
VisiBroker 8.5.2

VisiTelcoLog Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2009-2014. All rights reserved. VisiBroker contains
derivative works of Borland Software Corporation, Copyright 1992-2010 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.

BORLAND, the Borland logo and VisiBroker are trademarks or registered trademarks
of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2014-06-25

VisiBroker Vis iTelcoLog Guide iii

Contents

Introduction to VisiBroker... 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation conventions.. 1

Platform conventions... 2
Contacting Micro Focus .. 2

Further Information and Product Support ... 2
Information We Need .. 2
Contact information .. 3

VisiTelcoLog Service overview... 5

Logging for event aware applications.. 7
Using log factories .. 8
Logging events ... 9
Forwarding logged events .. 11
Filtering events... 12

Logging for event unaware applications 15
Using the log factory ... 15
Writing log records.. 17

Understanding the Log interface ... 19
Log and Typed Log records... 19
Log Quality of Service.. 20
Log size and manipulation .. 21

Controlling the log size .. 21
Log full action .. 21
Log record life .. 21

Setting log attributes... 22
Copying logs .. 22
Log record query, retrieval and iterators... 22

Retrieving records based on time .. 22
Querying for records based on constraint ... 23
Iterators.. 24

Deleting log records .. 24

Advanced features... 27
Log duration... 27
Log scheduling ... 27
Log generated events .. 31

Object Creation Event ... 34
Object Deletion Event.. 34
Attribute Value Change (AVC) Event .. 34
State Change Event .. 35
Threshold Alarm Event .. 36
Processing Error Alarm Event ... 37

Running the VisiTelcoLog Service .. 39
Getting entry references .. 39
Properties .. 40

Index ...43

iv Vis iBroker Vis iTelcoLog Guide

VisiBroker Vis iTelcoLog Guide 1

Introduction to VisiBroker
VisiBroker is a set of services and tools that enables you to build, deploy,
and manage distributed enterprise applications in your corporate
environment. These applications provide dynamic content by using JSP,
servlets, and Enterprise Java Bean (EJB) technologies.

Accessing VisiBroker online help topics in the
standalone Help Viewer

Windows

• Click Start > Programs > VisiBroker > Help Topics

or

• Open the Command Prompt and go to the product installation \bin
directory, then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then enter the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option but
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, click Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Convention Used for
italics Used for new terms and book titles.
computer Information that the user or application provides, sample

command lines and code.
bold computer In text, bold indicates information the user types in. In code

samples, bold highlights important statements.

2 VisiBroker Vis iTelcoLog Guide

Contact ing Micro Focus

Platform conventions
The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

Symbol Indicates
Windows All supported Windows platforms
UNIX UNIX platforms
Solaris Solaris only
Linux Linux only

Convention Used for

http://www.microfocus.com

VisiBroker Vis iTelcoLog Guide 3

Contact ing Micro Focus

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/product-trials/corba/
index.aspx?productname=VisiBroker (VisiBroker trial software)

• http://supportline.microfocus.com/
xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/
websync/productupdatessearch.aspx (updated VisiBroker files and other
software)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

http://www.microfocus.com
https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
http://supportline.microfocus.com/xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/websync/productupdatessearch.aspx
http://supportline.microfocus.com/xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/websync/productupdatessearch.aspx
http://supportline.microfocus.com/xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/websync/productupdatessearch.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

4 VisiBroker Vis iTelcoLog Guide

Contact ing Micro Focus

VisiBroker Vis iTelcoLog Guide 5

VisiTelcoLog Service
overview
The VisiTelcoLog Service is Micro Focus’s OMG compliant implementation of
the OMG Telecom Log Service specification version 1.1.2. It supports all of
the features defined by the OMG specification, including all operations of the
log interfaces, their factories, and their detailed semantics. This document
is a user guide for the VisiTelcoLog Service, and it assumes that the reader
is familiar with the OMG Telecom Log Service specification.

The essential purpose of the VisiTelcoLog Service is to transparently log
events passing through a channel of an event or a notification service.
VisiTelcoLog Service is typically used by mission-critical distributed monitor
control applications, such as a telecommunication management network
(TMN). These applications not only require a high performance event or
notification service to forward events with a negligible overhead, but also
require the ability to log a portion or all of these events efficiently and
transparently. Though the specification is called OMG Telecom Log Service
and the Micro Focus implementation is called VisiTelcoLog Service, the
architecture itself is very generic and can be used by any application.

The VisiTelcoLog Service provides a high level event-logging model to shield
applications from the details of event logging. This allows higher
performance and application-generic log services to be implemented by
third parties. It is possible for applications to implement and connect an
event consumer to log transparently all received events into a conventional
database or other form of external persistent repository without using the
VisiTelcoLog Service, but the disadvantage of this kind of custom-built
event logging at the application level is that it forces the application
developer to implement a full event unmarshaling as well as application-
specific record schema and events-to-records translation code. The
consequences would be poor performance (namely, event throughput) and
high development and maintenance costs.

With VisiTelcoLog Service, events received by an event or notification
channel can be logged transparently at the application level. An event-
logging object (also referred to in this document as DsEventLog object, or
an event-based log object) is also a conventional OMG event channel (in
other words, it extends from OMG event channel). This allows applications
to be designed and developed without depending on whether or how events
are to be logged. Existing event-based applications can also utilize the
event logging of VisiTelcoLog Service with neither application code change
nor redeployment.

Besides the transparency for event and notification-based applications,
DsEventLog is also extended from the Log object. On this log object, explicit
non-event record logging, as well as log record querying, updating,
deleting, log object control and administration operations can be performed.
A DsEventLog object is simply extended from a conventional event channel
and the log object.

For every kind of OMG defined event channel, such as event channel, typed
event channel, notification channel, and typed notification channel, there is
a corresponding log object. For applications that are not event-aware, a
BasicLog object is also provided.

6 VisiBroker Vis iTelcoLog Guide

VisiTelcoLog Service overview

Architecture and interface inheritance views of VisiTelcoLog Service's
EventLog are illustrated in the following figures. The first figure shows how
an event supplier can log its events while at the same time forwarding
events to all the consumers. Using the Log interface another user can also
query the logged events.

Figure 1 EventLog architecture

The following figure describes an event-based log object's hierarchy.

Figure 2 EventLog inheritance interface

VisiBroker Vis iTelcoLog Guide 7

Logging for event aware
applications
This chapter discuses how an event or notification service-based application
(or any event aware application in general) can use VisiTelcoLog Service to
log events. VisiTelcoLog Service is basically an event logger. Log, in this
context, is an event channel that propagates events apart from logging the
events to a persistent store.

There are four kinds of event-based log objects that an event-aware
application can use:

• EventLog

• NotifyLog

• TypedEventLog

• TypedNotifyLog

The following table describes the VisiTelcoLog Service module and interface
names and the features available for event and notification service-based
applications.

In this chapter, the following topics will be explained:

• Using log factories to obtain event based log objects.

• Logging events on event based log objects.

• Forwarding logged events to consumers.

• Filtering events to be logged.

Features
OMG Event Service
application

OMG Notification
Service application

Module name DsEventLogAdmin DsNotifyLogAdmin
Factory interface name EventLogFactory NotifyLogFactory
Log interface name EventLog NotifyLog
Factory service name EventLogService NotifyLogService
Typed Events Module
name

DsTypedEventLogAdmin DsTypedNotifyLogAdmin

Typed Events Factory
Interface name

TypedEventLogFactory TypedNotifyLogFactory

Typed Event Log Interface
name

TypedEventLog TypedNotifyLog

Typed Events Factory
service name

TypedEventLogService TypedNotifyLogService

Log forwarding Yes Yes
Filtering while log
forwarding

No Yes

Filtering while storing No Yes

8 VisiBroker Vis iTelcoLog Guide

Using log factor ies

Using log factories
For an event aware application that wishes to log events, an event-based
log is first bootstrapped using the log's factory. For example, a notification
service-based application first resolves to NotifyLogFactory using the
object name NotifyLogService, and then obtains a log of type
NotifyLog. For other types of event-based applications, see the table
above. This section explains the steps to be taken to obtain reference to an
event-based log object.

