Gatekeeper which
will be used as proxy to OSAgent. If this
property is not set, the Gatekeeper
specified by the vbroker.orb.gatekeeper.ior
property is used for this purpose.

Property Default Description

296 VisiBroker-RT for C++ Programmer’s Reference

Server Manager properties
The following table lists the VisiBroker-RT for C++ Server Manager
properties.

Location Service properties
The following table lists the VisiBroker-RT for C++ Location Service
properties.

Interface Repository Resolver properties
The following table lists the VisiBroker-RT for C++ Interface Repository
Resolver properties.

TypeCode properties
The following table lists the VisiBroker-RT for C++ TypeCode properties.

Property Default Description
vbroker.serverManager
.name

null Specifies the name of the Server Manager.

vbroker.serverManager
.enableOperations

true When set to true, this property enables operations
exposed by the Server Manager to be invoked.

vbroker.serverManager
.enableSet Property

true When set to true, this property enables properties
exposed by the Server Manager to be changed.

Property Default Description
vbroker.locationservice.
debug

false When set to true, this property allows the Location
Service to display debugging information.

vbroker.locationservice.
verify

false When set to true, this property allows Location
Service to check the existence of an object
referred by an object reference sent down from
the OSAgent.

vbroker.locationservice.
timeout

1 Specifies the connect/receive/send time-out when
trying to interact with the location service.

Property Default Description
vbroker.ir.debug false When set to true, this property allows the IR

resolver to display debugging information.
vbroker.ir.ior null Specifies that when the vbroker.ir.name property

is null, the ORB tries to use this property value to
locate the IR

vbroker.ir.name null Specifies the name that will be used by the ORB to
locate the IR.

Property Default Description
vbroker.tyecode.
debugp

false When set to true, this property allows the
typecode code to display debugging information.

vbroker.typecode.noIn
direction

false When set to true, this property does not allow the
use of indirection when writing a recursive
typecode.

VisiBroker-RT for C++ Programmer’s Reference 297

Client-Side IIOP Connection properties
The following table lists the VisiBroker-RT for C++ Client-Side IIOP
Connection properties.

Client-Side LIOP Connection properties
VisiBroker-RT for C++ for Tornado does not support LIOP connections.

Server-Side Thread Session Connection properties
The table below lists the VisiBroker Edition for C++ Server-Side thread
session connection properties

Server Engines (xxx), Server Connection Manager (yyy))

• boa_ts: This default server engine property is used specifically for BOA
backward-compatibility option.

• iiop_ts: This default server engine is used in the ThreadSession variation
with a default IIOP listener.

Property Default Description
vbroker.ce.iiop.ccm.
connectionCacheMax

5 Specifies the maximum number of cache
connection on a client. The connection will be
cached when the client releases it. So, the next
time the client needs a new connection, it first
tries to collect an available one from the cache
instead of just creating a new one.

vbroker.ce.iiop.ccm.
connectionMax

0 Specifies the maximum number of the total
connections within a client. This is equal to active
connections plus the ones that are cached. The
default value of zero means that the client will not
try to close any of the old active or cached
connections.

vbroker.ce.iiop.ccm.
connectionMaxIdle

360 Specifies the time in seconds that the client uses
to determine if a cached connection should be
closed. If a cached connection has been idle longer
than this time, then the client closes it.

vbroker.ce.iiop.
connection.rcvBufSize

0 Specifies the size of the receive socket buffer. The
default value 0 implies system dependent value

vbroker.ce.iiop.
connection.sendBufSize

0 Specifies the size of the send socket buffer. The
default value 0 implies system dependent value.

vbroker.ce.iiop.
connection.tcpNoDelay

false When set to true, the server’s socket are
configured to send any data written to them
immediately instead of batching the data as the
buffer fills.

vbroker.ce.iiop.
connection.noCallback

false When set to true, this property allows for callback
capabilities from the server back to the client.

vbroker.ce.iiop.
connection.socketLinger

0 Specifies a TCP/IP setting.

vbroker.ce.iiop.
connection.keepAlive

true Specifies a TCP/IP setting.