The example code below first bootstraps to NotifyLogFactory using the
object name NotifyLogService. It then attempts to find a NotifyLog log
with ID equal to 100 from the factory. If it does not find NotifyLog it
attempts to create one. The maximum size specified is 0 (zero). This means
that no predefined limit is used; however, a predefined limit is
recommended.

C++ example

The example code is located in the <install_dir>/examples/vbe/
telcolog/primitive_cpp directory.

// get service reference
CORBA::Object_var service =
 orb->resolve_initial_references("NotifyLogService");

DsNotifyLogAdmin::NotifyLogFactory_var factory =
 DsNotifyLogAdmin::NotifyLogFactory::_narrow(service);

// find log with id 100
DsLogAdmin::LogId id = 100;
DsLogAdmin::Log_var log = factory->find_log(id);

// if log not created, create log
if(log.in() == NULL)
{
 CORBA::ULongLong max_size = 4 * 1024 * 1024;
 DsLogAdmin::CapacityAlarmThresholdList thresholds;
 CosNotification::QoSProperties initial_qos;
 CosNotification::AdminProperties initial_admin;

 log = factory->create_with_id(id, DsLogAdmin::wrap,
 max_size, thresholds, initial_qos, initial_admin);
}

DsNotifyLogAdmin::NotifyLog_var notify_log=
 DsNotifyLogAdmin::NotifyLog::_narrow(log.in());

VisiBroker Vis iTelcoLog Guide 9

Logging events

Java example

Example code is located in the <install_dir>/examples/vbe/telcolog/
primitive_java directory.

// get service reference
org.omg.CORBA.Object service =
 orb.resolve_initial_references("NotifyLogService");

org.omg.DsNotifyLogAdmin.NotifyLogFactory factory =
 org.omg.DsNotifyLogAdmin.NotifyLogFactoryHelper.narrow(
 service);

// find log with id 100
int id = 100;
org.omg.DsLogAdmin.Log log = factory.find_log(id);

// if log not created, create log
if(log == null)
{
 long max_size = 4 * 1024 * 1024;
 log = factory.create_with_id(id,
 org.omg.DsLogAdmin.wrap.value, max_size, new short[0],
 new org.omg.CosNotification.Property[0],
 new org.omg.CosNotification.Property[0]);
}

org.omg.DsNotifyLogAdmin.NotifyLog notify_log =
 org.omg.DsNotifyLogAdmin.NotifyLogHelper.narrow(log);

Logging events
Once the reference to the event-based log object is resolved, an event
propagation (or forwarding) operation such as push or pull is used to
propagate events. Since this channel object also has the characteristics of a
log, it logs all the events that are propagated through it. Filters can also be
attached to the log. See “Filtering events” for further details on how to
selectively log events.

Furthermore, notification-based applications can use all the notification
service features such as QoS framework, Event Filters, and others.

For further details on developing Notification Service supplier applications,
see the Developing supplier and consumer applications section in the
VisiBroker VisiNotify Guide.

VisiTelcoLog Service optimizes the event logging at the GIOP level.

On a log full condition, if the log full action is set to wrap, then the oldest
events are over-written. If the log full action is set to halt, and if the log
record expire time is specified, then all the expired events are over-written.
Otherwise the following exceptions are thrown:

• Insufficient space: If the log space is not sufficient for logging the event
then a NO_RESOURCE system exception with LOGFULL minor code (1001)
is thrown.

• Off-duty log: If the log is off-duty then a NO_RESOURCE system
exception with minor code LOGOFFDUTY (1000) is thrown.

• Locked log: If the log is locked then a NO_PERMISSION system exception
with minor code LOGLOCKED (1003) is thrown.

10 VisiBroker Vis iTelcoLog Guide

Logging events

• Disabled log: If the log is disabled, then TRANSIENT system exception
with minor code equal to LOGDISABLED (1002) is thrown.

Note that if the supplier is using event batching the exceptions will not
reach the supplier. See the “VisiBroker Event Buffering/Batch” section in the
VisiBroker VisiNotify Guide for further details on event batching.

Also note that for the connected pull suppliers, the channel pulls the events
and then logs those events. On a log full condition, the channel continually
attempts to log until log space is available. There is no way the connected
supplier application can know about this condition. Using the
vbroker.dslog.waitForLogAvailable property a wait period can be
specified for this loop. By default it is 20 seconds.

The following code sample shows a structured supplier logging TMN QoS
Alarm event. The supplier application first obtains the default supplier
admin from the log (as the log is also a channel in itself), and then after
obtaining structured proxy push consumer, connects to it. It then creates a
TMN QoS Alarm event and pushes the event through the log. When the
event is pushed in the log, the log stores the event and then forwards the
event based on the log's forwarding state.

C++ example

Example code is located in the <install_dir>/examples/vbe/telcolog/
primitive_cpp directory.

// get default supplier admin object from the log
CosNotifyChannelAdmin::SupplierAdmin_var admin =
 notify_log->default_supplier_admin();

CosNotifyChannelAdmin::ProxyID proxy_id;

// create a proxy consumer on the log
CosNotifyChannelAdmin::ProxyConsumer_var proxy =
 admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, proxy_id);

CosNotifyChannelAdmin::StructuredProxyPushConsumer_var
 Consumer = CosNotifyChannelAdmin::

StructuredProxyPushConsumer::_narrow(proxy);

// connect to the proxy consumer
consumer->connect_structured_push_supplier(NULL);

// fill a structured event with TMN QoS Alarm event
TMN::Event event;
CosNotification::StructuredEvent structured;
TMN::QoSAlarmInfo qosalrm_info;
misc::forge_qosAlrmInfo(qosalrm_info);
event.name = (const char*) " TMN::Events::qosAlarm";
event.info <<= qosalrm_info;
misc::gathering(event, structured);

// push the structured event into log
consumer->push_structured_event(structured);

VisiBroker Vis iTelcoLog Guide 11

Forwarding logged events

Java example

Example code is located in the <install_dir>/examples/vbe/telcolog/
primitive_java directory.

// get default supplier admin object from the log
org.omg.CosNotifyChannelAdmin.SupplierAdmin admin
 = notify_log.default_supplier_admin();

org.omg.CORBA.IntHolder proxy_id =
 new org.omg.CORBA.IntHolder();

// create a proxy consumer on the log
org.omg.CosNotifyChannelAdmin.ProxyConsumer proxy =
 admin.obtain_notification_push_consumer(

org.omg.CosNotifyChannelAdmin.ClientType.STRUCTURED_EVENT,
 proxy_id);

org.omg.CosNotifyChannelAdmin.StructuredProxyPushConsumer
 consumer =

org.omg.CosNotifyChannelAdmin.StructuredProxyPushConsumerH
elper.narrow(
 proxy);

// connect to the proxy consumer
consumer.connect_structured_push_supplier(null);

// fill a structured event with TMN QoS Alarm event
TMN.Event event = new TMN.Event();
org.omg.CosNotification.StructuredEvent structured =
 new org.omg.CosNotification.StructuredEvent();
TMN.QoSAlarmInfo qosalrm_info = new TMN.QoSAlarmInfo();
event.header = new TMN.EventHeader();
event.info = orb.create_any();
Util.forge_event_header(event.header);
Util.forge_qosAlrmInfo(qosalrm_info);
event.name = "TMN::Events::qosAlarm";
TMN.QoSAlarmInfoHelper.insert(event.info,qosalrm_info);
Util.gathering(event, structured);

// push the structured event into log
consumer.push_structured_event(structured);

Forwarding logged events
The events that get pushed into a log or pulled by the log are forwarded to
any down-stream consumers after the events are logged. Any consumer
application can start consuming events that are propagated. See the
Developing supplier and consumer applications section in the VisiBroker
VisiNotify Guide for information on writing consumer applications.