298 VisiBroker-RT for C++ Programmer’s Reference

Table 14 Server-Side Thread Session Connection properties

Server-Side Thread Pool Connection properties
The following table lists the VisiBroker-RT for C++ Server-Side thread pool
connection properties

Server Engines (xxx), Server Connection Manager (yyy)

• boa_tp

• se_iiop_tp0, scm_iiop_tp0 (General thread pool)

Property Default Description
vbroker.se.xxx.host null Host name that can be used by this server engine.

If this variable is set to null (the default), the host
name from the system is used.

vbroker.se.xxx.scms xxx=boa_ts, boa_ts
xxx=iiop_ts, iiop_ts

List of Server Connection Manager name(s).

vbroker.se.xxx.scm.
yyy.manager.type

Socket Specifies the type of Server Connection Manager.

vbroker.se.xxx.scm.
yyy.manager.
connectionMax

0 Specifies the maximum number of connections the
server accepts. The default value 0 sets no
restriction.

vbroker.se.xxx.scm.
yyy.manager.
connectionMaxIdle

0 Specifies the time in seconds that the server uses
to determine if an inactive connection should be
closed or not.

vbroker.se.xxx.scm.
yyy.listener.type

IIOP Specifies the type of protocol the listener is using.

vbroker.se.xxx.scm.
yyy.listener.port

0 Specifies the port number that is used with the host
name property. The default value 0 means the
system picks a random port number.

vbroker.se.xxx.scm.
yyy.listener.
proxyPort

0 Specifies the proxy port number that is used with
the proxy host name property. The default value 0
means the system picks a random port number.

vbroker.se.xxx.scm.
yyy.listener.
rcvBufSize

0 Specifies the size of the receive socket buffer. The
default value 0 implies system dependent value

vbroker.se.xxx.scm.
yyy.listener.
sendBufSize

0 Specifies the size of the send socket buffer. The
default value 0 implies system dependent value.

vbroker.se.xxx.scm.
yyy.listener.
socketLinger

0 A TCP/IP setting.

vbroker.se.xxx.scm.
yyy.listener.
keepAlive

TRUE A TCP/IP setting.

vbroker.se.xxx.scm.
yyy.dispatcher.type

Thread Session Specifies the type of thread dispatcher used in the
Server Connection Manager.

vbroker.se.xxx.scm.
yyy.dispatcher.
threadStackSize

0 The size of the thread stack.

vbroker.se.xxx.scm.
yyy.dispatcher.
coolingTime

3 The time in seconds before a connected thread
returns back to the thread pool. This time allows
the thread to server more than one request.

Property Default Description
vbroker.se.xxx.host null Specifies the host name that can be used by this

server engine. The default value null means use
the host name from the system.

vbroker.se.xxx.scms xxx=boa_tp, boa_tp
xxx=se_iiop_tp0,
scm_iiop_tp0

List of Server Connection Manager name(s).

VisiBroker-RT for C++ Programmer’s Reference 299

Properties that support bidirectional
communication

The table below lists the properties that support bidirectional
communication. These properties are evaluated only once—when the SCMs
are created. In all cases, the exportBiDir and importBiDir properties on
the SCMs are given priority over the enableBiDir property. In other words,
if both properties are set to conflicting values, the SCM-specific properties
will take effect. This allows you to set the enableBiDir property globally
and specifically turn off bidirectionality in individual SCMs.

Table 15 Bidirectional communication properties

vbroker.se.xxx.scm.
yyy.manager.type

Socket Specifies type of Server Connection Manager.

vbroker.se.xxx.scm.
yyy.manager.
connectionMax

0 Specifies the maximum number of cache
connections the server will accept. The default
value 0 implies no restriction.

vbroker.se.xxx.scm.
yyy.manager.
connectionMaxIdle

0 Specifies the time in seconds that the server uses
to determine if an inactive connection should be
closed or not.

vbroker.se.xxx.scm.
yyy.manager.
garbageCollectTimer

30 Specifies the garbage-collect timer (in seconds) for
connections

vbroker.se.xxx.scm.
yyy.listener.type

IIOP Specifies the type of protocol the listener is using.

vbroker.se.xxx.scm.
yyy.listener.port

0 Specifies the port number that is used with the
host name property. The default value 0 means the
system will pick a random port number.

vbroker.se.xxx.scm.
yyy.listener.
proxyPort

0 Specifies the proxy port number that is used with
the proxy host name property. The default value 0
means the system will pick a random port number.

vbroker.se.xxx.scm.
yyy.listener.
rcvBufSize

0 Specifies the size of the receive socket buffer. The
default value 0 implies system dependent value.

vbroker.se.xxx.scm.
yyy.listener.
sendBufSize

0 Specifies the size of the send socket buffer. The
default value 0 implies system dependent value.

vbroker.se.xxx.scm.
yyy.listener.
socketLinger

0 Specifies a TCP/IP setting.

vbroker.se.xxx.scm.
yyy.listener.
keepAlive

true Specifies a TCP/IP setting.

Property Default Description

Property Default Description
vbroker.orb.
enableBiDir

none You can selectively make bidirectional connections.
If the client defines
broker.orb.enableBiDir=client and the
server defines
vbroker.orb.enableBiDir=server the value of
vbroker.orb.enableBiDir at the gatekeeper
determines the state of the connection. Values of
this property are: server, client, both or
none.

300 VisiBroker-RT for C++ Programmer’s Reference

vbroker.se.<se>.scm.
<scm>.manager.
exportBiDir

By default, not
set by the ORB.

A client-side property. Setting it to true enables
creation of a bidirectional callback POA on the
specified server engine. Setting it to false disables
creation of a bidirectional POA on the specified
server engine.

vbroker.se.<se>.scm.
<scm>.manager.
importBiDir

By default, not
set by the ORB.

A server-side property. Setting it to true allows the
server-side to reuse the connection already
established by the client for sending requests to
the client. Setting it to false prevents reuse of
connections in this fashion.

Property Default Description

	Contents
	Preface
	Organization of this Manual
	Manual conventions
	Typographic conventions
	Platform conventions
	VisiBroker Library conventions
	Where to find additional information

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Programmer Tools
	Arguments/Options
	General options

	General Information
	idl2cpp
	idl2ir
	ir2idl

	IDL to C++ Language Mapping
	Primitive data types
	Strings
	String_var Class

	Constants
	Special cases involving constants

	Enumerations
	Type definitions
	Modules
	Complex data types
	Fixed-length structures
	Variable length structures
	Memory management for structures
	Unions
	Sequences
	Arrays
	Principal

	Valuetypes
	Valuebox

	Abstract Interfaces

	Generated Interfaces and Classes
	Overview
	<Interface_name>
	<Interface_name>ObjectWrapper
	POA<class_name>
	tie<class_name>
	<class_name>_var

	Core Interfaces and Classes
	PortableServer::AdapterActivator
	PortableServer::AdapterActivator methods

	BindOptions
	Include file
	BindOptions members

	BOA
	Include file
	CORBA::BOA methods
	VisiBroker extensions to CORBA::BOA

	CompletionStatus
	CompletionStatus members

	Context
	Include file
	Context methods

	PortableServer::Current
	PortableServer::Current methods

	Exception
	Include file

	Object
	Include file
	CORBA::Object methods
	VisiBroker extensions to CORBA::Object

	ORB
	class CORBA::ORB
	Include file

	CORBA::ORB methods
	VisiBroker extensions to CORBA::ORB

	PortableServer::POA
	PortableServer::POA methods

	PortableServer::POAManager
	Include file
	PortableServer::POAManager methods

	Principal
	Include file
	Principal methods

	PortableServer::RefCountServantBase
	Include file
	PortableServer::RefCountServantBase methods

	PortableServer::ServantActivator
	Include file
	PortableServer::ServantLocator methods

	PortableServer::ServantBase
	Include file
	PortableServer::ServantBase methods

	PortableServer::ServantLocator
	Include file
	PortableServer::ServantLocator methods