By setting its forwarding state to off, the log object can be configured so
that it does not forward logged events. The following code snippet shows
how an application can disable forwarding on a NotifyLog object and check
the current forwarding state of the log.

All the features of an event service and a notification service can be used for
event propagation such as attaching filters, QoS, etc.

12 VisiBroker Vis iTelcoLog Guide

Fi l ter ing events

C++
notify_log->set_forwarding_state(DsLogAdmin::off);

DsLogAdmin::ForwardingState current_state =
 notify_log->get_forwarding_state();

Java
notify_log.set_forwarding_state(
 org.omg.DsLogAdmin.ForwardingState.off);

org.omg.DsLogAdmin::ForwardingState current_state =
 notify_log.get_forwarding_state();

Filtering events
A filter set for a NotifyLog or a TypedNotifyLog can also filter events
being logged to the log. The log uses the filter object defined by the
notification service, CosNotifyFilter::Filter. See Setting the Quality of
Service and Filters in the VisiBroker VisiNotify Guide for information
about how to create a filter and how to write constraints.

Note that only one filter object can be associated with a log. By default, no
filter objects are associated with the log and all events are logged. Also,
whenever a set_filter() method is called the log will generate an
AttributeValueChange event.

The following example shows how to create a filter, set a filter on the log,
and get a filter from the log.

C++
// MAKE USE OF FILTERS
// STEP 1) Get default filter factory
CosNotifyFilter::FilterFactory_var ffact =
 log->default_filter_factory();

// STEP 2) Create filter
CosNotifyFilter::Filter_var filter1;
filter1 = ffact->create_filter("EXTENDED_TCL");

// STEP 3) Create constraint
CosNotifyFilter::ConstraintExpSeq constr_seq1;
constr_seq1.length(1);
constr_seq1[0].constraint_expr = CORBA::string_dup(
 "$type_name == 'TMN::Events::qosAlarm'"
);

// STEP 4) Add constraint to filter
filter1->add_constraints(constr_seq1);

// STEP 5) Set filter on the log
log->set_filter(filter1);

// STEP 6) Get the filter associated with the log
CosNotifyFilter::Filter_var filter2;
Filter2 = log->get_filter();

VisiBroker Vis iTelcoLog Guide 13

Fi l ter ing events

Java
//Make Use of Filters
//[1] Get a filter factory
org.omg.CosNotifyFilter.FilterFactory ffact =
 channel.default_filter_factory();

//[2] Create a filter
org.omg.CosNotifyFilter.Filter filter = null;
filter = ffact.create_filter("EXTENDED_TCL");

//[3] Create a constraint
org.omg.CosNotifyFilter.ConstraintExp [] constraints =
 new org.omg.CosNotifyFilter.ConstraintExp[1];
constraints [0] =
 new org.omg.CosNotifyFilter.ConstraintExp();
constraints [0].constraint_expr =
 new String ("$type_name == 'TMN::Events::qosAlarm'");

//[4] Add constraint to filter
org.omg.CosNotifyFilter.ConstraintInfo[] info = null;
info = filter.add_constraints(constraints);

//[5] Set filter on the log
log.set_filter (filter);

//[6] Get the filter associated with the log
org.omg.CosNotifyFilter.Filter filter2 = null;
filter2 = log.get_filter();

14 VisiBroker Vis iTelcoLog Guide

VisiBroker Vis iTelcoLog Guide 15

Logging for event unaware
applications
Legacy applications and event unaware clients can also use the VisiTelcoLog
Service. Using the BasicLog interface and explicit write operations using
CORBA Any, an event unaware application can make use of the VisiTelcoLog
Service. These applications, however, will not be able to use features such
as log filtering, forwarding, and event generation.

The following table describes the VisiTelcoLog Service module and interface
names and the log features available for event unaware applications.

In this chapter, the following topics will be explained:

• Using the log factory to obtain the log object for event unaware applications.

• Writing log records for event unaware applications.

Using the log factory
In order to log, an event unaware application needs to get a reference to
the BasicLog from its factory, BasicLogFactory. Apart from creating the
basic log object, the factory interface also supports some other basic
management operations such as find and list.

Features Event unaware application
Module name DsLogAdmin
Factory Interface name BasicLogFactory
Log Interface name BasicLog
Factory service name BasicLogService
Log forwarding No
Filtering while log
forwarding

No

Filtering while storing No

16 VisiBroker Vis iTelcoLog Guide

Using the log factory

Resolving the BasicLogService name gets the BasicLogFactory object
reference. In the following code snippet, the application looks for a
BasicLog with an ID equal to 100, and if it does not find one a BasicLog is
created with size equal to 0 (zero). A size equal to 0 (zero) means that
there is no predefined size limit. Note that by setting log size to zero, the
log continues to expand till all the disk space is used. Specifying a more
meaningful value is recommended.

C++
// get service reference
CORBA::Object_var service =
 orb->resolve_initial_references("BasicLogService");

DsLogAdmin::BasicLogFactory_var factory =
 DsLogAdmin::BasicLogFactory::_narrow(service);

// find log with id 100
DsLogAdmin::LogId id = 100;
DsLogAdmin::Log_var log = factory->find_log(id);

// if log not created, create log
if(log.in() == NULL)
{
 CORBA::ULongLong max_size = 4 * 1024 * 1024;
 // max_size=0 (zero) leaves the max log size unbounded.

 log = factory->create_with_id(id, DsLogAdmin::wrap,
 max_size);
}

DsLogAdmin::BasicLog_var basic_log=
 DsLogAdmin::BasicLog::_narrow(log.in());

Java
// get service reference
org.omg.CORBA.Object service =
 orb.resolve_initial_references("BasicLogService");

org.omg.DsLogAdmin.BasicLogFactory factory =
 org.omg.DsLogAdmin.BasicLogFactoryHelper.narrow(
 service);

// find log with id 100
int id = 100;
org.omg.DsLogAdmin.Log log = factory.find_log(id);

// if log not created, create log
if(log == null)
{
 long max_size = 4 * 1024 * 1024;
 // max_size=0 (zero) leaves the max log size unbounded.

 log = factory.create_with_id(id,
 org.omg.DsLogAdmin.wrap.value, max_size);
}

org.omg.DsLogAdmin.BasicLog basic_log =
 org.omg.DsLogAdmin.BasicLogHelper.narrow(log);

VisiBroker Vis iTelcoLog Guide 17

Wri t ing log records

Writing log records
The write_records operation is used to write records to logs. The input
parameter for this operation is a sequence of CORBA Any. Each Any in the
sequence denotes an individual log record.

If the log is full while writing, then the LogFull user exception is thrown.
The exception also contains the number of records written from the original
sequence of Anys.

If the log's state is off_duty the LogOffDuty user exception is thrown. If
the log's state is locked the LogLocked user exception is thrown. If the log
is disabled the LogDisabled exception is thrown.

The following code snippet shows steps to write some TMN events using the
write_records operation.