	PortableServer::ServantManager
	Include file

	Environment
	Include file

	SystemException
	Include file
	SystemException methods

	UserException
	Include file
	UserException methods
	UserException derived classes

	TCKind
	TypeCode
	Include file
	TypeCode constructors
	TypeCode methods

	SupportServices
	Include file

	Dynamic Interfaces and Classes
	Any
	Include file
	Any methods
	Insertion operators
	Extraction operators

	ContextList
	ContextList methods

	DynamicImplementation
	DynamicImplementation methods

	DynAny
	Include file
	Important usage restrictions
	DynAny methods
	Extraction methods
	Insertion methods

	DynAnyFactory
	DynAnyFactory methods

	DynArray
	Important usage restrictions
	DynArray methods

	DynEnum
	Important usage restrictions
	DynEnum methods

	DynSequence
	Important usage restrictions
	DynSequence methods

	DynStruct
	Important usage restrictions
	DynStruct methods

	DynUnion
	Important usage restrictions
	DynUnion methods

	ExceptionList
	ExceptionList methods

	NamedValue
	Include file
	NamedValue methods

	NVList
	Include file
	NVList methods

	Request
	Include file
	Request methods

	ServerRequest
	Include file
	ServerRequest methods

	Interface Repository Interfaces and Classes
	Availability
	AliasDef
	AliasDef methods

	ArrayDef
	ArrayDef methods

	AttributeDef
	AttributeDef methods

	AttributeDescription
	AttributeDescription members

	AttributeMode
	AttributeMode values

	ConstantDef
	ConstantDef methods

	ConstantDescription
	ConstantDescription members

	Contained
	Include file
	Contained methods

	Container
	Include file
	Container methods

	DefinitionKind
	DefinitionKind values

	Description
	Description members

	EnumDef
	EnumDef methods

	ExceptionDef
	ExceptionDef methods

	ExceptionDescription
	ExceptionDescription members

	FixedDef
	Methods

	FullInterfaceDescription
	FullInterfaceDescription members

	FullValueDescription
	Variables

	IDLType
	Include file
	IDLType methods

	InterfaceDef
	Include file
	InterfaceDef methods

	InterfaceDescription
	InterfaceDescription members

	IRObject
	Include file
	IRObject methods

	ModuleDef
	ModuleDescription
	ModuleDescription members

	NativeDef
	OperationDef
	Include file
	OperationDef methods

	OperationDescription
	OperationDescription members

	OperationMode
	OperationMode values

	ParameterDescription
	ParameterDescription members

	ParameterMode
	ParameterMode values

	PrimitiveDef
	PrimitiveDef methods

	PrimitiveKind
	PrimitiveKind values

	Repository
	Include file
	Repository methods

	SequenceDef
	SequenceDef methods

	StringDef
	StringDef methods

	StructDef
	StructDef methods

	StructMember
	StructMember methods

	TypedefDef
	TypeDescription
	TypeDescription members

	UnionDef
	UnionDef methods

	UnionMember
	UnionMember members

	ValueBoxDef
	Methods

	ValueDef
	Methods

	ValueDescription
	Values

	WstringDef
	WStringDef methods

	Activation Interfaces and Classes
	ImplementationDef
	Include file
	ImplementationDef methods

	StringSequence
	Include file
	StringSequence methods
	Methods

	Naming Service Interfaces and Classes
	NamingContext
	NamingContext methods

	NamingContextExt
	NamingContextExt methods

	NamingLib
	NamingLib methods

	Binding and BindingList
	BindingIterator
	BindingIterator methods

	Event Service Interfaces and Classes
	EventLib
	EventLib methods

	ConsumerAdmin
	IDL definition
	ConsumerAdmin methods

	EventChannel
	Methods

	EventChannelFactory
	IDL definition
	EventChannelFactory methods

	ProxyPullConsumer
	IDL definition

	ProxyPushConsumer
	IDL definition

	ProxyPullSupplier
	IDL definition

	ProxyPushSupplier
	IDL definition

	PullConsumer
	IDL definition

	PushConsumer
	IDL definition

	PullSupplier
	IDL definition
	PullSupplier methods

	PushSupplier
	IDL definition

	SupplierAdmin
	IDL definition

	Portable Interceptor Interfaces and Classes for C++
	Introduction
	ClientRequestInfo
	Include file
	ClientRequestInfo methods