C++
// TMN events
TMN::Event event;
TMN::AttrValChgSeq attrvalchg_info;
TMN::AttrValSeq objcrt_info;
TMN::AttrValSeq objdel_info;
TMN::QoSAlarmInfo qosalrm_info;

// Fill TMN events with some data
misc::forge_event_header(event.header);
misc::forge_attrValChgInfo(attrvalchg_info);
misc::forge_objCrtInfo(objcrt_info);
misc::forge_objDelInfo(objdel_info);
misc::forge_qosAlrmInfo(qosalrm_info);

// Sequence of Anys to be written
DsLogAdmin::Anys anys;
anys.length(4);

// Insert the TMN events into Any Sequence
event.name = (const char*)
 "TMN::Events::attributeValueChange";
event.info <<= attrvalchg_info;
anys[0] <<= event;

event.name = (const char*)
 "TMN::Events::objectCreation";
event.info <<= objcrt_info;
anys[1] <<= event;

event.name = (const char*)
 "TMN::Events::objectDeletion";
event.info <<= objdel_info;
anys[2] <<= event;

event.name = (const char*)
 "TMN::Events::qosAlarm";
event.info <<= qosalrm_info;
anys[3] <<= event;

// Write the sequence of Anys to log
basic_log->write_records(anys);

18 VisiBroker Vis iTelcoLog Guide

Wri t ing log records

Java
// TMN events
TMN.Event event = new TMN.Event();
TMN.AttrValChgSeqHolder attrvalchg_info =
 new TMN.AttrValChgSeqHolder();
TMN.AttrValSeqHolder objcrt_info =
 new TMN.AttrValSeqHolder();
TMN.AttrValSeqHolder objdel_info =
 new TMN.AttrValSeqHolder();
TMN.QoSAlarmInfo qosalrm_info =
 new TMN.QoSAlarmInfo();

// Fill TMN events with some data
event.header = new TMN.EventHeader();
event.info = orb.create_any();
Util.forge_event_header(event.header);
Util.forge_attrValChgInfo(attrvalchg_info);
Util.forge_objCrtInfo(objcrt_info);
Util.forge_objDelInfo(objdel_info);
Util.forge_qosAlrmInfo(qosalrm_info);

// Sequence of Anys to be written
org.omg.CORBA.Any[] anys =
 new org.omg.CORBA.Any[4];
for (int i = 0; i < 4; i++)
{
 anys[i] = orb.create_any();
}

// Insert the TMN events into Any Sequence
event.name = "TMN::Events::attributeValueChange";
TMN.AttrValChgSeqHelper.insert(event.info,
 attrvalchg_info.value);
TMN.EventHelper.insert(anys[0],event);

event.name = "TMN::Events::objectCreation";
TMN.AttrValSeqHelper.insert(event.info,objcrt_info.value);
TMN.EventHelper.insert(anys[1],event);

event.name = "TMN::Events::objectDeletion";

TMN.AttrValSeqHelper.insert(event.info,objdel_info.value);
TMN.EventHelper.insert(anys[2],event);

event.name = "TMN::Events::qosAlarm";

TMN.QoSAlarmInfoHelper.insert(event.info,qosalrm_info);
TMN.EventHelper.insert(anys[3],event);

// Write the sequence of Anys to log
basic_log.write_records(anys);

VisiBroker Vis iTelcoLog Guide 19

Understanding the Log
interface
Log characteristics are the same for both event-based log objects and basic
log objects. These characteristics are captured in the DsLogAdmin::Log
interface. All log objects inherit from this interface and therefore have
common characteristics.

In this chapter, the following topics will be explained:

• “Log and Typed Log records”

• “Log Quality of Service”

• “Log size and manipulation”

• “Setting log attributes”

• “Copying logs”

• “Log record query, retrieval and iterators”

• “Deleting log records”

Log and Typed Log records
When an event aware or event unaware application uses the VisiTelcoLog
Service to write records to logs using push, pull, or write_record
operations, for each received event or each CORBA Any in the Any sequence
a LogRecord is created. Similarly, TypedLogRecord is the log record
created for each typed event received.

The LogRecord and TypedLogRecord structures are described in the
following IDL snippet.

struct LogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list;
 any info;
};

struct TypedLogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list;
 RepositoryId interface_id;
 Identifier operation_name;
 ArgumentList arg_list;
};

For more detailed structure definitions, please see the OMG Telecom Log
Service Specification.

In the structures given in the IDL snippet above, RecordId id is a unique
number assigned to the record by the log and is unique in the log only.

TimeT time is the time stamp for the record, when the record was written
to the underlying back end.

20 VisiBroker Vis iTelcoLog Guide

Log Qual i ty of Service

NVList attr_list can store a list of user-defined attributes for each log
record. The attributes are not attached to the log records at the time of
writing, but using separate set_attribute() API. See “Setting log attributes”
for further information on setting attributes.

The log data itself is stored in the CORBA Any. For typed events, the log
data is encapsulated in the argument list for the typed event operation.

RepositoryId interface_id and Identifier operation_name are the
repository ID of the interface and the operation name of the operation that
emitted the typed event.

Log Quality of Service
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog
Service provides a lightweight Quality of Service framework with
set_log_qos() and get_log_qos() APIs. This is in addition to the
extensive quality of service framework of the Notification Service
specification.

VisiTelcoLog Service supports the following Quality of Service properties:

VisiTelcoLog Service takes only the highest value of the Quality of Service
specified in the set_log_qos() operation. For example, if all the three
Quality of Service properties are specified, then only QoSReliability is
taken. This is reflected in get_log_qos() operation. The following code
snippet illustrates this point.

C++
DsLogAdmin::QosList qos;
qos.length(3);
qos[0] = DsLogAdmin::QoSNone;
qos[1] = DsLogAdmin::QoSFlush;
qos[2] = DsLogAdmin::QoSReliability;

// set all the three QoS
basic_log->set_log_qos(qos);

// Only QoSReliability
qos = basic_log->get_log_qos();

QoS
property Description
QoSNone When this is specified no Quality of Service is promised. Calling

flush() operation will not flush log records.
QoSFlush When this is specified, calling flush() will flush/commit all the

log records to the back end.
QoSReliability When this is specified, log records will be written directly to the

back end.

VisiBroker Vis iTelcoLog Guide 21

Log size and manipulat ion

Log size and manipulation
This section explains how to control the log size, determine the log full
action, and control log record life.

Controlling the log size
The maximum size (in bytes) of the log can be specified at log creation
time. All the log factory log creation operations take a log size parameter
(see the code snippets in “Using log factories” for examples). Log size is the
maximum size the log can grow to. Size of 0 (zero) means that there is no
predefined limit, and the log can grow indefinitely. Once the size has been
set it can be altered again by using the set_max_size() and
get_max_size() operations. The maximum size of the log is different from
current size. Current size is the number of bytes taken up by the log
records.

Calling the set_max_size() with a new value less than the current size of
the log throws InvalidParam user exception. Calling set_max_size()
with any value less than 1 MB will also throw InvalidParam. A minimum of
1 MB is required for the maximum size value. This is an implementation
limit. Attempting to create a log with initial maximum size less than 1 MB
will automatically set the maximum size to 1 MB.

Log full action
If the current size of the log reaches the maximum size, then the log is said
to be in a log full condition. Under such a log full condition, VisiTelcoLog
Service specifies the log full action that needs to be taken. The default log
full action of any log is specified when the log is created.

By calling set_log_full_action(), the action to be taken in a log full
condition can be specified to wrap or halt the log. When the log full action
is wrap, the oldest log records are deleted until there is enough space that
the new log record can be written.

When the log full action is halt, and if the maximum record life for the log
is specified, then all the log records that have expired are deleted from the
log. Once the expired records are deleted the write operation attempt is
repeated. If the write fails again appropriate exceptions are thrown. See
“Logging for event aware applications” and “Logging for event unaware applications”
for the exceptions thrown and detail on write operations.

Log record life
Log record life can be specified by the set_max_record_life() API, with
units in seconds. Specifying a value of 0 (zero) for maximum record life
creates a condition where no log records ever expire.

If the log record life is specified, a garbage collector thread will attempt to
delete all expired log records periodically. By default the garbage collector
thread starts every 60 minutes. The time interval for this thread can be
configured using the property
vbroker.dslog.backend.garbageCollectorInterval.

22 VisiBroker Vis iTelcoLog Guide

Set t ing log at t r ibutes

Setting log attributes
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog
Service allows client applications to define an attribute list of name-value
pairs that are meaningful to the application for log records. These log record
attributes (as shown in the log record structure) are readable and writable.

Using the log record ID or grammar and constraint, attributes can be set or
retrieved for log records. Using the set_record_attribute() API,
attributes can be set on log records based on log record ID. Similarly, using
the set_records_attribute() API, attributes can be set on multiple log
records which meet the constraint expression specified in the grammar and
constraint parameters.

Please note that VisiTelcoLog Service is optimized for log writing. For this
reason these operations are comparatively expensive. While setting
attributes, the entire log is copied and then replaced.

Copying logs
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog
Service provides two copy operations to make a copy of an existing log
object. The copy() operation creates an empty log with similar
characteristics as the original log. The log ID of the new log object copy is
returned in the out parameter.

The copy_with_id() operation takes a log ID and creates an empty log
with the input log ID with characteristics similar to the original log. If a log
with the input log ID already exists, the LogIdAlreadyExists user
exception is thrown. Both of the operations throw NO_RESOURCES system
exception if the log factory cannot create a new log because of resource
constraints.

Log record query, retrieval and iterators
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog
Service provides two methods to query for log records:

• The retrieve method retrieves records based on time.

• The query method retrieves records based on constraint.

For typed log records the corresponding methods are:

• The typed_retrieve method retrieves records based on time.

• The typed_query method retrieves records based on constraint.

The retrieve and query methods return an iterator as an out parameter
to handle large record retrievals. Please note that the query and retrieve
operations are sequential in nature, and they may be time consuming if the
number of log records is very large.

Retrieving records based on time
The Log interface provides the retrieve() and typed_retrieve()
methods to perform queries based on time. You can also specify how many
records in sequence forwards or backwards to retrieve from the specified
time. An iterator may be provided to handle large record retrievals. The
following code snippet is an example of how to retrieve records based on
time.

VisiBroker Vis iTelcoLog Guide 23

Log record query, retr ieval and i terators

C++
DsLogAdmin::TimeT from_time;
DsLogAdmin::RecordList_var time_recs;
DsLogAdmin::Iterator_var time_itr;
...
// Starting from 'from_time' retrieve 10 records backwards
(i.e -10).
// Store any remaining records in an Iterator 'time_itr'
// if the number of records to retrieve is greater than
1000
time_recs =
 log->retrieve(from_time, -10, time_itr.out());
...

Java
org.omg.DsLogAdmin.TimeT from_time;
org.omg.DsLogAdmin.RecordList time_recs = null;
org.omg.DsLogAdmin.Iterator time_itr = null;
...
// Starting from 'from_time' retrieve 10 records backwards
(i.e -10).
// Store any remaining records in an Iterator 'time_itr'
// if the number of records to retrieve is greater than
1000
time_recs =
 log.retrieve(from_time, -10, time_itr);
...

Querying for records based on constraint
The Log interface provides the query() and typed_query() methods to
perform queries based on a given constraint. The constraint is based on the
VisiBroker VisiNotify Filter Constraint. See Writing Filter Constraint
Expressions in the VisiBroker VisiNotify Guide for information about
writing constraints using the Extended Trader Constraint Language
(Extended TCL). A query call takes in a grammar to use and the constraint
expression, and an iterator may be provided to deal with a large number of
records.

When you write constraints to query LogRecord or TypedLogRecord
structures see “Log and Typed Log records” for their definition.

The following example illustrates how to query using constraints. Note that
VisiTelcoLog Service only recognizes the default EXTENDED_TCL as the
grammar for constraints.

C++
DsLogAdmin::RecordList_var recs_found;
DsLogAdmin::Iterator_var itr;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

Java
omg.org.DsLogAdmin.RecordList recs_found = null;
omg.org.DsLogAdmin.Iterator itr = null;
...

24 VisiBroker Vis iTelcoLog Guide

Delet ing log records

// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

Iterators
Iterators are returned by a retrieve() or query() method when a large
number of log records is returned. The number of records that a
retrieve() or query() method should return before using an iterator is
controlled by the vbroker.dslog.getRecMaxList property. If the number
of records matched from a query() or a retrieve() operation is greater
than the value specified by vbroker.dslog.getRecMaxList the excess
matched log records will be added to an iterator. Note that when
typed_retrieve() or typed_query() is called a TypedRecordIterator
is returned.

A log iterator provides two methods: get() and destroy(). The get()
method allows the caller to retrieve the records stored by the iterator. When
you call the get() method you need to indicate the position and how many
records to obtain from the specified position. Note that the position in the
iterator moves forward only, therefore you cannot request values before the
position of the last request. Requesting for invalid values will throw an
InvalidParam exception.

The following code snippet is an example of how to use an iterator's get()
method.

C++
DsLogAdmin::RecordList_var recs_found;
DsLogAdmin::Iterator_var itr;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

Java
omg.org.DsLogAdmin.RecordList recs_found = null;
omg.org.DsLogAdmin.Iterator itr = null;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

When an iterator has been exhausted, and we call get() and use the
position of the last record in the iterator, the get() method will return an
empty log record list to the caller. This indicates that the iterator has been
exhausted. The application must ensure that the destroy() method is
called in order to destroy the object from the VisiTelcoLog Service.

Deleting log records
The Log interface allows deletion of log records and typed log records using
either grammar and constraint expression or by ID. Two APIs,
delete_records() and delete_records_by_id(), are provided for this
purpose and are described in the following table.

Method Description
delete_records() Deletes log records based on grammar and constraint

expression.
delete_records_
by_id()

Deletes log records based on log record ID numbers.

VisiBroker Vis iTelcoLog Guide 25

Delet ing log records

VisiTelcoLog Service optimizes event log records and typed event log record
deletion by not deleting them immediately, but marking them as deleted.
Over time, the log can become fragmented because of this optimization.
Therefore, when the fragmentation exceeds a defined limit, the delete
operation automatically triggers defragmentation. The defragmentation
limit defaults to 75 percent and can be configured using the
vbroker.dslog.backend.file. fragmentationLimit property.
Defragmentation logic is essentially a copying operation, where all the log
records are re-flowed. Please note that the defragmentation operation is
expensive.

The following code snippet illustrates deleting a log record of ID 200 using
grammar and constraint expressions. The same thing can also be achieved
using delete_records_by_id().

C++
// constraint for log rec with id = 200
const char* grammar = "EXTENDED_TCL";
const char* constraint = "$.id == 200";

// delete the log record matching the constraint
basic_log->delete_records(grammar, constraint);

Java
// delete the log record where the log record id = 200
basic_log.delete_records("EXTENDED_TCL", "$.id == 200");

26 VisiBroker Vis iTelcoLog Guide

VisiBroker Vis iTelcoLog Guide 27

Advanced features
This section covers the following advanced topics:

• “Log duration”

• “Log scheduling”

• “Log generated events”

Log duration
Setting a log duration interval allows users to create a coarse-grained time
interval (window) during which an unlocked and enabled log object is
functional. When the log duration is set the log object will only allow writing
log records or events to the log within the specified time interval.

The log duration time interval is set and retrieved with the following
methods:

set_interval(in DsLogAdmin::TimeInterval interval);

and

DsLogAdmin::TimeInterval get_interval();

The input parameter and return value are an IDL structure defined as:

module DsLogAdmin {
 typedef TimeBase::TimeT TimeT;
 struct TimeInterval {
 TimeT start;
 TimeT stop;
 };
};

The start and stop fields of a time interval are of type
CORBA::ULongLong. Their values are numbers of 10-7 seconds (or 100
nanoseconds) counted from 00:00:00, Oct. 15, 1582 using Greenwich Mean
Time (GMT).