	ClientRequestInterceptor
	Include file
	ClientRequestInterceptor methods

	Codec
	Include file
	Codec member classes
	Codec methods

	CodecFactory
	Include file
	CodecFactory member
	CodecFactory method

	Current
	Include file
	Current methods

	Encoding
	Include file
	Encoding members

	ExceptionList
	Include file

	ForwardRequest
	Include file

	Interceptor
	Include file
	Interceptor methods

	IORInfo
	Include file
	IORInfo methods

	IORInfoExt
	Include file
	IORInfoExt methods

	IORInterceptor
	Include file
	IORInterceptor methods

	ORBInitializer
	Include file
	ORBInitializer methods

	ORBInitInfo
	Include file
	ORBInitInfo member classes
	ORBInitInfo methods

	Parameter
	Include file
	Parameter members

	ParameterList
	Include file

	PolicyFactory
	Include file
	PolicyFactory method

	RequestInfo
	Include file
	RequestInfo methods

	ServerRequestInfo
	Include file
	ServerRequestInfo methods

	ServerRequestInterceptor
	Include file
	ServerRequestInterceptor methods

	4.x Interceptor and Object Wrapper Interfaces and Classes
	Introduction
	InterceptorManagers
	IOR templates
	InterceptorManager
	InterceptorManagerControl
	Include file
	InterceptorManagerInterceptor method

	BindInterceptor
	Include file
	BindInterceptor methods

	BindInterceptorManager
	Include file
	BindInterceptorManager method

	ClientRequestInterceptor
	Include file
	ClientRequestInterceptor methods

	ClientRequestInterceptorManager
	Include file
	ClientRequestInterceptorManager methods

	POALifeCycleInterceptor
	Include file
	POALifeCycleInterceptor methods

	POALifeCycleInterceptorManager
	Include file
	POALifeCycleInterceptorManager method

	ActiveObjectLifeCycleInterceptor
	Include file
	ActiveObjectLifeCycleInterceptor methods

	ActiveObjectLifeCycleInterceptorManager
	Include file
	ActiveObjectLifeCycleInterceptorManager method

	ServerRequestInterceptor
	Include file
	ServerRequestInterceptor methods

	ServerRequestInterceptorManager
	Include file
	ServerRequestInterceptorManager method

	IORCreationInterceptor
	Include file
	IORInterceptor method

	IORCreationInterceptorManager
	Include file
	IORCreationInterceptorManager method

	VISClosure
	Include file
	VISClosure members

	VISClosureData
	VISClosureData methods

	ChainUntypedObjectWrapperFactory
	Include file
	ChainUntypedObjectWrapperFactory methods

	UntypedObjectWrapper
	Include file
	UntypedObjectWrapper methods

	UntypedObjectWrapperFactory
	Include file
	UntypedObjectWrapperFactory constructor
	UntypedObjectWrapperFactory methods

	Real-Time CORBA Interfaces and Classes
	Introduction
	Include file

	RTCORBA::ClientProtocolPolicy
	IDL

	RTCORBA::Current
	RTCORBA::Current Creation and Destruction
	IDL
	RTCORBA::Current methods

	RTCORBA::Mutex
	Mutex Creation and Destruction
	IDL
	RTCORBA::Mutex Methods

	RTCORBA::NativePriority
	IDL

	RTCORBA::Priority
	IDL

	RTCORBA::PriorityMapping
	PriorityMapping Creation and Destruction
	IDL
	PriorityMapping Methods

	RTCORBA::PriorityModel
	RTCORBA::PriorityModelPolicy
	IDL

	RTCORBA::RTORB
	RTORB Creation and Destruction
	IDL
	RTORB Methods

	RTCORBA::ServerProtocolPolicy
	IDL

	RTCORBA::ThreadpoolId
	IDL

	RTCORBA::ThreadpoolPolicy
	IDL

	Pluggable Transport Interface Classes
	VISPTransConnection
	Include file
	VISPTransConnection methods