Although the start and stop time unit is specified by OMG as 10-7 second,
the actual time resolution supported by VisiTelcoLog is in seconds. Start
and stop values specified in set_interval() will be rounded to the
nearest value of full seconds by the VisiTelcoLog Service.

If the start and stop values are both set to 0 (zero), or rounded to zero
seconds, the log will always be in a functional state.

To retrieve the current log duration setting, users can call the
get_interval() operation on the target log.

Log scheduling
Log scheduling allows users to set a series of fine-grained weekly time
intervals (weekly masks) on a given log object. When scheduling is set up
the log object will only allow writing log records or events to the log within
these time intervals, if it is within a log duration (see “Log duration”), and the
log is in an unlocked and enabled state.

28 VisiBroker Vis iTelcoLog Guide

Log schedul ing

Log scheduling time intervals are set and retrieved via the following
methods:

set_week_mask(in DsLogAdmin::WeekMask weekmask);

and

DsLogAdmin::WeekMask get_week_mask();

The input parameter and return value of above methods are an IDL
sequence of an IDL structure WeekMaskItem. They are defined as:

module DsLogAdmin {
 struct Time24 {
 unsigned short hour; // 0 - 23
 unsigned short minute; // 0 - 59
 };

 struct Time24Interval {
 Time24 start;
 Time24 stop;
 };

 typedef sequence<Time24Interval> IntervalsOfDay;
 typedef unsigned short DaysOfWeek;

 struct WeekMaskItem {
 DaysOfWeek days;
 IntervalsOfDay intervals;
 };

 typedef sequence<WeekMaskItem> WeekMask;
};

Greenwich Mean Time zone (GMT) is used by default. The user can choose
to use the local time zone of the log server by starting the VisiTelcoLog
Service with the following property setting:

vbroker.dslog.scheduleByServerLocalTime=true

For diagnostic purposes the log schedule setting changes and active
behavior can be observed on the Console stdout by starting the VisiTelcoLog
Service with the following property setting:

vbroker.dslog.timerDebug=true

VisiTelcoLog Service is shipped with an example of log schedule in the
following directory:

<install_dir>/examples/vbe/telcolog/primitive_cpp/
scheduler.C

The following C++ code snippet illustrates how to use set_week_mask():

// 7:30 am to 12:00 am
DsLogAdmin::Time24Interval morning = {{7,30},{12,0}};

// 13:30 (1:30 pm) to 17:30 (5:30 pm)
DsLogAdmin::Time24Interval afternoon = {{13,30},{17,30}};

// 21:00 (9:00 pm) to 23:30 (11:30 pm)
DsLogAdmin::Time24Interval night = {{21,0},{23,30}};

// 19:30 (7:30 pm) to 22:30 (11:30 pm)
DsLogAdmin::Time24Interval evening = {{19,30},{22,30}};

VisiBroker Vis iTelcoLog Guide 29

Log schedul ing

// 9:00 am to 16:30 (4:30 pm)
DsLogAdmin::Time24Interval wkend_day = {{9,0},{16,30}};

DsLogAdmin::WeekMask new_weekmask;
new_weekmask.length(2);

// weekday schedule in the 0th weekmask item
new_weekmask[0].days = (DsLogAdmin::Monday
 | DsLogAdmin::Tuesday
 | DsLogAdmin::Wednesday
 | DsLogAdmin::Thursday
 | DsLogAdmin::Friday);

new_weekmask[0].intervals.length(3); // 3 intervals
new_weekmask[0].intervals[0] = morning;
new_weekmask[0].intervals[1] = afternoon;
new_weekmask[0].intervals[2] = night;

// weekend schedule in the 1st weekmask item
new_weekmask[1].days = (DsLogAdmin::Sunday
 | DsLogAdmin::Saturday);

new_weekmask[1].intervals.length(2); // 2 intervals
new_weekmask[1].intervals[0] = wkend_day;
new_weekmask[1].intervals[1] = evening;

// set new week mask on the log
log->set_week_mask(new_weekmask);

The following C++ code snippet illustrates how to use get_week_mask()
and process the result:

// retrieve current week mask from the log
DsLogAdmin::WeekMask_var holder;
holder = log->get_week_mask();

const char* day_names[7] = {
 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};

const DsLogAdmin::WeekMask& mask = holder.in();
CORBA::Short day, daybit;
CORBA::ULong i, j;

// print retrieved schedule by days.
for(day=0,daybit=1;day<7;daybit = daybit*2, day++) {
 cout << " " << day_names[day] << ": ";
 for(i=0;i<mask.length();i++) {
 const DsLogAdmin::WeekMaskItem& item = mask[i];

 if((daybit & item.days) == 0) {
 continue;
 }

 for(j=0;j<item.intervals.length();j++) {
 const DsLogAdmin::Time24Interval& interval =

item.intervals[j];
 char buf[32];

 sprintf(buf, "[%02u:%02u-%02u:%02u] ",

30 VisiBroker Vis iTelcoLog Guide

Log schedul ing

 interval.start.hour,
 interval.start.minute,
 interval.stop.hour,
 interval.stop.minute);

 cout << buf;
 }
 }

 cout << endl;
 }
}

On processing set_week_mask() requests, the log object server validates
the input weekly mask parameter. Exceptions that are raised on
set_week_mask() and their corresponding weekly mask setting errors are
explained in the following table.

On failure of set_week_mask() due to errors, the log's existing weekly
mask will remain and a DsLogNotification::ProcessingErrorAlarm
log event (see “Log generated events”) will be sent. On success of
set_week_mask() the existing weekly mask will be completely replaced by
the new weekly mask. Therefore, to completely erase an existing weekly
mask, the application can invoke set_week_mask() with an empty weekly
mask that is a weekly mask of length zero. A log with an empty weekly
mask will accept logging during the whole week.

Exception Description
DsLogAdmin::InvalidTime Hour or minute field in one of the interval's start or stop fields is

out of range. The valid range for hour is 0 to 23, and the valid
range for minute is 0 to 59.

DsLogAdmin::InvalidTimeInterval Case 1: Start time is later than stop time. Therefore, an interval
starting at midnight and stopping after midnight is not
supported. The effect of an interval that spans days should be
done using two intervals: one that stops before just before
midnight (23:59) and another that starts just after midnight on
the next day (00:00).
Case 2: Time intervals overlap. Start or stop time of one
scheduled interval is within the bounds of another scheduled
interval in the same weekly mask parameter.

VisiBroker Vis iTelcoLog Guide 31

Log generated events

Log generated events
According to the OMG Telecom Log Service specification, event-aware Log
factories and logs can generate events on log object creation and deletion,
state and attribute change, threshold crossover, and processing error. A
value-added extension of the VisiTelcoLog Service allows a BasicLog object
to generate these events. These log generated events are called log events.
Therefore, in VisiTelcoLog Service, a log factory (Basic, Event, TypedEvent,
Notify, or TypedNotify factory) is a
CosNotifyChannelAdmin::ConsumerAdmin.

Figure 3 Log factory inheritance interface

The purpose of LogFactory “is a” ConsumerAdmin is to expose
downstream or consumer-side functionality of an event channel inside each
log factory. This event channel is called a log event channel. Log events
generated from a log factory and from its logs are all sent to the log event
channel of this factory. To receive log events an application can create
consumer-side proxies on the log factory through its operations inherited
from ConsumerAdmin and connect to these proxies.

The following C++ code (also located in <install_dir>/examples/vbe/
telcolog/primitive_cpp/logEventReceiver.C) illustrates how to connect an
event consumer to log event channel of a NotifyLogFactory:

int main(int argc, char** argv)
{
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

 // get service reference (the Notify Log Factory)
 CORBA::Object_var service
 = orb->resolve_initial_references(
 "NotifyLogService");

 // directly narrow the factory to consumer admin.
 CosNotifyChannelAdmin::ConsumerAdmin_var admin
 = CosNotifyChannelAdmin::ConsumerAdmin
 ::_narrow(service);

 CosNotifyChannelAdmin::ProxyID proxy_id;

// create a proxy
 CosNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::ANY_EVENT, proxy_id);

32 VisiBroker Vis iTelcoLog Guide

Log generated events

 CosNotifyChannelAdmin::ProxyPushSupplier_var supplier;
 supplier = CosNotifyChannelAdmin::ProxyPushSupplier
 ::_narrow(proxy);

 // allocate the consumer implementation
 PushConsumerImpl* servant = new PushConsumerImpl;

// activate it on root poa
 CORBA::Object_var obj
 = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa
 = PortableServer::POA::_narrow(obj);
 poa->activate_object(servant);

 // activate the root poa
 PortableServer::POAManager_var poa_manager
 = poa->the_POAManager();
 poa_manager->activate();

 // get consumer object reference
 CORBA::Object_var ref
 = poa->servant_to_reference(servant);
 CosNotifyComm::PushConsumer_var consumer =
 CosNotifyComm::PushConsumer::_narrow(ref);

 // connect the consumer to the supplier proxy
 supplier->connect_any_push_consumer(consumer);

 cout << "log event receiver is ready" << endl;

 // work loop
 orb->run();
 }
 catch(CORBA::Exception& e) {
 cout << "caught exception:" << endl << e << endl;
 }

 return 0;
}

The following Java code illustrates how to connect an event consumer to a
log event channel of a NotifyLogFactory:

import org.omg.CosNotifyChannelAdmin.*;
import org.omg.PortableServer.*;
import org.omg.CosNotifyComm.*;

public class logEventReceiver {

 public static void main(String[] args) {
 try {
 org.omg.CORBA.ORB orb
 = org.omg.CORBA.ORB.init(args, null);

 // get service reference (the Notify Log Factory)
 org.omg.CORBA.Object service
 = orb.resolve_initial_references(
 "NotifyLogService");

VisiBroker Vis iTelcoLog Guide 33

Log generated events

 // directly narrow factory to a consumer admin.
 ConsumerAdmin admin
 = ConsumerAdminHelper.narrow(service);

 org.omg.CORBA.IntHolder proxy_id
 = new org.omg.CORBA.IntHolder();

// create a proxy
 ProxySupplier proxy
 = admin.obtain_notification_push_supplier(
 ClientType.ANY_EVENT, proxy_id);
 ProxyPushSupplier supplier
 = ProxyPushSupplierHelper.narrow(proxy);

 // allocate the consumer implementation
 PushConsumerImpl servant = new PushConsumerImpl();

 // activate it on root poa
 org.omg.CORBA.Object obj
 = orb.resolve_initial_references("RootPOA");
 POA poa = POAHelper.narrow(obj);
 poa.activate_object(servant);

 // activate the root poa
 POAManager poa_manager = poa.the_POAManager();
 poa_manager.activate();

 // get consumer object reference
 org.omg.CORBA.Object ref
 = poa.servant_to_reference(servant);
 PushConsumer consumer
 = PushConsumerHelper.narrow(ref);

 // connect the consumer to the supplier proxy
 supplier.connect_any_push_consumer(consumer);

 System.out.println("untyped push consumer is
ready");

 // work loop
 orb.run();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Possible log events and their meanings have been specified by OMG as
described in the following sections.

34 VisiBroker Vis iTelcoLog Guide

Log generated events

Object Creation Event
This event is emitted from a log factory itself on a successful log object
creation. The new log ID and the log creation time is encapsulated in the
CORBA Any event body as an IDL structure defined as:

module DsNotification {
struct ObjectCreation
 {
 LogId id;
 TimeT time;
 };
};

Object Deletion Event
This event is emitted from a log factory itself on a successful log object
deletion. The deleted log ID and the log deletion time is encapsulated in the
CORBA Any event body as an IDL structure defined as:

module DsNotification {
struct ObjectDeletion
 {
 LogId id;
 TimeT time;
 };
};

Attribute Value Change (AVC) Event
This event is emitted from a log on a successful log attribute value change.
Information about the attribute value change is encapsulated in the CORBA
Any event body as an IDL structure defined as:

module DsNotification {
struct AttributeValueChange
 {
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 Any old_value;
 Any new_value;
 };
};

In this structure

• logref is the reference of the log object itself.

• id is the log ID of the log object.

• time is the time the attribute value change was made.

• type indicates the type of the changed attribute. See discussion below.

• old_value encapsulates the original value of the attribute before the
change.

• new_value encapsulates the new value of the attribute after the change.

VisiBroker Vis iTelcoLog Guide 35

Log generated events

OMG specifies following attribute types of log object:

State Change Event
This event is emitted from a log on OMG specified log state change.
Information about the state change is encapsulated in the CORBA Any event
body as an IDL structure defined as:

module DsNotification {
struct StateChange
 {
 Log logref;
 LogId id;
 TimeT time;
 StateType type;
 Any new_value;
 };
};

In this structure

• logref is the reference of the log object itself.

• id is the log id of the log object.

• time is the time of the state change.

• type indicates the type of the changed state. See discussion below.

• new_value encapsulates the new state value after the change.

Attribute type Description
capacityAlarmThreshold (type = 0) This type of AVC event is triggered by a successful

set_capacity_thresholds() invocation on a log object and
changes its previous capacity alarm threshold setting.

logFullAction (type = 1) This type of AVC event is triggered by a successful
set_full_action() invocation on a log object and changes its
previous log full action setting.

maxLogSize (type = 2) This type of AVC event is triggered by a successful
set_max_size() invocation on a log object and changes its
previous log max size setting.

startTime (type = 3) This type of AVC event is triggered by a successful
set_interval() invocation on a log object and changes its log
interval start time setting.

stopTime (type = 4) This type of AVC event is triggered by a successful
set_interval() invocation on a log object and changes its log
interval stop time setting.

weekMask (type = 5) This type of AVC event is triggered by a successful
set_week_mask() invocation on a log object.

filter (type = 6) This type of AVC event is triggered by a successful
set_filter() invocation on a log object and changes its filter.

maxRecordLife (type = 7) This type of AVC event is triggered by a successful
set_max_record_life() invocation on a log object and
changes its max record life setting.

qualityOfService (type = 8) This type of AVC event is triggered by a successful
set_log_qos() invocation on a log object and changes its log
QoS setting.

36 VisiBroker Vis iTelcoLog Guide

Log generated events

OMG specifies the following state change event types for a log object:

Threshold Alarm Event
This event is emitted from a log object when a log write operation causes
the log to grow beyond its size threshold. Information about the attribute
value change is encapsulated in the CORBA Any event body as an IDL
structure defined as:

module DsNotification {
struct ThresholdAlarm
 {
 Log logref;
 LogId id;
 TimeT time;
 Threshold crossed_value;
 Threshold observed_value;
 PerceivedSeverityType perceived_severity;
 };
};

In this structure

• logref is the reference of the log object itself.

• id is the log ID of the log object.

• time is the time of the occurrence.

• crossed_value the threshold value just being crossed.

• observed_value the current log space usage percentage.

• perceived_severity critical(0), minor(1) and cleared(2).