	VISPTransConnectionFactory
	Include file
	VISPTransConnectionFactory methods

	VISPTransListener
	Include file
	VISPTransListener methods

	VISPTransListenerFactory
	Include file
	VISPTransListenerFactory methods

	VISPTransProfileBase
	Include file
	VISPTransProfileBase methods
	VISPTransProfileBase members
	VISPTransProfileBase base class methods

	VISPTransProfileFactory
	Include file
	VISPTransProfileFactory methods

	VISPTransBridge
	Include file
	VISPTransBridge methods

	VISPTransRegistrar
	Include file
	VISPTransRegistrar methods

	VisiBroker Logging Classes
	Introduction
	Include file

	VISLogArgs
	VISLogArgs Methods
	VISLogArgsType
	VISLogArgsType Methods
	VISLogInteger
	VISLogInteger Methods
	VISLogString
	VISLogString Methods
	VISLogBoolean
	VISLogBoolean Methods

	VISLogApplicationFields
	VISLogApplicationFields Methods

	VISLogger
	VISLogger Methods

	VISLoggerForwarder
	VISLoggerForwarder Methods

	VISLoggerManager
	VISLoggerManager Methods

	VISLogMessage
	VISLoggerStaticInfo

	Quality of Service Interfaces and Classes
	CORBA::PolicyManager
	Methods

	CORBA::PolicyCurrent
	CORBA::Object
	Methods

	Messaging::RebindPolicy
	Policy values

	Messaging::RelativeRequestTimeoutPolicy
	Messaging::RelativeRoundtripTimeoutPolicy
	QoSExt::DeferBind Policy
	QosExt::RelativeConnectionTimeoutPolicy
	QoSExt::SmartBind Policy

	IOP and IIOP Interfaces and Classes
	GIOP::MessageHeader
	MessageHeader members

	GIOP::CancelRequestHeader
	CancelRequestHeader members

	GIOP::LocateReplyHeader
	LocateReplyHeader members

	GIOP::LocateRequestHeader
	LocateRequestHeader members

	GIOP::ReplyHeader
	Include file
	ReplyHeader members

	GIOP::RequestHeader
	Include file
	RequestHeader members

	IIOP::ProfileBody
	ProfileBody members
	Include file

	IOR members

	IOP::TaggedProfile
	TaggedProfile members

	Marshal Buffer Interfaces and Classes
	CORBA::MarshalInBuffer
	Include file
	CORBA::MarshalInBuffer constructor/ destructor
	CORBA::MarshalInBuffer methods
	CORBA::MarshalInBuffer operators

	CORBA::MarshalOutBuffer
	Include file
	CORBA::MarshalOutBuffer constructors
	CORBA::MarshalOutBuffer destructor
	CORBA::MarshalOutBuffer methods
	CORBA::MarshalOutBuffer operators

	Location Service Interfaces and Classes
	Agent
	Include file
	Agent methods

	Desc
	Desc members

	Fail
	Fail members

	TriggerDesc
	TriggerDesc members

	TriggerHandler
	Include file
	TriggerHandler methods

	<type>Seq
	<type>Seq methods

	<type>SeqSeq
	<type>SeqSeq methods

	Initialization Interfaces and Classes
	VISInit
	Include file
	VISInit constructors/destructors
	VISInit methods

	VISUtil
	Include file
	VISUtil methods

	Appendix: Using Command- Line Options
	BOA_init() method (deprecated since VisiBrokerRT 4.0)
	BOA options

	ORB_init() method
	ORB options

	Location service options

	Appendix: Using VisiBroker Properties
	OSAgent (Smart Agent) properties
	ORB properties
	Server Manager properties
	Location Service properties
	Interface Repository Resolver properties
	TypeCode properties
	Client-Side IIOP Connection properties
	Client-Side LIOP Connection properties
	Server-Side Thread Session Connection properties
	Server-Side Thread Pool Connection properties
	Properties that support bidirectional communication