State change event type Description
administrativeState (type = 0) This type of state change event is triggered by a successful

set_administrative_state() invocation on a log object and
changes its administrative state, allowing or disallowing log
record write operations (insert, update, delete, etc.).

operationalState (type = 1) This type of state change event is not used by the VisiTelcoLog
Service implementation in this release.

forwardingState (type = 2) This type of state change event is triggered by a successful
set_forwarding_state() invocation on a log object and
changes its forwarding state, which enables or disables event
forwarding.

VisiBroker Vis iTelcoLog Guide 37

Log generated events

Processing Error Alarm Event
This event is emitted from a log factory or a log object when a problem
occurs within the factory or log object. Information about the attribute
value change is encapsulated in the CORBA Any event body as an IDL
structure defined as:

module DsNotification {
struct ProcessingErrorAlarm
 {
 long error_num;
 string error_string;
 };
};

In this structure

• error_num is the highest 20 bits of this field which are reserved for
vendor-specific error ids.

• error_string is the text string that explains the error.

38 VisiBroker Vis iTelcoLog Guide

VisiBroker Vis iTelcoLog Guide 39

Running the VisiTelcoLog
Service
The VisiTelcoLog Service is implemented as a C++ service. VisiBroker for
C++ is pre-requisite for running VisiTelcoLog Service. To run the service
make sure that VisiBroker Smart Agent (osagent executable) is running in
the network. To start the VisiTelcoLog Service in the background use the
following command:

UNIX:
prompt> visitelcolog &

Windows:
prompt> start visitelcolog.exe

By default the service starts at port 14200. The port can be changed using
the property vbroker.dslog.listener.port. Once started, the service
prints the following message to the console:

Telco Log service is ready

VisiTelcoLog Service creates a directory called visidslog.dir to store all
of its persistent data. By default it creates this directory in the current
directory. The location for the data store directory can be changed using the
vbroker.dslog.dir property. This directory also contains the log back
end.

Also note that for the sake of convenience the compiled stub and skeleton
code of the OMG Telecom Log Service IDLs are provided as a static library.
Please see the examples on how to use it. The generated skeletons are for
POA.

Getting entry references
VisiTelcoLog starts up by default at port 14200. This port can be changed
using the vbroker.dslog.listener.port property.

Applications trying to bind to BasicLogService, EventLogService,
NotifyLogService, TypedEventLogService or
TypedNotifyLogService can use corbaloc to resolve initial reference to
the service.

Applications can use the following ORB property:

-ORBInitRef corbaloc::<host>:<port>/BasicLogService
-ORBInitRef corbaloc::<host>:<port>/EventLogService
-ORBInitRef corbaloc::<host>:<port>/NotifyLogService
-ORBInitRef corbaloc::<host>:<port>/TypedEventLogService
-ORBInitRef corbaloc::<host>:<port>/TypedNotifyLogService

40 VisiBroker Vis iTelcoLog Guide

Propert ies

Properties

Property Default Description
vbroker.dslog.listener.port 14200 Specifies the listener port for

the service.

Valid values include any legal
port value in the port range.

vbroker.dslog.console true When true, prints to the
console when the service
starts up. For daemon
processes, this should be set
to false.

vbroker.dslog.dir ./visidslog.dir The service stores all of its
persistent data in the specified
directory. If the directory is
not valid or does not have the
right permissions, the service
will fail to start up.

Valid values include any valid
directory location.

vbroker.dslog.getRecListMax 1000 The number of LogRecords
that need to be matched in the
query for an iterator to be
returned.

vbroker.dslog.scheduleByServer
LocalTime

false When set to true, calls
tzset() for scheduler time.

vbroker.dslog.waitForLog
Available

20 Waiting period (in seconds) for
the pull supplier for space to
be available to log a pulled
event.

Valid values include any non-
zero wait duration in seconds.

vbroker.dslog.basicLogFactory.
name

VisiBasicLogFactory The name with which the
BasicLog factory is activated.

Valid values include any object
name.

vbroker.dslog.basicLogFactory.
iorFile

null The name of the file where the
BasicLog factory object's IOR
will be written.

Valid values include any valid
file name.

vbroker.dslog.eventLogFactory.
name

VisiEventLogFactory The name with which the
event log factory is activated.

Valid values include any object
name.

vbroker.dslog.eventLogFactory.
iorFile

null The name of the file where the
event log factory object's IOR
will be written.

Valid values include any valid
file name.

vbroker.dslog.notifyLogFactory.
name

VisiNotifyLogFactory The name with which the
notify log factory is activated.

Valid values include any object
name.

VisiBroker Vis iTelcoLog Guide 41

Propert ies

vbroker.dslog.notifyLogFactory.
iorFile

null The name of the file where the
notify log factory object's IOR
will be written.

Valid values include any valid
file name.

vbroker.dslog.backend.garbage
CollectorInterval

60 The time interval (in minutes)
for the log record garbage
collector thread to run. When
the thread runs, it garbage
collects all expired log records.
The thread runs only when the
record life for the log is
specified. Otherwise, it does
not run.

Valid values fall in the range of
1 to 180 minutes.

vbroker.dslog.backend.file.
fragmentationLimit

75% Percentage of fragmentation
that triggers automatic
defragmentation. Automatic
defragmentation happens only
when deleting.

Valid values fall in the range of
10% to 80%.

vbroker.dslog.backend.file.dir null The directory location for
back-end database and
support files. The directory
path must be valid and must
have the necessary
permissions.

Note that the performance of
the service depends on this
directory.

vbroker.log.enable false To see the debug log
statements from this service,
set this property to true.

For the various source names
options for debug log filtering,
see Debug Logging properties
in the VisiBroker for C++
Developer's Guide.

Property Default Description

42 VisiBroker Vis iTelcoLog Guide

VisiBroker Vis iTelcoLog Guide 43

Symbols
... ellipsis 1
symbols

square brackets 1
| vertical bar 1

B
brackets 1

C
commands

conventions 1

D
documentation

.pdf format 3
accessing Help Topics 1
platform conventions used in 2
type conventions used in 1
updates on the web 3

H
Help Topics

accessing 1

L
log

VisiTelcoLog 27
log interface, VisiTelcoLog 19

O
online Help Topics

accessing 1

P
PDF documentation 3

Q
QoS

VisiTelcoLog 20

S
square brackets 1
symbols

ellipsis ... 1
vertical bar | 1

V
VisiTelcoLog

advanced features 27
constraint-based query 23
copying logs 22
deleting records 24
duration 27
entry references 39
event aware applications 7
event filtering 12

event forwarding 11
event logging 9
event unaware applications 15
events 31, 34, 35, 36, 37
iterators 22, 24
log attributes 22
log factory 8, 15
log full action 21
log interface 19
log record life 21
log records 19
log size 21
overview 5
properties 40
QoS 20
query 22
retrieval 22
running service 39
scheduling 27
time-based retrieval 22
typed log records 19
writing records 17

Index

 44 VisiBroker VisiTelcoLog Guide

	Contents
	Introduction to VisiBroker
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Documentation conventions
	Platform conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	VisiTelcoLog Service overview
	Logging for event aware applications
	Using log factories
	Logging events
	Forwarding logged events
	Filtering events

	Logging for event unaware applications
	Using the log factory
	Writing log records

	Understanding the Log interface
	Log and Typed Log records
	Log Quality of Service
	Log size and manipulation
	Controlling the log size
	Log full action
	Log record life

	Setting log attributes
	Copying logs
	Log record query, retrieval and iterators
	Retrieving records based on time
	Querying for records based on constraint
	Iterators

	Deleting log records

	Advanced features
	Log duration
	Log scheduling
	Log generated events
	Object Creation Event
	Object Deletion Event
	Attribute Value Change (AVC) Event
	State Change Event
	Threshold Alarm Event
	Processing Error Alarm Event

	Running the VisiTelcoLog Service
	Getting entry references
	Properties

	Index

